
dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 1

exFAT2 IP for Gen4 reference design manual
Rev1.00 7-May-24

1 Introduction ... 2
2 Hardware overview ... 5

2.1 TestGen .. 7
2.2 exFAT ... 13

2.2.1 exFAT2-IP .. 13
2.2.2 (mu)NVMe-IP for Gen4 .. 14
2.2.3 PCIe-IP... 14

2.3 CPU and Peripherals .. 16
2.3.1 AsyncAxiReg .. 17

2.3.2 UserReg ... 19
3 CPU Firmware .. 23

3.1 Test firmware (exfat2g4test.c) ... 23
3.1.1 (Secure) Format ... 23

3.1.2 Write/Read file command ... 24
3.1.3 Read File Info Command ... 25

3.1.4 Shutdown Command .. 26
3.2 Function list in Test firmware ... 27

4 Example Test Result ... 31

5 Revision History .. 32

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 2

1 Introduction

To store data stream on an NVMe SSD, a high-performance storage solution, users must decide
between two data formats: raw data format or file system format. In the raw data format, data
indices use the physical address of SSD, and users are responsible for managing data structure
themselves, especially when dealing with various data types stored on the SSD. Implementing a
customized data structure requires dedicated human resources for development and
maintenance, especially when integrating with multiple host systems accessing the SSD.
However, this approach offers the best performance for data transfer with the SSD.

On the other hand, standard file systems like FAT32 and exFAT provide a comprehensive solution
for treating each piece of data as a ‘file’. These file systems are well-designed, utilizing file entries
to denote file names, types, sizes, and data allocations. FAT32 and exFAT file systems have been
widely implemented by various developers, enabling users to integrate standard libraries into their
host systems for accessing files on the SSD. However, this convenience comes at the cost of
CPU or processor resources required to manage file entries and file data, which can result in
constrained write/read performance during file data access.

To overcome the performance constraints associated with using file system, Design Gateway
offers IP cores that implements the FAT32 and exFAT file systems using pure hardware logics,
called FAT32 IP and exFAT2 IP. This approach ensures maximum transfer performance for data
transfers with SSD, similar to the raw data format. Further information of FAT32 IP can be found
from following site.
https://dgway.com/products/IP/NVMe-IP/dg_fat32ip_nvme_data_sheet_en/

Compared to the FAT32 file system, the exFAT file system offers several improvements. Firstly,
exFAT supports file size larger than 4 GB and disk capacities exceeding 2 TB. Additionally, it
implements name hashing for file names to enhance search functionality and employs
checksums in the system data area to boost data reliability. However, exFAT demands much host
resources for managing file systems and some legacy systems support only the FAT32 file
system, not exFAT.

The exFAT2-IP is an IP core designed to directly interface with the (mu)NVMe IP, an NVMe host
controller IP core from Design Gateway. It achieves the same performance as using the raw data
format under PCIe Gen4 speed, with read access reaching up to 7500 MB/s. Figure 1-1 illustrates
the block diagram of the reference design, showcasing the comparison between the raw data
access without the exFAT2-IP and the file system access using the exFAT2-IP.

https://dgway.com/products/IP/NVMe-IP/dg_fat32ip_nvme_data_sheet_en/

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 3

Figure 1-1 Hardware system using (mu)NVMe-IP for raw data and file system

As shown on the left side of Figure 1-1, when utilizing the (mu)NVMe-IP to access an NVMe SSD,
the stored data is in raw data format, accessed via physical address. Consequently, the input
parameters assigned to the (mu)NVMe-IP consist of physical address and transfer length
measured in 512-byte units.

In contrast, on the right side of Figure 1-1, with the exFAT2-IP inserted between the user logic and
the (mu)NVMe-IP for accessing an NVMe SSD, the data stored on the SSD adopts the exFAT file
system format, denoted as File0, File1, and File2. The input parameters designated for the
exFAT2-IP include file names and the number of files, which are subsequently computed into
physical address and 512-byte transfer length supplied to the (mu)NVMe-IP.

Both the raw data system and exFAT file system utilize FIFO interfaces for their data interfaces.

The exFAT2-IP can interface with the NVMe-IP for a single user interface or the muNVMe-IP for
multiple user interfaces, as illustrated in Figure 1-2.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 4

Figure 1-2 Hardware comparison between single user and multiple users

For a single user system, the exFAT2-IP interfaces with the NVMe-IP via channel#0, supporting
six commands: Format, Secure Format, Shutdown, Write file, Read file, and Read file info. In
multiple-user system, the exFAT2-IP connects to the muNVMe-IP, offering both User#0 I/F and
User#1 I/F. While User#0 supports all six commands, User#1 is limited to two commands: Read
file and Read file info.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 5

2 Hardware overview

Figure 2-1 exFAT2-IP reference design

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 6

The reference design of the exFAT2-IP has been adapted from the base reference design of the
(mu)NVMe-IP for Gen4 reference design by integrating the exFAT2-IP between the user module
and the (mu)NVMe-IP. Additionally, the Test logic has been modified to change the input
parameters from the physical index of the SSD to file index. Consequently, the CPU firmware has
also been updated to adjust parameter names and include the additional information about the file
system, such as created date and created time. For further details about the (mu)NVMe-IP base
reference design, please refer to the following links.

Single-user system: NVMe-IP (Gen4) reference design document
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_g4_en/

Multiple-user system: muNVMe-IP (Gen4) reference design document
https://dgway.com/products/IP/NVMe-IP/dg_munvmeip_refdesign_g4_xilinx/

When employing an NVMe-IP for a single-user system, the reference design integrates only
User#0 to enable users to execute all six commands: Format, Secure Format, Write file, Read file,
Read file info, and Shutdown. Users can configure the maximum data speed of User#0 while
executing Write file and Read file commands.

In contrast, when utilizing a muNVMe-IP for a multiple-user system, User#1 is included to enable
users to execute Read file and Read file info commands. As a result, TestGen#1 within User#1
contains only a Read data interface.

The same CPU firmware is designed for both single-user and multiple-user systems, with the
number of users being configurable within the firmware.

Further details of each submodule in the exFAT2-IP reference design are described below.

https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_g4_en/
https://dgway.com/products/IP/NVMe-IP/dg_munvmeip_refdesign_g4_xilinx/

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 7

2.1 TestGen

Figure 2-2 TestGen interface

Each TestGen module manages the data interface for each user of the exFAT2-IP,
facilitating data transfer in both directions. However, since the User#1 I/F of the exFAT2-IP
does not support the Write file command, the write interface logic is not available in User#1.

