
AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 1 - Copyright © 2024 Design Gateway Co., Ltd.

AES256GCM10G25G-IP Reference Design

1 Introduction .. 2

2 Hardware Overview ... 2

2.1 MemBus2Reg Module ... 3

2.2 AsyncBusReg .. 3

2.3 UserReg ... 4

2.3.1 Key setting ... 5

2.3.2 Parameter setting .. 6

2.3.3 Encryption/Decryption/Bypass .. 6

3 CPU Firmware ... 7

3.1 Set encryption/decryption key ... 7

3.2 Set encryption/decryption IV .. 7

3.3 Show Data Memory ... 7

3.4 Fill AAD Memory .. 8

3.5 Fill Plain Data Memory .. 8

3.6 Encrypt Data .. 8

3.7 Decrypt Data .. 9

3.8 Bypass Data .. 9

3.9 Clone Memory ... 9

3.10 Loop verification... 10

4 Revision History .. 11

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 2 - Copyright © 2024 Design Gateway Co., Ltd.

AES256GCM10G25G-IP Reference Design
Rev2.00 14-Oct-2024

1 Introduction

This document describes the detail of AES256GCM10G25GIP reference design. In this reference design,
AES256GCM10G25GIP is used to encrypt/decrypt data between two memories in FPGA and provide authentication
tag. User can fill memory with Additional Authenticated Data (AAD), plain or cipher data patterns, set key, Initialization
Vector (IV), and control test operation via serial console on test PC. More details of the hardware design and CPU
firmware are described as follows.

2 Hardware Overview

Figure 1 AES256GCM10G25GIP reference design block diagram

In this test environment, the AES256GCM10G25GIP, called AES256GCM, interface with two dual-port RAMs with
asymmetric ports, which are DpRam1 and DpRam2, as shown in Figure 1. AES256GCM and two RAMs are sub-
modules in UserReg module within MemBus2Reg. CPU system is designed to interface with FPGA logic through
memory-mapped bus (Avalon-MM) and interface with user through serial console in test PC.

For user control interface, there are registers in UserReg to store parameters from user such as encryption and
decryption keys, initialization vector (IV), number of AAD and data to encrypt or decrypt. Input parameters are
received from user via serial console.

For user data interface, UserReg is designed to be able to write pattern data or read data in RAMs following user’s
command and read authentication tag. DpRam1 is used to store AAD and the DataIn from user which will be input
data for AES256GCM. DpRam2 is used to store output data from AES256GCM. Authentication tag is stored in
registers which user can read.

Because CPU system and AES256GCM run in different clock domain, AsyncBusReg module inside MemBus2Reg
is designed as asynchronous circuit to support clock-crossing operation. Also, AsyncBusReg converts memory-
mapped bus signal which is standard bus in CPU system to be register interface. The details of MemBus2Reg module
are described as follows.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 3 - Copyright © 2024 Design Gateway Co., Ltd.

2.1 MemBus2Reg Module

The MemBus2Reg module interfaces with the CPU through a memory-mapped bus, such as Avalon-MM. The
hardware registers within MemBus2Reg are mapped to specific CPU memory addresses, as shown in Table 1. These
registers include control and status registers that enable the CPU to access and manage the module.

MemBus2Reg consists of two main sub-modules: AsyncBusReg and UserReg. The AsyncBusReg sub-module is
responsible for converting the signals from the memory-mapped bus into a simple register interface that uses a 32-
bit data bus, maintaining consistency with the bus’s data size. As shown in Figure 1, the MemBus2Reg module
operates with two clock domains: CpuClk, which interfaces with the CPU, and UserClk, which operates in the user-
defined clock domain. The AsyncBusReg sub-module includes circuitry to handle asynchronous communication
between these two clock domains.

UserReg includes the register file of the parameters and the status signals of test logics, including dual-port rams
and AES256GCM. Both data interface and control interface of AES256GCM are connected to UserReg. More details
of AsyncBusReg and UserReg are described as follows.

