
dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23

LL10GEMAC-IP reference design

1 Introduction ... 1
2 Hardware overview .. 3

2.1 Xilinx Transceiver (PMA for 10GBASE-R) .. 4
2.2 LL10GEMAC-IP .. 4
2.3 PMARstCtrl ... 4
2.4 PacketGen .. 5
2.5 Timer ... 7
2.6 CPU and Peripherals .. 9

2.6.1 AsyncAxiReg .. 10
2.6.2 UserReg ... 12

3 CPU Firmware Sequence ... 14
3.1 Change Loopback Mode ... 15
3.2 Run Loopback Test ... 15
3.3 Function list in User application .. 16

4 Revision History .. 17

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 1

LL10GEMAC-IP reference design
Rev1.1 30-Jun-23

1 Introduction

Figure 1-1 Low latency solution

The application layer, transport layer, and network layer of Ethernet system in FPGA are mostly
implemented by the CPU software for system flexibility. The Link layer and Physical layer can be
designed by using 10G/25G Ethernet Subsystem which is Xilinx IP core. Some applications such
as HFT (High Frequency Trading) are time-sensitive system. Using CPU system has much
latency time for software-hardware handling process.

To achieve the lowest latency time, pure hardwired logic is purposed. As shown in the right side of
Figure 1-1, the low-level protocol is designed by using LL10GEMAC-IP operating with 10GbE
PMA. Moreover, the high-level protocols such as TCP/IP and UDP/IP can be implemented by
pure-hardwired logic such as TOE10GLL-IP, UDP10GTx-IP, and UDP10GRx-IP. By using all
hardwired logic solution, user can design simple logic for transferring the data via 10Gb Ethernet
system with achieving very low latency time.

LL10GEMAC-IP consists of EMAC and PCS logic (the top part of Physical layer) while PMA logic
(the low part of Physical layer) is implemented by using Xilinx Transceiver.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 2

Figure 1-2 Loopback Test to check latency time

To check latency time of LL10GEMAC-IP, the simple test logic can be designed as shown in
Figure 1-2. SFP+ loopback module can be inserted for transferring the packet from Tx interface to
Rx interface. Also, the internal loopback inside transceiver can be applied when SFP+ loopback
module is not available.

To run the test, the user logic transfers the small packet and then verifies the received packet to
confirm the connection stability. Latency time can be measured by designing the counter which
starts counting at the AXI4-stream interface of LL10GEMAC-IP from the first data of Tx path to the
first data of Rx path. Therefore, latency time from Xilinx Transceiver and SFP+ loopback module
is included.

CPU system is included for user interface by using Serial console. The user can start the test
operation and see the result from the test on the console. More details of the demo are described
as follows.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 3

2 Hardware overview

Figure 2-1 Loopback Test Block Diagram

CPU system is included for easy user interface. The user sets the test parameters and checks the
test result on the Serial console. CPU uses AXI4-Lite bus to interface with the hardware logic.
LAxi2Reg is the interface module to connect control and status signals of the hardware for CPU
setting and monitoring.

The loopback system uses PacketGen which is the test logic to generate small Ethernet packet to
LL10GEMAC-IP. The packet is transferred from LL10GEMAC-IP to Tx interface of Xilinx
Transceiver. The data stream can be loopback via SFP+ loopback module or internal loopback
inside the transceiver. After that, the packet is retuned from the transceiver via Rx interface.
LL10GEMAC-IP decodes the packet and returned to PacketGen for verifying the data. The
received packet which must be similar to the transmitted packet if the connection is stable.
PMARstCtrl is designed to control reset sequence of Xilinx Transceiver.

The main objective of loopback test is to measure the latency time in LL10GEMAC-IP and
Transceiver. MacRoundTimer is designed to capture round-trip latency time for transferring the
packet from Tx interface of LL10GEMAC-IP to Rx interface of LL10GEMAC-IP as shown in Figure
2-1. The user uses Serial console to set the packet length and the number of packets which is the
parameters for PacketGen. The number of packets is set to run the test many times and get many
results, controlled by CPU firmware. After finishing the test, CPU calculates to find the minimum
value, the maximum value, and the average value of round-trip time for displaying on the console.
More details of each module are described as follows.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 4

2.1 Xilinx Transceiver (PMA for 10GBASE-R)

PMA IP core for 10Gb Ethernet (BASE-R) can be generated by using Vivado IP catalog. In
FPGA Transceivers Wizard, the user uses the following settings.