During a Write file command, TestGen sends 256-bit test data to the exFAT2-IP. In contrast,
during a Read file command, the test data is received for comparison with the expected
value, ensuring data accuracy.

Within this block, there is a MaxSpeed Control Logic that generates an enable pulse to
regulate the number of clock cycles in which 1b is asserted out of every 100 clock cycles.
This enable pulse is then fed to both the Wr FIFO and Rd FIFO Control Logics, enabling
control over the maximum data rate of Write/Read data transfers. The Wr FIFO and Rd FIFO
Control Logics assert the write enable and read enable signals when the FIFO is ready, and
the enable pulse from the MaxSpeed Control Logic is activated.

The Register file in the TestGen receives various test parameters from the user, including file
name, file size, the number of files, transfer direction, verification enable, test pattern
selector, and transfer rate. For further details of the hardware logic of TestGen, refer to
Figure 2-3.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 8

Figure 2-3 TestGen hardware

The MaxSpeed Control Logic utilizes a counter named MaxSpeed Counter along with a
decoder to assert rTrnRateEn to 1b. The TrnRate input specifies the number of cycles which
rTrnRateEn is asserted to 1b out of every 100 clock cycles. This counter operates when
either a Write file or Read file command is in progress (rWrTrans=1b or rRdTrans=1b). By
monitoring rTrnRateCnt, rTrnRateEn can be asserted to 1b or de-asserted to 0b at specific
times to control the maximum data rate. The Write and Read FIFO enable signals are only
asserted when rTrnRateEn is set to 1b.

The primary flow control signal for the Write file command is WrFfAFull, while for the Read
file command, it is RdFfEmpty. In the case of a Write file command, WrFfAFull is de-asserted
to 0b when there is free space in the Write FIFO beyond a certain threshold. When
WrFfAFull=0b and rTrnRateEn=1b, WrFfWrEn is asserted to 1b to send Write data to the
FIFO. For a Read file command, RdFfEmpty is de-asserted to 0b when there is available
data in the Read FIFO. When RdFfEmpty=0b and rTrnRateEn=1b, RdFfRdEn is asserted to
1b to read data from the FIFO.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 9

The user can configure the following test parameters: the number of files (UserFLen), the
first file name (UserFName), file size (FSize), test pattern selector (PattSel), and transfer
rate (TrnRate). UserFLen and FSize are used to determine the end position (rEndSize) for
comparison with the Data counter. Once all data is completely transferred, WrFfWrEn and
RdFfRdEn are set to 0b.

Note: If the abort function is enabled in this reference design, using the customized
(mu)NVMe-IP, the assertion of UserAbort can de-assert WrFfWrEn and RdFfRdEn to 0b,
similar to the end transfer condition.

The “TestData Generator” subblock is responsible for generating the test data (WrData) that
will be transmitted to the exFAT2-IP during the Write file command. Each 512-byte data
segment comprises a 64-bit header data and a test pattern, selected by the PattSel
parameter.

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

As shown in Figure 2-4, the 64-bit header at DW#0 (Dword#0) and DW#1 is generated by
combining the 48-bit signal of rTrnAddr, computed from UserFName and FSize, with a zero
value. The remaining data (DW#2 – DW#1023) represents the test pattern, which can be
chosen from three different formats: 32-bit incremental data, 32-bit decremental data, and
32-bit LFSR counter. The 32-bit incremental data is derived from the output of the Data
Counter. The decremental data is obtained by applying the logical NOT operation to the
incremental data. The LFSR data is generated using the Fibonacci LFSR algorithm,
following the equation x^31 + x^21 + x + 1.

To implement the 256-bit LFSR pattern, the data is divided into two sets of 128-bit data, each
having a distinct initial value. The 128-bit data employs a look-ahead technique to calculate
four 32-bit LFSR data in one clock cycle. As illustrated in Figure 2-5, the initial value of the
LFSR is determined by combining a portion of the lower 32 bits of TrnAddr signal with the
logical NOT of the lower 32 bits of TrnAddr signal (TrnAddrB).

In case of the all-zero and all-one patterns, a 64-bit header is not included within the
512-byte data. These patterns are often used to assess the optimal Write/Read
performance of certain SSDs.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 10

Figure 2-5 256-bit LFSR Pattern in TestGen

The generated test data serves as the Write data for the FIFO (rWrFfWrData) during the
Write file command, or it is used as the expected data for verification against the read data
obtained from the FIFO (RdFfRdData) during the Read file command. In the event of a
verification failure, the failure flag (PattFail) is asserted to 1b. The timing diagram for writing
data to the FIFO during the Write file command is shown in Figure 2-6.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 11

Figure 2-6 Timing diagram of Write file operation in TestGen

1) The operation begins when WrPattStart is asserted to 1b. This signal remains asserted

for only one clock cycle. Subsequently, rWrTrans is set to 1b, indicating that Write request
is in progress. It is de-asserted upon completion of the operation or reception of abort.

2) While rWrTrans is set to 1b, rTrnRateCnt counts up from 1 to 100. The initial value of
rTrnRateCnt is 100. When rWrTrans=1b and rTrnRateCnt=100, rTrnRateEn is asserted
to 1b.

3) When both rWrTrans and rTrnRateEn are asserted to 1b, and the FIFO is not full
(WrFfAFull=0b), rWrFfWrEn is asserted to 1b, allowing the test data to be written to FIFO.

4) The data counter (rDataCnt) increments when rWrFfWrEn is asserted to 1b. Therefore, it
can be monitored to determine the total amount of data transmitted to the FIFO.

5) In this example, TrnRate is set to 40, resulting in a maximum data rate of approximately
40/100 = 40% of the logic’s maximum throughput. rTrnRateEn is asserted to 1b for 40
cycles out of every 100 cycles. Once rTrnRateCnt=40, rTrnRateEn is de-asserted to 0b.

6) When rTrnRateEn is de-asserted to 0b, rWrFfWrEn is also de-asserted to 0b, temporarily
pausing the transmission of data.

7) If the FIFO becomes full (WrFfAFull=1b), the writing process is paused by de-asserting
rWrFfWrEn to 0b. rWrFfWrEn is re-asserted to 1b when WrFfAFull is de-asserted to 0b.