2.2 AsyncBusReg

This module is designed to convert the signal interface of a memory-mapped bus into a register interface. Also, it
enables two clock domains, CpuClk and UserClk domain, to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the byte enable of this access: bit[0] is write enable for
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for RegWrData[31:24]).

To read register, AsyncBusReg asserts RegRdReq=‘1’ with the valid value of RegAddr (the register address in 32-
bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to get the read data through RegRdData
signal at the same clock.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 4 - Copyright © 2024 Design Gateway Co., Ltd.

2.3 UserReg

This module is designed to write/read data in RAMs, read tag, control and check status of AES256GCM
corresponding with write register access or read register request from AsyncBusReg module. Memory map inside
UserReg module is shown in Table 1. Timing diagram of register interface is shown in Figure 2.

Table 1 Register map Definition

Address offset Register Name Rd/Wr Description

0x0000 ADDR_A1_REG Rd/Wr [10:4] – address A of DpRam1 (rAddrA1[10:4]).

0x0004 ADDR_A2_REG Rd/Wr [10:4] – address A of DpRam2 (rAddrA2[10:4]).

0x0008 AADINCNT_REG Wr [15:0] – length of AAD for encryption/decryption
(rAadInCount[15:0]).

0x000C DATAINCNT_REG Rd [1] – AES256GCM KeyIn busy flag (wKeyInBusy).
[0] – AES256GCM busy flag (wBusy).

Wr [15:0] – length of plain data for encryption/ decryption
(rDataInCnt[15:0]). rStart is asserted to ‘1’ and
encryption/decryption process is started.

0x0010 DECEN_REG Rd/Wr [0] – AES256GCM mode of operation. (rDecryptionEn).

0x0014 BYPASS_REG Rd/Wr [0] – AES256GCM Bypass mode of operation. (rBypass).

0x0018 KEYSIZE_REG Rd/Wr [0] – AES256GCM KeyIn size selection. (rKeySize).

0x001C KEYIN_VALID_REG Wr [0] – AES256GCM KeyIn valid signal. (rKeyInValid).

0x0020 KEYIN_0_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[31:0]).

0x0024 KEYIN_1_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[63:32]).

0x0028 KEYIN_2_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[95:64]).

0x002C KEYIN_3_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[127:96]).

0x0030 KEYIN_4_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[159:128]).

0x0034 KEYIN_5_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[191:160]).

0x0038 KEYIN_6_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[223:192]).

0x003C KEYIN_7_REG Rd/Wr [31:0] – Encryption/Decryption key (rKeyIn[255:224]).

0x0040 IVIN_0_REG Rd/Wr [31:0] – Encryption/Decryption IV (rIvIn[31:0]).

0x0044 IVIN_1_REG Rd/Wr [31:0] – Encryption/Decryption IV (rIvIn[63:32]).

0x0048 IVIN_2_REG Rd/Wr [31:0] – Encryption/Decryption IV (rIvIn[95:64]).

0x0050 TAG_0_REG Rd [31:0] – Authentication tag (rTagOut[31:0]).

0x0054 TAG_1_REG Rd [31:0] – Authentication tag (rTagOut[63:32]).

0x0058 TAG_2_REG Rd [31:0] – Authentication tag (rTagOut[95:64]).

0x005C TAG_3_REG Rd [31:0] – Authentication tag (rTagOut[127:96]).

0x0060 VER_REG Rd [31:0] – AES256GCM IP version (wVersion).

0x2000~0x27FF DATAIN_ADDR Rd/Wr [31:0] – Data in DpRam1 (wRdDataB1).

0x4000~0x47FF DATAOUT_ADDR Rd/Wr [31:0] – Data in DpRam2 (wRdDataB2).

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 5 - Copyright © 2024 Design Gateway Co., Ltd.

Figure 2 Register interface timing diagram

To read register, one multiplexer is designed to select the read data within each address area. UserRegAddr[10:2]
is applied in each register area to select the data. Next, the address decoder uses UserRegAddr[15:11] to select the
read data from each area for returning to CPU. As shown in Figure 2, read data is valid in next two clock cycles.
When UserRegRdReq is active, rUserRegRdReq is asserted to ‘1’. Then rUserRdValid is active with the valid read
value of UserRegAddr.