• Transceiver configuration preset : GT-10GBASE-R

• Encoding/Decoding : Raw

• Transmitter Buffer : Bypass

• Receiver Buffer : Bypass

• User/Internal data width : 32

More details of Transceiver wizard such as Ultrascale model are described in the following
link.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

2.2 LL10GEMAC-IP

The IP core by DesignGateway implements low-latency EMAC and PCS logic for 10Gb
Ethernet (BASE-R) standard. The user interface is 32-bit AXI4-stream bus. Please see more
details from LL10GEMAC datasheet on our website.
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en.pdf

2.3 PMARstCtrl

When the buffer inside Xilinx Transceiver is bypassed, the user logic must control reset signal
to Tx and Rx buffer. The module is designed by state machine to run following step.
(1) Assert Tx reset to ‘1’ for one clock cycle to the transceiver.
(2) Wail until Tx reset done = ‘1’.
(3) Finish Tx reset sequence and de-assert Tx reset output to start Tx operation.
(4) Assert Rx reset to the transceiver.
(5) Wait until Rx reset done = ‘1’.
(6) Finish Rx reset sequence and de-assert Rx reset output to start Rx operation.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en.pdf

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 5

2.4 PacketGen

Figure 2-2 PacketGen module

PacketGen module is the test logic to send and receive one packet with LL10GEMAC-IP
through AXI4-Stream interface. This module runs in two clock domains - Clk for transmit
operation and RxClk for receive operation. As shown in Figure 2-2, the logic is split to two
groups, i.e., Packet generator in the top side for generating one packet to AXI4-ST and
Packet verification in the bottom side for verifying one packet from AXI4-ST.

After receiving start pulse from the user (UserStart), this module generates one test packet
which has packet length equal to packet size parameter (UserLen). Test pattern is 16-bit
incremental data, created by the transmit counter (rTxLenCnt). When packet size is not
aligned to 32-bit, tx_axis_tkeep of the last data in the packet is asserted only some bits. At
the same time, tx_axis_tlast is asserted to ‘1’ to finish the transmit operation. TxBusy is
asserted to ‘1’ after UserStart is asserted. While TxBusy changes from ‘1’ to ‘0’ after finishing
transmit operation (tx_axis_tlast=’1’). Tx Length Counter and Tx Data Generator are paused
when tx_axis_tready is de-asserted to ‘0’. Transmitted data valid (tx_axis_tvalid) is always
asserted to ‘1’ to send the packet via AXI4-ST until end of the transmitted packet.

UserBusy is designed for user monitoring PacketGen operation. When User asserts
UserStart, UserBusy is asserted to ‘1’. UserBusy is de-asserted to ‘0’ after finishing the
loopback operation by receiving end of the packet (rx_axis_tlast=’1’).

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 6

On the other hand, when the packet is loop-back to Rx AXI4-ST, the packet is verified. The
received data valid (rx_axis_tvalid) is applied to count the number of received data
(rRxLenCnt). The counter output can be fed to the pattern generator (Rx Data Generator) to
create the expected pattern for data verification. Zero-padding module is run when the
packet size is less than 60 bytes. After the current receive counter is equal to the packet size,
set by user, rLastRxTrn will be asserted to ‘1’ to fill the expected pattern with zero value until
the 60-byte packet length is reached. Fail flag (UserVerFail) is asserted to ‘1’ if the received
data is not equal to the expected pattern. When the end of packet (rx_axis_tlast) is asserted
to ‘1’, Finish flag (rRxFinish) is asserted to ‘1’ for de-asserting UserBusy to ‘0’. Finish flag is
auto-cleared after UserBusy is de-asserted to ‘0’. Besides, when the end of packet is
received, rx_axis_tuser is monitored. UserRxError is asserted to ‘1’ when rx_axis_tuser is
equal to ‘1’.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 7

2.5 Timer

Figure 2-3 Timers in the reference design

A timer named MacRoundTimer in the test system is created to count the round-trip latency
time measured from Tx data path of LL10GEMAC-IP to Rx data path of LL10GEMAC-IP
(Round-trip latency). Therefore, latency time is the sum of the latency inside LL10GEMAC
and Xilinx transceiver. MacRoundTimer are controlled by Enable flag. In the test, one packet
is transferred in the system. Enable flag is asserted to ‘1’ when the first data is found at the
input of the measured module. It is de-asserted to ‘0’ when the first data is found at the output
of the measured module. The timer latches the value to return to CPU after the test operation
is finished. The timer and Enable flag are reset when the user starts the new test loop. More
details of the timer are described as follows.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 8

Figure 2-4 MacRoundTimer timing diagram

(1) rStartofPacket is the signal to scan the first data of packet. It is de-asserted to ‘0’ after the

first data is received (tx_axis_tvalid=’1’). It is re-asserted to ‘1’ to scan the first data of the
next packet after receiving the end of packet.