8) Once the total data count (rDataCnt) equals to the total transfer size (rEndSize), both
rWrTrans and rWrFfWrEn are de-asserted to 0b, indicating the completion of the Write file
command.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 12

Figure 2-7 Timing diagram of Read file operation in TestGen

1) The operation begins when RdPattStart is asserted to 1b. This signal remains asserted

for only one clock cycle. Subsequently, rRdTrans is asserted to 1b to control rTrnRateEn
It is de-asserted once all data has been completely transferred or the abort has been
requested.

2) While rRdTrans is set to 1b, rTrnRateCnt increments from 1 to 100. The initial value of
rTrnRateCnt is 100. If rRdTrans=1b and rTrnRateCnt=100, rTrnRateEn is asserted to 1b.

3) When rTrnRateEn is asserted to 1b and the FIFO contains data (RdFfEmpty=0b),
RdFfRdEn is asserted to 1b, enabling the reading of test data from the FIFO.

4) The data counter (rDataCnt) increments after RdFfRdEn is asserted to 1b for two clock
cycles. It can be monitored to determine the total amount of received data from the FIFO.

5) In this example, TrnRate is set to 40, resulting in a maximum data rate of approximately
40/100 = 40% of the logic’s maximum throughput. rTrnRateEn is asserted to 1b for 40
cycles out of every 100 cycles. Once rTrnRateCnt=40, rTrnRateEn is de-asserted to 0b.

6) If rTrnRateEn is de-asserted to 0b, RdFfRdEn is also de-asserted to 0b, pausing the
transmission of data in the same clock cycle.

7) If the FIFO becomes empty (RdFfEmpty=1b), the reading process is paused by
de-asserting RdFfRdEn to 0b. RdFfRdEn is re-asserted to 1b when RdFfEmpty is
de-asserted to 0b.

8) Once the total data count (rDataCnt) equals the total transfer size (rEndSize), rRdTrans is
de-asserted to 0b, indicating the completion of the Read file command.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 13

2.2 exFAT

Figure 2-8 exFAT hardware

An exFAT hardware set contains three submodules: the exFAT2-IP, the (mu)NVMe-IP, and
the PCIe-IP. The user logic is designed to connect with the exFAT2-IP, which provides two
interface types: the Control interface and the Data interface. In this reference design, the
Control interface is connected to LAxi2Reg, while the Data interface is connected to the
FIFOs. For a single-user design, only User#0 is available, utilizing the NVMe-IP. For a
multiple-user design, both User#0 and User#1 are available, utilizing the muNVMe-IP.
Further details of each submodule are described in this section.

2.2.1 exFAT2-IP

The exFAT2-IP is an extension module of the (mu)NVMe-IP, an IP core from Design
Gateway, designed to store and retrieve data on the NVMe SSD using the exFAT file system
instead of the raw data format, while achieving the same performance as the raw data
format. It supports both single-user and multiple-user interfaces, depending on the NVMe-IP
model (muNVMe-IP or NVMe-IP). Additionally, the exFAT2-IP supports an abort function if
the selected NVMe-IP is the customized version that enables the Abort function. Further
details of the exFAT2-IP can be found in the datasheet available on our website.
https://dgway.com/NVMe-IP_X_E.html

https://dgway.com/NVMe-IP_X_E.html

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 14

2.2.2 (mu)NVMe-IP for Gen4

Design Gateway provides several NVMe-IP solutions for accessing an NVMe Gen4 SSD.
Two main categories are a single user interface using NVMe-IP and multiple-user interface
using muNVMe-IP. Each category has its sub-category for using the PCIe hard IP or the
PCIe soft IP. Please contact our sales for further information. The lists of our NVMe-IP
solutions for NVMe Gen4 SSD are as follows.

NVMe-IP (Gen4) using PCIe hard IP
https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_g4_en/

NVMe-IP with PCIe Gen4 Soft IP using PCIe PHY IP
https://dgway.com/products/IP/NVMe-IP/dg_nvmeg4_ip_data_sheet_xilinx_en/

muNVMe-IP (Gen4) using PCIe hard IP
https://dgway.com/products/IP/NVMe-IP/dg_munvme_ip_data_sheet_g4_xilinx/

2.2.3 PCIe-IP

The type of PCIe-IP used for collaboration with each NVMe-IP model may vary, including
Integrated Block for PCIe (PCIe hard IP) or PCIe PHY. The details of each PCIe-IP type are
described below.

a) Integrated Block for PCIe
This block refers to the hard IP integrated into certain AMD Xilinx FPGAs to support PCIe
Gen4 speed. It encompasses the Physical, Data Link, and Transaction Layers of the PCIe
specification. More detailed information can be found in the AMD Xilinx documents.

PG213: UltraScale+ Devices Integrated Block for PCI Express
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documenta
tion

PG343: Versal ACAP Integrated Block for PCI Express
https://www.xilinx.com/products/intellectual-property/pcie-versal.html#documentation

The PCIe hard IP is generated using the IP wizard. It is recommended for users to select a
“PCIe Block Location” that is in close proximity to the transceiver pin connecting to the SSD.
Further details regarding the location of the PCIe hard IP and the transceiver can be found in
the following documents.

UG575: UltraScale and UltraScale+ FPGAs Packaging and Pinouts
https://www.xilinx.com/support/documentation/user_guides/ug575-ultrascale-pkg-pinout.pd
f

AM013: Versal ACAP Packaging and Pinouts
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pin
out.pdf

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_g4_en/
https://dgway.com/products/IP/NVMe-IP/dg_nvmeg4_ip_data_sheet_xilinx_en/
https://dgway.com/products/IP/NVMe-IP/dg_munvme_ip_data_sheet_g4_xilinx/
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentation
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentation
https://www.xilinx.com/products/intellectual-property/pcie-versal.html#documentation
https://www.xilinx.com/support/documentation/user_guides/ug575-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug575-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pinout.pdf

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 15

An example of the PCIe hard IP location on the XCVC1902-VSVA2197 is shown in Figure
2-9.