To write register, UserRegWrEn is asserted to ‘1’ with the valid of UserRegAddr. UserRegAddr[15:11] is used to
decode that CPU accesses dual-port ram (DpRam) or internal register area. When CPU accesses DpRam
(UserRegAddr[15:11]=“00100” or “01000”), UserRegAddr[10:2] is set to be the address of DpRam. For example,
when UserRegAddr[15:0]=0x2004 and UserRegWrEn=’1’, DpRam1 will be filled with UserRegWrData at Address
0x01. Otherwise, UserRegWrData is loaded to internal register which has matched UserRegAddr[10:2]. For example,
rAddrA1 is loaded by UserRegWrData when UserRegAddr=0x0000.

UserRegWrByteEn signal is used when CPU firmware needs to access DpRam by using 32-bit, 16-bit or 8-bit pointer.
UserRegWrByteEn[3:0] is mapped to Byte Write Enable port of DpRam.

In this reference design, there are three main operations which are parameter setting, encryption/decryption/bypass.
Each operation is described as follows.

2.3.1 Key setting

For key setting, rKeyIn is configured by writing to the registers KEYIN_7_REG through KEYIN_0_REG. The key size
is selected using the rKeyInSize signal, where rKeyInSize='1' sets the key to 256-bit, and rKeyInSize='0' sets it to
128-bit. This is done by writing to the KEYSIZE_REG. The key is then set up in AES256GCM by asserting rKeyInValid,
which is done by writing to the KEYIN_VALID_REG as shown in Figure 3.

Figure 3 Timing diagram of key setting process

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 6 - Copyright © 2024 Design Gateway Co., Ltd.

2.3.2 Parameter setting

For parameter setting, encryption/decryption mode is set by DECEN_REG. Bypass mode is set by BYPASS_REG.
IV and length of AAD are set by writing IVIN_0_REG to IVIN_2_REG and AADCNT_REG, respectively. AAD and
DataIn, which will be input data for AES256GCM, are stored in DpRam1, address A of DpRam1 (rAddrA1) is set to
0x00 to access the first AAD data by writing ADDR_A1_REG. DataOut from AES256GCM is stored in DpRam2.
Before starting the encryption/decryption process, address A of DpRam2 (rAddrA2) is set to 0x00 for writing the first
output encrypted/decrypted data by writing ADDR_A2_REG. For setting the length of DataIn, rDataInCnt,
DATAINCNT_REG is written and then rStart is asserted to ‘1’ to start encryption/decryption as shown in Figure 4.

Figure 4 Timing diagram example of parameter setting

2.3.3 Encryption/Decryption/Bypass

For the encryption/decryption/bypass process, wAddrA1 is set to 0x00 to access the first 128-bit block of DataIn.
When wDataInRd is active, wAddrA1 increments by 1 to access the next 128-bit DataIn from DpRam1. As
wDataOutValid becomes active, wDataOut is stored in DpRam2, and rAddrA2 is incremented by 1 in preparation for
the next DataOut, as shown in Figure 5. The authentication tag (rTagOut) is stored in a register when wTagOutValid
is active, and the user can access this tag by reading TAG_0_REG to TAG_7_REG.

Figure 5 Timing diagram of encryption/decryption/bypass process

Note: For bypass mode, wTagOutValid will not be active, and rTagOut is not valid.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 7 - Copyright © 2024 Design Gateway Co., Ltd.

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer and shows IP version of AES256GCM.
Then main menu is displayed. Main function runs in an infinite loop to show the main menu and get keyboard input
from user. User can select each menu via serial console that will call the related functions. After functions finished
running, the main menu is displayed again. More details of the sequence in each menu are described as follows.

3.1 Set encryption/decryption key

This menu is used to set the encryption/decryption key. It prompts the user for KeyInSize input, where the user can
enter 0 to set a 128-bit KeyIn or 1 to set a 256-bit KeyIn. After making this selection, the set_key_or_iv function is
called to update the key set. The user also has the option to press the "Enter" key to skip key input and retain the
current key for the module. The set_key_or_iv function is detailed in Table 2.