(2) The first data on Tx AXI4-ST interface is detected when tx_axis_tvalid=’1’ and
rStartofPacket=’1’. After that, TimerEn is asserted to ‘1’ to start the timer operation.

(3) When TimerEn=’1’, the timer is incremented every clock cycle to count the latency time.
(4) TimerEn is de-asserted to ‘0’ when the first data on Rx AXI4-ST interface is detected,

monitored by rx_axis_tvalid=’1’. This condition is run in RxClk domain but
MacRoundTimer is run in TxClk domain. Therefore, asynchronous logic is added to
forward Stop flag from RxClk to TxClk. Asynchronous logic is designed by adding two
Flip-Flops on TxClk domain. Therefore, the latency time measured by the timer is
increased about 2-3 clock cycles, depending on the phase shift from RxClk to TxClk. In the
demo system, the timer value is subtracted by two in CPU firmware to remove the
minimum latency time from asynchronous logic.

(5) Timer stops running and holds the value. The user can read the timer to check round-trip
latency time.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 9

2.6 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for the CPU accessing the peripherals
such as Timer and UART. To control and monitor the test system, the test logic is connected to
CPU as a peripheral on 32-bit AXI4-Lite bus. CPU assigns the different base address and the
address range for each peripheral.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. Therefore, the hardware logic must be designed to support AXI4-lite bus standard for
writing and reading the register. LAxi2Reg module is designed to connect the CPU system as
shown in Figure 2-5.

Figure 2-5 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size (similar to
AXI4-Lite data bus size). Besides, AsyncAxiReg includes asynchronous logic to support clock
crossing between CpuClk domain and TxClk domain.

UserReg includes the register file of the parameters and the status signals to control and
monitor PacketGen and the Timer. More details of AsyncAxiReg and UserReg are described
as follows.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 10

2.6.1 AsyncAxiReg

Figure 2-6 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately.
Therefore, the logic inside AsyncAxiReg to interface with AXI4-lite bus is split into four groups,
i.e., Write control logic, Write data logic, Read control logic, and Read data logic as shown in
the left side of Figure 2-6. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with the shared register address. Besides, Read
control I/F and Read data I/F of AXI4-Lite bus are latched and transferred to be Read register
interface with the shared register address.

The simple register interface is compatible with general RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction. Therefore, user cannot write and read the
register at the same time. The timing diagram of the register interface is shown in Figure 2-7.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 11

Figure 2-7 Register interface timing diagram

1) To write register, the timing diagram is similar to general RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 12

2.6.2 UserReg

Figure 2-8 UserReg block diagram

The address range to map to UserReg is split into two areas, as shown in Figure 2-8
1) 0x0000 – 0x00FF: mapped to set control signals of the PacketGen module. This area is

write-access only.
2) 0x1000 – 0x10FF: mapped to read status signals of PacketGen module and returned

value of the Timers. This area is reading access only.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit size, so write byte enable (RegWrByteEn) is not used. To
set the parameters in the hardware, the CPU must use 32-bit pointer to force 32-bit valid
value of the write data.

To read register, one multiplexer is designed. Register Mux is the data multiplexer to select
the read data for returning to CPU, so the latency of read data is equal to one clock cycle.
RegRdValid is created by RegRdReq with asserting one D Flip-flop.

More details of the address mapping within UserReg module are shown in Table 2-1

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 13

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the ll10gemaclptest.c”)

BA+0x0000 – BA+0x00FF: Control signals (Write-access only)

BA+0x0000 User Command Reg [0]: Start test operation. Set ‘1’ to start the test.

This signal is auto-cleared after the system begins the operation. (USRCMD_REG)

BA+0x0004 User Length Reg [15:0]: Tx Packet size in byte unit. Valid from 5-9014 byte. When the packet

size is less than 60-byte, zero-padding is filled by EMAC. (USRLEN_REG)

BA+0x0008 EMAC Reset Reg [0]: Active-high reset signal for LL10GMAC-IP.

(EMACRST_REG)

BA+0x000C Loopback Reg [0]: Set loopback mode.
0: External (Loopback by connecting SFP+ loopback module)
1: Internal (Near-End PMA Loopback inside Transceiver)

(LPBACK_REG)

BA+0x1000 – BA+0x1FFF: Status signals (Read-access only)

BA+0x1000 User Status Reg [0]: Asserted when PacketGen is processed.

Assert to ‘1’ after USRCMD_REG[0] is set to ‘1’.

De-assert to ‘0’ after PacketGen finishes Tx and Rx transmission.

[1]: Ethernet Linkup status, mapped to Linkup signal of LL10GEMAC-IP.

[2]: Packet verification fail.

‘0’: No error is found. ‘1’: Received data is not correct.