Figure 2-9 PCIe Hard IP Pin location

b) PCIe PHY
The PCIe PHY is provided by AMD Xilinx to enable the utilization of Soft IP instead of Hard
IP to construct a PCIe MAC. The PCIe PHY utilizes the PHY Interface for PCIe Express
(PIPE) as its user interface. To operate with the NVMeG4-IP, it is configured to 4-lane, with
each lane operating at 16.0 GT/s. For more detailed information of the PCIe PHY, please
refer to the “PG239: PCI Express PHY” document, available at Xilinx website.
https://docs.xilinx.com/r/en-US/pg239-pcie-phy

https://docs.xilinx.com/r/en-US/pg239-pcie-phy

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 16

2.3 CPU and Peripherals

The CPU system uses a 32-bit AXI4-Lite bus as the interface to access peripherals such as
the Timer and UART. The system also integrates an additional peripheral to access the test
logic by assigning a unique base address and address range. To support CPU read and
write operations, the hardware logic must comply with the AXI4-Lite bus standard. LAxi2Reg
module, as shown in Figure 2-10, is designed to connect the CPU system via the AXI4-Lite
interface, in compliance with the standard.

Figure 2-10 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg converts AXI4-Lite signals
into a simple Register interface with a 32-bit data bus size, similar to the AXI4-Lite data bus
size. It also includes asynchronous logic to handle clock domain crossing between the
CpuClk and UserClk domains.

UserReg includes the register file of parameters and the status signals of other modules in
the test system, including the exFAT2-IP and TestGen. More details of AsyncAxiReg and
UserReg are explained below.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 17

2.3.1 AsyncAxiReg

Figure 2-11 AsyncAxiReg Interface

The AXI4-Lite bus interface signals are categorized into five groups: LAxiAw* (Write address
channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* (Read
address channel), and LAxir* (Read data channel). More information on creating custom
logic for the AXI4-Lite bus can be found in the following document.
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/
designing_a_custom_axi_slave_rev1.pdf

According to the AXI4-Lite standard, the write channel and read channel operate
independently for both control and data interfaces. Therefore, the logic in the AsyncAxiReg
module to interface with the AXI4-Lite bus is divided into four groups: Write control logic,
Write data logic, Read control logic, and Read data logic, as shown on the left side of Figure
2-11. The Write control I/F and Write data I/F of the AXI4-Lite bus are latched and
transferred to become the Write register interface with clock domain crossing registers.
Similarly, the Read control I/F of the AXI4-Lite bus is latched and transferred to the Read
register interface, while Read data is returned from the Register interface to the AXI4-Lite
bus via clock domain crossing registers. In the Register interface, RegAddr is a shared
signal for write and read access, loading the value from LAxiAw for write access or LAxiAr
for read access.

The Register interface is compatible with a single-port RAM interface for write transaction.
However, the read transaction of the Register interface has been slightly modified from the
RAM interface by adding the RdReq and RdValid signals to control read latency time. Since
the address of the Register interface is shared for both write and read transactions, the user
cannot write and read the register simultaneously. The timing diagram of the Register
interface is shown in Figure 2-12.

https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 18

Figure 2-12 Register interface timing diagram

1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units),
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte
enable consists of four bits that indicate the validity of the byte data. For example, bit[0],
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid,
respectively.

2) To read register, AsyncAxiReg sets the RegRdReq signal to 1b with a valid value for
RegAddr. The 32-bit data is returned after the read request is received. The slave detects
the RegRdReq signal being set to start the read transaction. In the read operation, the
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address
can then be used to select the returned data using multiple layers of multiplexers.

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b.
After that, AsyncAxiReg forwards the read value to the LAxir* interface.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 19

2.3.2 UserReg

Figure 2-13 UserReg Interface

The UserReg module consists of an Address decoder, a Register File, and a Register Mux.
The Address decoder interprets the address requested by AsyncAxiReg and selects the
active register for either write or read transactions. The address range assigned in UserReg
is divided into three areas, as illustrated in Figure 2-13.
1) 0x0000 – 0x03FF: mapped to User#0 of exFAT2-IP, TestGen#0, and status of exFAT2-IP.
2) 0x0400 – 0x07FF: mapped to User#1 of exFAT2-IP and TestGen#1.
3) 0x1000 – 0x13FF: mapped to other interfaces such as IP versions of exFAT2-IP and

(mu)NVMe-IP.

The Address decoder decodes the upper bits of RegAddr to select the active hardware
(exFAT2-IP, TestGen#0, or TestGen#1). The Register File within UserReg has a 32-bit bus
size, so the write byte enable (RegWrByteEn) is not used in the test system, and the CPU
uses a 32-bit pointer to set the hardware register.

For reading a register, multi-level multiplexers (mux) select the data to return to the CPU,
using the address. The lower bits of RegAddr are fed to the submodule to choose the active
data inside it, while the upper bits are used in UserReg to select the active submodule to
retrieve read data. The total latency time of read data is equal to three clock cycles, and
RegRdValid is created by RegRdReq by asserting three D Flip-flops. Further details of the
address mapping within the UserReg module are shown in Table 2-1.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 20

Table 2-1 Register Map for exFAT2-IP reference design

Address Register Name Description

Rd/Wr (Label in the ‘exfat2g4test.c’)

0x0000 – 0x03FF: Signal Interface of User#0 (exFAT2-IP) and TestGen#0

0x0000 – 0x00FF: Control signals of exFAT2-IP, User#0, and TestGen#0 (Write access only)

BA+0x0000 User#0 File Name Reg [26:0]: Input to U0FName of exFAT2-IP, the first file name to execute

commands. (U0FNAME_INTREG)

BA+0x0004 User#0 File Length Reg [26:0]: Input to U0FLen of exFAT2-IP, the total number of files requested in

this command. (U0FLEN_INTREG)

BA+0x0008 User#0 Command Reg [2:0]: Input to U0Cmd of exFAT2-IP, commands.

000b: Format, 001b: Shutdown, 010b: Write file,

011b: Read file, 100b: Secure Format, 101b: Read file info

[8]: Input to U0Req of exFAT2-IP, command request.

[9]: Input to U0Abort of exFAT2-IP, abort request.

(U0CMD_INTREG)

BA+0x000C User#0 Test Pattern Reg [2:0]: Select test data pattern of TestGen#0

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1,100b-LFSR (U0PATTSEL_INTREG)

BA+0x0010 User#0 Transfer Rate Reg [6:0]: Transfer rate in percentage unit of TestGen#0. It is valid from 1 – 100.