Table 2 change_key_set function

void set_key_or_iv(unsigned int *start_addr, unsigned int length_hex, char *label)

Parameter start_addr: register for set key or iv of module

length_hex: length character of key or iv

label: name of signal for module

Return value None

Description This function displays current key or iv on the console. Receive input new key or iv in
hexadecimal format or “enter” key to skip. User’s input will be ignored if it is not hexadecimal
format. Then the function monitors busy status until busy status is not active. Then set the
registers.

3.2 Set encryption/decryption IV

This menu is used to set Initialization Vector (IV). set_key_or_iv function is called to change iv set. User can input
“enter” key to skip input iv and not change current iv. IVIN_0_REG, 24-character, “IvIn” are input parameters.

3.3 Show Data Memory

This menu is used to show data in memory. User can set the number of data to show on console in byte unit. The
sequence of the firmware is as follows.

1) Receive the length of data in decimal format or “enter” key to use default value. If user input ‘0’, the length
of data to show will be default value. The length of data to show is stored in length.

2) Call show_data function to show data in memory with DATAIN_ADDR and length as its parameters.
show_data function is described in Table 3.

Table 3 show_data function

void show_data(unsigned int mode, unsigned int base_addr, unsigned int length)

Parameter mode: display mode to choose the headers for the memory regions

base_addr: base address to access memory

length: length of data to show

Return value None

Description This function shows data in both DpRam1 and DpRam2 corresponding to length. CPU
firmware reads data in DpRam1, starting at DATAIN_ADDR, and shows on console. Also, CPU
firmware reads data in DpRam2, starting at DATAOUT_ADDR, and shows on console. If
length is too large, length will be set to the size of memory.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 8 - Copyright © 2024 Design Gateway Co., Ltd.

3.4 Fill AAD Memory

This menu is used to set the length of AAD and fill DpRam1 with AAD pattern. The sequence of the firmware is as
follows.

1) Receive the length of AAD in byte unit or “enter” key to set AAD length to zero. The length of AAD is stored
in aad_cnt and calculates the first address for fill data is stored at start_addr.

2) Call fill_data function to choose AAD pattern and fill DpRam1 with selected pattern. The input parameters
of fill_data are 0x01, DATAIN_ADDR which is the first address for AAD in DpRam1, and aad_cnt. fill_data
function is described in Table 4.

3) Call show_data function to show AAD data for both DpRam1 and DpRam2 corresponding to aad_cnt and
data_cnt.

Table 4 fill_data function

void fill_data(unsigned int zero_padding, unsigned int base_addr, unsigned int data_length)

Parameter zero_padding: zero padding to 128-bit, 1 to fill right-padding with zeros and 0 is ignored.

base_addr: base address to access memory

data_length: length of data to fill data pattern

Return value None

Description This function fills the selected pattern in memory corresponding to base_addr. Before filling
memory, the function shows data pattern choices (zeros, 8-bit, 16-bit, 32-bit counter) on serial
console and waits for user’s input. For invalid choice, the console will display the error
message and wait until user input new valid choice. Then selected data pattern is filled into
memory by the length of data (data length).

3.5 Fill Plain Data Memory

This menu is used to fill DpRam1 with plain data pattern. The sequence of the firmware is as follows.

1) Receive the length of DataIn in byte unit or “enter” key to set length of data to zero. The number of DataIn
is stored in data_cnt.

2) Call fill_data function to choose data pattern and fill DpRam1 with selected pattern. The input parameter of
fill_data is 0x00, start_addr which is base address for DpRam1 and data_cnt.

3) Call show_data function to show data in both DpRam1 and DpRam2 corresponding to aad_cnt and data_cnt.

According to Table 4, there are four data pattern choices to fill memory that are zero pattern, 8-bit counter pattern,
16-bit pattern and 32-bit pattern. For zero pattern, user can select this choice to clear data memory. It makes user
see the output of encryption/decryption more clearly.