[3]: Asserted when LL10GEMAC-IP detects the error by asserting

rx_axis_tuser. De-asserted to ‘0’ when the new operation is started by

setting USRCMD_REG[0]=’1’.

(USRSTS_REG)

BA+0x1004 Receive Length Reg [15:0]: Receive packet size in byte unit. This value is equal to

USRLEN_REG when USRLEN_REG is not less than 60-byte. Otherwise,

RXLEN_REG is equal to 60-byte because zero-padding is included.

(RXLEN_REG)

BA+0x1020 Timer Reg [31:0]: Read value of MacRoundTimer[31:0] to check round-trip latency

time of LL10GEMAC-IP with Transceiver. (TIMER_REG)

BA+0x1800 IPVersion Reg [31:0]: IPVersion output from LL10GEMAC-IP

(IPVER_REG)

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 14

3 CPU Firmware Sequence

After FPGA boot-up, LL10GEMAC-IP is initialized by setting loopback mode to be External
mode or Internal mode (Near-End PMA loopback). To run External loopback mode, it needs to
connect SFP+ loopback module on the board. Otherwise, it does not need to use the
loopback module. After that, reset signal is asserted and the IP starts initialization process.
During initialization process, Linkup status from Ethernet MAC (USRSTS_REG[1]) is polling.
The CPU waits until LL10GEMAC-IP is linked-up. Finally, main menu is displayed on the
console, as shown in Figure 3-1.

Figure 3-1 Main Menu

There are two menus – Change loopback mode and Run loopback test. The first menu is
designed to switch the loopback mode to external or internal mode. The details to run loopback
test are described as follows

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 15

3.1 Change Loopback Mode

The user inputs loopback mode. After that, the CPU generates reset to EMAC and then
changes loopback mode. Next, CPU de-asserts reset and waits until LL10GEMAC-IP linkup.

3.2 Run Loopback Test

The user inputs packet length and the number of packets to start the loopback test. After that,
the test data is generated for sending to LL10GEMAC-IP. Next, the packet is loop-back
returned to the transceiver by internal mode or external mode. Finally, the received packet
from LL10GEMAC-IP is verified and latency time is measured. The details of the test
sequence are described as follows.

1) Receive packet length transfer (byte) size and the number of packets from the user. The
operation is cancelled when the input is invalid.

2) Set packet length to USRLEN_REG.
3) Start the test operation by setting USRCMD_REG[0]=’1’.
4) The CPU waits until the operation is finished by monitoring busy flag (USRSTS_REG[0])

which changes from ‘1’ to ‘0’.
5) Check error flag in the test (USRSTS_REG[3:2]). If some errors are found, error message

is displayed.
6) Check the receive length (RXLEN_REG) and display the error message if the read value is

not equal to the expected length. Typically, the expected length is equal to the packet
length, set by the user. The expected length is equal to 60 bytes if the packet length is less
than 60 bytes which is the value including zero-padding.

7) Decrease total number of packets. If remained value is not equal to 0, repeat step 3) – 6) to
re-run the test. Before returning to step 3), CPU calculates the minimum value, the
maximum value, and the average value of round-trip latency time.

8) CPU displays the result - the minimum time, the maximum time, and the average time on
the console.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 16

3.3 Function list in User application

This topic describes the function list to run LL10GEMAC IP loopback test.

void init_emac(void)

Parameters None

Return value None

Description Receive loopback mode from the user and set to LPBACK_REG. Next,
start reset operation by asserting and de-asserting reset signal,
controlled by EMACRST_REG. Finally, calling wait_ethlink function to
wait until the ethernet link up.

int loopback_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Loopback test following description in topic 3.2

void show_result(unsigned int av_ltc, unsigned int min_ltc, unsigned int max_ltc)

Parameters av_ltc: average latency time in clock cycle unit
min_ltc: minimum latency time in clock cycle unit
max_ltc: maximum latency time in clock cycle unit

Return value None

Description Convert the unit from clock cycle to be ns unit and display the results,
i.e., the minimum latency time, the maximum latency time, and the
average latency time.

void show_vererr(void)

Parameters None

Return value None

Description Read USRSTS_REG[2] (verify failed) and USRSTS_REG[3] (error
status from LL10GEMAC-IP). Display the error message following the
error flag.

void wait_ethlink(void)

Parameters None

Return value None

Description Read link-up status (USRSTS_REG[1]) and wait until the connection is
linked up.

dg_ll10gemacip_refdesign_xilinx_en.doc

30-Jun-23 Page 17

4 Revision History

Revision Date Description

1.0 22-May-20 Initial version release

1.1 29-Apr-21 Modify to use MacRoundTrip Timer and select loopback mode