For example, when set to a value of 40, the maximum data rate equal 40%

of the maximum data rate, which is 275 MHz x 256 bits (8.8 GB/s),

equivalent to 3520 MB/s.

(U0TRNRATE_INTREG)

BA+0x0014 User#0 Fifo Reset Reg [0]: Reset flag for U2IPFIFO and IP2UFIFO of User#0. Set to 1b to assert a

reset and then clear to 0b to de-assert a reset and initiate the test

operation.

(U0RSTFIFO_INTREG)

BA+0x0020 User#0 File Size Reg [3:0]: Input to U0FSize of exFAT2-IP, configured file size.

(U0FSIZE_INTREG)

BA+0x0024 User#0 Created Date

and Time Reg

[4:0]: Input to U0FTimeS of exFAT2-IP, second multiplied by 2.

[10:5]: Input to U0FTimeM of exFAT2-IP, minute.

[15:11]: Input to U0FTimeH of exFAT2-IP, hour.

[20:16]: Input to U0FDateD of exFAT2-IP, date.

[24:21]: Input to U0FDateM of exFAT2-IP, month.

[31:25]: Input to U0FDateY of exFAT2-IP, year.

(U0DATETIME_INTREG)

0x0100 – 0x03FF: Status signals of exFAT2-IP, User#0, and TestGen#0 (Read access only)

BA+0x0100 User#0 Status Reg [0]: Mapped to U0Busy of exFAT2-IP, busy status.

[1]: Mapped to U0Error of exFAT2-IP, error flag.

[2]: Data verification fail in TestGen#0 (0b: Normal, 1b: Fail).

(U0STS_INTREG)

BA+0x0104 User#0 Error Type Reg [7:0]: Mapped to U0ErrorType[7:0] of exFAT2-IP, indicating error status of

exFAT2-IP. (U0ERRTYPE_INTREG)

BA+0x0108 User#0 NVMe Error Type Reg [31:0]: Mapped to U0NVMeErrorType[31:0] of exFAT2-IP, indicating error

status of (mu)NVMe-IP. (U0NVMERRTYPE_INTREG)

BA+0x0110 User#0 File Info Reg [31:0]: Mapped to U0FInfo of exFAT2-IP, modified date and time of file.

(U0FINFO_INTREG)

BA+0x0120 User#0 Test Pin (Low) Reg [31:0]: Mapped to U0TestPin[31:0] of exFAT2-IP, reserved for internal use.

(U0TESTPINL_INTREG)

BA+0x0124 User#0 Test Pin (High) Reg [63:32]: Mapped to U0TestPin[63:0] of exFAT2-IP, reserved for internal

use. (U0TESTPINH_INTREG)

BA+0x0128 User#0 NVMe Test pin

(Low) Reg

[31:0]: Mapped to U0TestPin[31:0] of muNVMe-IP or TestPin[31:0] of

NVMe-IP, reserved for internal use.

(U0NVMTESTPINL_INTREG)

BA+0x012C NVMe User#0 Test pin

(High) Reg

[47:32]: Mapped to U0TestPin[47:32] of muNVMe-IP.

(NVMU0TESTPINH_INTREG)

BA+0x0140 Total File Capacity Reg [26:0]: Mapped to TotalFCap[26:0] of exFAT2-IP, maximum number of files

for this SSD. (TOTALFCAP_INTREG)

BA+0x0144 Directory Capacity Reg [19:0]: Mapped to DirCap[19:0] of exFAT2-IP, maximum number of files for

each directory. (DIRCAP_INTREG)

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 21

Address Register Name Description

Rd/Wr (Label in the ‘exfat2g4test.c’)

0x0000 – 0x03FF: Signals Interface of User#0 (exFAT2-IP) and TestGen#0

0x0100 – 0x03FF: Status signals of exFAT2-IP, User#0, and TestGen#0 (Read access only)

BA+0x0148 Disk File Size Reg [3:0]: Mapped to DiskFsize of exFAT2-IP, file size currently used in this

SSD. (DFSIZE_INTREG)

BA+0x014C Total Count of Files

in the Disk Reg

[26:0]: Mapped to DiskFnum of exFAT2-IP, total count of files in the SSD.

(DFNUM_INTREG)

BA+0x0150 Current Total Count of Files

in the Disk Reg

[26:0]: Mapped to DiskFnumCur of exFAT2-IP, current total count of files in

the SSD which is available only when using multiple-user.

(DFNUMCUR_INTREG)

BA+0x0160 NVMe LBA Size (Low) Reg [31:0]: Mapped to LBASize[31:0] of (mu)NVMe-IP, total capacity of SSD in

512-byte unit. (NVMLBASIZEL_INTREG)
BA+0x0164 NVMe LBA Size (High) Reg [15:0]: Mapped to LBASize[47:32] of (mu)NVMe-IP, total capacity of SSD

in 512-byte unit.

[30]: Mapped to SuppSecureFmt of exFAT2-IP, Secure Format supported

flag.

[31]: Mapped to LBAMode of (mu)NVMe-IP, indicating LBA unit size of

SSD.

(NVMLBASIZEH_INTREG)

BA+0x0168 User#0 NVMe Completion

Status Reg

Completion Status from (mu)NVMe-IP

[15:0]: Mapped to U0AdmCompStatus[15:0] or AdmCompStatus[15:0].

[31:16]: Mapped to U0IOCompStatus[15:0] or IOCompStatus[15:0]. (NVMCOMPSTS_INTREG)

BA+0x016C NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of (mu)NVMe-IP, capabilities of

NVMe. (NVMCAP_INTREG)

BA+0x0180 –

BA+0x018F

NVMe MAC Test pin 0-3 Reg Mapped to MACTestPin[127:0] of NVMeG4-IP (NVMe IP with PCIe Gen4

Soft IP), not available for other IP models.

0x0180: Bits[31:0], 0x0184: Bits[63:32],

0x0188: Bits[95:64], 0x018C: Bits[127:96]

NVMMACTESTPIN0-3

_INTREG

BA+0x01A0 User#0 Abort Write

File Name Reg

[26:0]: Mapped to U0AbortFName[26:0] of exFAT2-IP, indicating the last

written file name.

(U0ABTFNAME_INTREG)

BA+0x01A4 User#0 Abort Current

Write Length Reg

[25:0] Mapped to U0AbortCurWrLen[25:0] of exFAT2-IP, indicating

completely written data size of the last file.