3.6 Encrypt Data

This menu is used to start encryption process with current encryption parameters. The sequence of the firmware is
as follows.

1) Call aes_command function to set mode of operation, the starting address, number of AAD and DataIn to
encrypt and check status. aes_command function is described in Table 5.

2) Print AAD length and DataIn length in byte unit. Call show_data function to show data in memory according
to aad_cnt and data_cnt.

3) Call show_tag function to display encryption tag. show_tag function is described in Table 6.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 9 - Copyright © 2024 Design Gateway Co., Ltd.

Table 5 aes_command function

void aes_command(unsigned int mode, unsigned int *AADCNT_REG, unsigned int aad_cnt, unsigned int
*DATACNT_REG, unsigned int data_cnt)

Parameter mode: mode of operation, 0 for encryption, 1 for decryption, 2 for bypass

AADCNT_REG: register for AAD length

aad_cnt: the number of AAD to operate

DATACNT_REG: register for data length

data_cnt: the number of data to operate

Return value None

Description This function set encryption/decryption mode by writing register DECEN_REG and set Bypass
mode by writing register BYPASS_REG, sets the number of AAD by writing register
AADCNT_REG with aad_cnt and sets the starting address of DpRam1 and DpRam2 by writing
register ADDR_A1_REG and ADDR_A2_REG, respectively. Then DATACNT_REG is written
with data_cnt to set the number of data to operate. Also, DATACNT_REG is monitored to
check whether operation finish. When operation finished, *CMD_REG=0 which means
AES256GCM is not busy (*DATACNT_REG= 0).

Table 6 show_tag function

void show_tag(unsigned int *TAG_REG)

Parameter TAG_REG: register for reading authentication tag

Return value None

Description This function reads authentication tag from TAG_REG to TAG_REG+0x000F and prints tag
on serial console.

3.7 Decrypt Data

This menu is used to start decryption process with current decryption parameters. The sequence of the firmware is
as follows.

1) Call aes_command function to set mode of operation, the starting address, number of AAD and DataIn to
decrypt and check status.

2) Print AAD length and DataIn length in byte unit. Call show_data function to show data in memory according
to aad_cnt and data_cnt.

3) Call show_tag function to display decryption tag.

3.8 Bypass Data

This menu is used to start bypass process with current bypass parameters. The sequence of the firmware is as
follows.

1) Call aes_command function to set mode of operation, the starting address, number of AAD and DataIn to
bypass and check status.

2) Print AAD length and DataIn length in byte unit. Call show_data function to show data in memory according
to aad_cnt and data_cnt.

3.9 Clone Memory

This menu is used to clone DpRam2 to DpRam1.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 10 - Copyright © 2024 Design Gateway Co., Ltd.

3.10 Loop verification

This menu is used to verify both encryption and decryption with the current parameters by calling loop_verify function
which is described in Table 7.

Table 7 loop_verify function

int loop_verify(unsigned int aad_cnt, unsigned int data_cnt)

Parameter aad_cnt: the number of AAD for encryption and decryption

data_cnt: the number of data for encryption and decryption

Return value Int: 0 for verification succeeded and -1 for verification failed

Description This function reads and stores plain data from DpRam1 for verification. Data in DpRam2 is
cleared. aes_command function is called to encrypt plain data with current parameters. Then
copy the data in DpRam2 to DpRam1 and aes_command function is called to decrypt data
with current parameters. The decrypted data is compared with plain data before encryption
process and decryption tag is compared with encryption tag. Verification result will be printed
on serial console.

AES256GCM10G25G IP Core

AES256GCM10G25G-refdesign-intel-en - 11 - Copyright © 2024 Design Gateway Co., Ltd.

4 Revision History

Revision Date (D-M-Y) Description

2.00 14-Oct-24 - Enhance to support 128-bit key.

1.03 20-Jan-23 - Add Bypass feature.

- Improve performance.

1.02 27-Oct-22 Update description for new design

1.00 1-Oct-22 Initial version release