(U0ABTCURWRLEN_INTREG)

BA+0x0200 User#0 Current Test Data

in Bytes (Low) Reg

[31:0]: Bits[31:0] of the current data transfer size in bytes of TestGen#0

module when operating Write file or Read file command.

(U0CURTESTSIZEL_INTREG)

BA+0x0204 User#0 Current Test Data

in Bytes (High) Reg

[24:0]: Bits[56:32] of the current data transfer size in bytes of TestGen#0

module when operating Write file or Read file command.

(U0CURTESTSIZEH_INTREG)

BA+0x0210 User#0 Failure Byte Address

(Low) Reg

[31:0]: Bits[31:0] of the byte address in the file at the 1st failure data in

TestGen#0 when operating Read file command.

(U0FAILADDRL_INTREG)

BA+0x0214 User#0 Failure Byte Address

(High) Reg

[6:0]: Bits[38:32] of the byte address in the file at the 1st failure data in

TestGen#0 when operating Read file command.

(U0FAILADDRH_INTREG)

BA+0x0218 User#0 Failure File Name Reg [26:0]: Filename of the 1st failure data in TestGen#0 when operating Read

file command. (U0FAILFNAME_INTREG)

BA+0x0280–

BA+0x029F

User#0 Expected value

Word0-7 Reg

256-bit of the expected data at the 1st failure data in TestGen#0 when

operating Read file command

0x0280: Bits[31:0], 0x0284: Bits[63:32], …, 0x029C: Bits[255:224] (U0EXPPATW0-7_INTREG)

BA+0x02C0–

BA+0x02DF

User#0 Read value

Word0-7 Reg

256-bit of the read data at the 1st failure data in TestGen#0 when

operating Read file command

0x02C0: Bits[31:0], 0x02C4: Bits[63:32], …, 0x02DC: Bits[255:224] (U0RDPATW0-7_INTREG)

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 22

Address Register Name Description

Rd/Wr (Label in the ‘exfat2g4test.c’)

0x0400 – 0x07FF: Signal Interface of User#1 (exFAT2-IP) and TestGen#1

Note: The base address of User#1 register sets is determined by the offset value from User#0 register sets. The specific offset

value is assigned using the parameter name ‘USEROFFSET_INT’. The User#1 registers are available only for multiple-user.

0x0400 – 0x04FF: Control signals of User#1 and TestGen#1 (Write access only)

BA+0x0400–

BA+0x0417

User#1 File Name Reg –

User#1 Fifo Reset Reg

Match the registers of User#0 at 0x0000 – 0x0017.

However, the User#1 Command Reg supports only Read file and Read file

info operations.

0x0500 – 0x07FF: Control signals of User#1 and TestGen#1 (Read access only)

BA+0x0500–

BA+0x056F

User#1 Status Reg –

User#1 NVMe Completion

Status Reg

Match the registers of User#0 at 0x0100 – 0x016F.

However, the User#1 Test Pin Reg and User#1 NVMe Test Pin Reg can be

mapped using a single register. The High Reg is not required.

Additionally, some status signals, such as U0COMPSTS_INTREG[15:0],

are exclusive to User#0 only.

BA+0x0600–

BA+0x061B

User#1 Current Test Data

in Bytes (Low) Reg –

User#1 Failure File Name Reg

Match the registers of User#0 at 0x0200 – 0x021B.

However, the User#1 Current Test Data in Bytes Reg indicates data

transfer size during Read file command execution

0x1000 – 0xFFFF: Other interfaces

BA+0x1000 Timeout Reg [31:0]: Mapped to TimeOutSet[31:0] of exFAT2-IP, timeout value for

waiting for a response from SSD. Wr (TIMEOUT_INTREG)

BA+0x1200 exFAT2-IP Version Reg [31:0]: Mapped to IPVersion[31:0] of exFAT2-IP, indicating the version of

exFAT2-IP. Rd (EXFAT2VER_INTREG)

BA+0x1204 NVMe-IP Version Reg [31:0]: Mapped to IPVersion[31:0] of (mu)NVMe-IP, indicating the version

of (mu)NVMe-IP. Rd (NVMVER_INTREG)

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 23

3 CPU Firmware

3.1 Test firmware (exfat2g4test.c)

Upon system startup, the CPU follows these steps to complete the initialization process.
1) Initialize UART and Timer settings.
2) Wait for the completion of the exFAT2-IP initialization process for both User#0 and User#1,

indicated by U<i>STS_INTREG[0]=0b; where <i> is a user index.
3) Read and display the SSD information, including Secure erase support

(NVMLBASIZEH_INTREG[30]), maximum number of files in SSD (TOTALFCAP_
INTREG), maximum number of files per directory (DIRCAP_INTREG), current file size
configuration (DFSIZE_INTREG), and total files stored in SSD (DFNUM_INTREG).

4) Present the format menu, which can be Format and Secure format (only for the SSD that
is supported). The user can choose to execute the Format command, Secure Format
command, or proceed to the next step without executing the Format command.

To execute a Format or Secure Format operation, the command value assigned to the
exFAT2-IP is different, while the remaining steps are similar. Further details of each
Format operation are described in the subsequent section.

5) Display the main menu, providing four test options: (Secure) Format, Write/Read File,
Read File Info, and Shutdown.

Further details for executing each test options are described below.

3.1.1 (Secure) Format

The Secure Format and Format commands can be executed only by User#0. When this test
option is selected, the Format operation is executed following the steps below.
1) Display three options on this menu: Format execution, Secure Format execution, and No

execution. The user enters the keys to proceed or cancel the Format operation.
2) Prompt the user to set the created date and created time of the empty directories or skip

setting and use the same value. Once all inputs are received, determine the value for
setting to DATETIME_INTREG and set it.

3) Read disk capacity from NVMLBASIZEL/H_INTREG, calculate supported file sizes, and
display results on the console.

4) Ask the user to set the file size. Validate the input and set it to U0FSIZE_INTREG.
5) Set bit[8] and bits[2:0] of U0CMD_INTREG to send (Secure) Format command. The

exFAT2-IP sets busy status (U0STS_INTREG[0]) to 1b upon initiating the operation.
6) The CPU waits for the command completion or an error detection by monitoring the value

of U0STS_INTREG[1:0].

• Bit[0] set to 0b indicates the completion of the command. Following this, proceed to the
subsequent step.

• Bit[1] set to 1b indicates an error detection on User#0. Following this, read the error
details from U0ERRTYPE_INTREG and U0NVMERRTYPE_INTREG, interpret the
read value, and display an error message corresponding to the error type on console.

7) Upon the completion of the command, read the SSD information, and display the read

value on the console. The SSD information includes the maximum number of files in SSD
(TOTALFCAP_INTREG), the maximum number of files per directory (DIRCAP_INTREG),
current file size configuration (DFSIZE_INTREG), and total files stored in SSD
(DFNUM_INTREG).

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 24

3.1.2 Write/Read file command

The Write file command can only be executed by User#0, while the Read file command can
be executed by both User#0 and User#1. This test option enables users to execute multiple
commands by sending the Write file and Read file command requests to User#0 and User#1
simultaneously. The process upon selecting this test option is described below.
1) Select operations for each user, including Write file, Read file, or No operation.
2) Receive additional parameters and configure them into the registers corresponding the

selected operation.

Write file operation
i) Prompt the user to configure the created date and created time of the new file or use

the latest value. Compute the result and set it to U0DATETIME_INTREG.
ii) Show the latest write file name and prompt the user to use this value for creating the

new files, subsequent to the latest value, or to use other values to overwrite the old
files with new data. Validate its value, and configure it to U0FNAME_INTREG.

iii) Receive additional inputs from the user: number of files, test pattern, and maximum
speed in percentage units. Validate these inputs and compute the total transfer size for
displaying on the console.

iv) If this IP enables abort features, display a message indicating the specific key input for
initiating the abort function. Otherwise, proceed to the next step.

v) Configure the user inputs into the corresponding registers, including U<i>FNAME
_INTREG, U<i>FLEN_INTREG, U<i>PATTSEL_INTREG, U<i>TRNRATE_INTREG,
and U<i>CMD_INTREG; where <i> is a user index. Following this, the IP initiates the
operation.

Note: The U<1>Register_Name, the register configured to User#1, can be accessed
using the address, computed by U<0>Register_Name + USEROFFSET_INT.

Read file operation
i) Read DFNUM_INTREG to check the number of available files in the SSD, and display

the read value to indicate the valid range of the first file name for Read file command.
ii) Prompt the user to specify the file name, validate its value, and then configure it to

U<i>FNAME_INTREG; where ‘i’ is the user index if it is valid. After this, follow step iii) –
step v) of Write file operation.

3) The CPU waits for the command completion, detects errors by monitoring the value of

U<i>STS_INTREG[2:0], or detects an abort request from the user.

• Bit[0] set to 0b indicates the completion of the command. Proceed to the subsequent
step after this.

• Bit[1] set to 1b indicates an error detection on User#<i>; where <i> is a user index.
Upon this detection, read the error details from U<i>ERRTYPE_INTREG and
U<i>NVMERRTYPE_INTREG, interpret the read values, and display an error
message corresponding the error type on the console.

• Bit[2] set to 1b indicates an error due to data verification failure. Upon this detection,
display the details of the error data on the console. Despite a verification error, the test
operation continues until its completion or the reception of a user abort.

• If users send an abort request, set bit[9] of U<i>CMD_INTREG to 1b before returning
to the normal loop. The completion of the abort function is indicated by bit[0] of
U<i>STS_INTREG being set to 0b.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 25

During data transfer, read U<i>CURTESTSIZEL/H_INTREG to check the current transfer
size, and display the result on the console every second to monitor the test progress.

4) Upon the completion of the command, read the test results from registers and internal
variables:

• Retrieve the total transfer size from U<i>CURTESTSIZEL/H_INTREG.

• Retrieve the timer value to compute the total time usage and average transfer speed.

• Retrieve the file name and number of files to compute the first file name and the last file
name with their directories.

These results are displayed on the console.

If an abort for the Write file command is executed, display information about the last data
position. This includes

• The last file name with its directory, decoded from U0ABTFNAME_INTREG.

• The valid data size of the last file, decoded from U0ABTCURWRLEN_INTREG.

3.1.3 Read File Info Command

The Read file info command can be requested by both User#0 and User#1. This command
allows users to execute multiple users simultaneously. The operation when selecting this
test operation includes the following steps.
1) Select operations for each user: Read file info or No operation.
2) Read DFNUM_INTREG to check the number of available files in the SSD and display the

read value to indicate the valid range of the requested file name for Read file info
command.

3) Prompt the user to specify the file name, validate its value, and then configure it to
U<i>FNAME_INTREG; where ‘i’ is the user index if it is valid.

4) Set bit[8] and bits[2:0] of U<i>CMD_INTREG to execute the Read file info command. The
exFAT2-IP asserts busy status (U<i>STS_INTREG [0]) to 1b upon initiating the Read file
info operation.

5) The CPU waits for the command completion or an error detection by monitoring the value
of U<i>STS_INTREG[1:0].

• Bit[0] set to 0b indicates the completion of the command. Following this, proceed to the
subsequent step.

• Bit[1] set to 1b indicates an error detection on User#<i> (where ‘i’ is the user index).
Following this, read the error details from U<i>ERRTYPE_INTREG and
U<i>NVMERRTYPE_INTREG, interpret the read value, and display an error message
corresponding to the error type on the console.

6) Upon the completion of the command, read U<i>FINFO_INTREG to retrieve the

modified/created date and time of the requested file. After that, display the read value on
the console along with the file name and its directory.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 26

3.1.4 Shutdown Command

The Shutdown command can be executed only by User#0. When this test option is selected,
the Shutdown operation is executed following these steps.
1) Ask the user to confirm the Shutdown operation. The user enters the keys to proceed or

cancel the Shutdown operation.
2) Set bit[8] and bits[2:0] of U0CMD_INTREG to send the Shutdown command. The

exFAT2-IP sets busy status (U0STS_INTREG[0]) to 1b upon initiating the operation.
3) The CPU waits for the command completion or an error detection by monitoring the value

of U0STS_INTREG[1:0].

• Bit[0] set to 0b indicates the completion of the command. Following this, proceed to the
subsequent step.

• Bit[1] set to 1b indicates an error detection on User#0. Following this, read the error
details from U0ERRTYPE_INTREG and U0NVMERRTYPE_INTREG, interpret the
read value, and display an error message corresponding to the error type on the
console.

4) Upon the completion of the command, display a message to indicate the SSD becomes

inactive. The user cannot send additional command requests to the exFAT2-IP. To
continue testing, the user must power off and power on the system.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 27

3.2 Function list in Test firmware

void change_ftime(void)

Parameters None

Return value None

Description Print the current created time and date by calling the ‘cur_ftime’ function.
Afterward, prompt the user to either use the old value or change it. Verify
the user input if a new value is received. Then, set the created date and
time to U0DATETIME_INTREG and the global parameter (DateTime).

void cur_ftime(void)

Parameters None

Return value None

Description Display fix message and call the ‘show_ftime’ function.

int format_fat(void)

Parameters None

Return value 0: User cancels command or command is completed.
-1: Receive invalid input or error is found.

Description Execute (Secure) Format command as outlined in section 3.1.1.

void get_cursize(unsigned int user, unsigned long long* cursize)

Parameters user: A user index ranging from 0 to 1.

Return value None

Description Read U<i>CURTESTSIZEL/H_INTREG (where ‘i’ is a user index),
determine current transfer size, and update result to ‘cursize’ parameter.

int get_param(userin_struct* userin, unsigned int user)

Parameters userin: A set of test parameters input from the user, including command,
file name, a number of files, test pattern, and transfer rate.
user: A user index ranging from 0 to 1.

Return value 0: Valid input, -1: Invalid input

Description Receive test parameters from the user via the console and validate their
values. If any input is invalid, return -1 as function result. Otherwise,
update the user-defined values to the ‘userin’ parameter.

int rd_fileinfo(void)

Parameters None

Return value 0: Operation is finished.
-1: Receive invalid input.

Description Execute Read file command as outlined in section 3.1.3.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 28

void show_dir(unsigned int firstfile, unsigned int lastfile)

Parameters firstfile: The first file name of this operation.
lastfile: The last file name of the operation.

Return value None

Description Calculate the location of the first and last files, and then display their
names along with their directories on the console.

void show_diskinfo(void)

Parameters None

Return value None

Description Retrieve the information of the SSD, including file size (via calling
‘show_fsize’ function), maximum number of files in the SSD (TotalFCap),
maximum number of files per directory (DirCap), and total available files
in the SSD (DFnum), and display the read values on the console.

void show_error(unsigned int user)

Parameters user: A user index ranging from 0 to 1

Return value None

Description Read U<i>ERRTYPE_INTREG and U<i>NVMERRTYPE_INTREG
(where ‘i’ is a user index), interpret an error type, and display the result
on the console.

void show_fsize(void)

Parameters None

Return value None

Description Read the file size parameter (DFsize) and decode it to represent the size
in MB or GB units. Then, display the result on the console.

void show_ftime(unsigned int time_input)

Parameters time_input: time and date input

Return value None

Description Read ‘time_input’, decode it to date, month, year, hour, minute, and
second. Then, display the result on the console.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 29

void show_result(unsigned int user, userin_struct* userin, unsigned int abort,
unsigned int timeuseh, unsigned int timeusel)

Parameters user: A user index ranging from 0 to 1
userin: A set of test parameters input from the user, including command,
file name, a number of files, test pattern, and transfer rate.
abort: Indicate an abort has been requested.
timeuseh: The upper 32-bit read value of timer
timeusel: The lower 32-bit read value of timer

Return value None

Description Execute following steps.
1) Update the total transfer size by calling the ‘get_cursize’ function and

display the result on the console using the ‘show_size’ function.
2) Next, display the total time usage using the ‘show_time’ function.

Subsequently, calculate the transfer performance and display the
result on the console.

3) Calculate the last file name and call ‘show_dir’ to display the file name
and directory name of the first file and the last file. If an abort is
requested, the actual transfer size is also displayed.

4) Update the number of available files on the disk by reading
‘DFNUM_INTREG’ and display the result on the console.

void show_size(unsigned long long size_input)

Parameters Data size in bytes

Return value None

Description Print input value in MB or GB unit.

void show_testpin(void)

Parameters None

Return value None

Description Read U0-1TESTPINL/H_INTREG and NVMU0-1TESTPINL/H, and
display these values on the console.

void show_time(unsigned int timeuseh, unsigned int timeusel)

Parameters timeuseh: The upper 32-bit read value of timer
timeusel: The lower 32-bit read value of timer

Return value None

Description Read the values of timeuseh and timeusel, and calculate the total time to
display on the console in usec, msec, or sec.

void show_vererr(unsigned int user)

Parameters user: A user index ranging from 0 to 1

Return value None

Description Read the registers and display the details of verification error on the
console, including U<i>FAILFNAME_INTREG (error file name),
U<i>FAILADDRL/H_INTREG (error address), U<i>EXPPATW0-7_
INTREG (expected value), and U<i>RDPATW0-7_INTREG (read value);
where <i> is a user index.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 30

int shutdown_dev (void)

Parameters None

Return value 0: Shutdown command is finished.
-1: User cancels command or error is found.

Description Execute Shutdown command as outlined in section 3.1.4.

void update_diskparam(void)

Parameters None

Return value None

Description Read TOTALFCAP_INTREG, DFSIZE_INTREG, and DFNUM_INTREG
to update these values to internal parameters (TotalFCap, DFsize, and
DFnum).

int wrrd_file(void)

Parameters None

Return value 0: Operation is successful.
-1: Receive invalid input or error is found.

Description Execute the Write file or Read file command as outlined in section 3.1.2.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 31

4 Example Test Result

Figure 4-1 shows the test results obtained from running the demo system with a single user and
two users, respectively. The test results were obtained using a 2TB Addlink S95 SSD, a transfer
size of 32 GB per user, and an all-zero test pattern, which demonstrates optimal performance.

Figure 4-1 Test Performance of exFAT2-IP demo using Addlink S95 SSD

Utilizing PCIe Gen4 on the VCK190 board, the total performance of a single user, User#0 Write is
approximately 6900 Mbyte/sec, while User#0 Read achieves about 7500 Mbyte/sec. For two
users, the total performance of User#0-#1 Read is equivalent to the total performance of User#0
Read alone. The performance of each user during the User User#0-#1 Read (3759 MB/s) is
approximately half of the performance achieved during User#0 Read (7517 MB/s). Furthermore,
the mixed Write-Read file command (User#0 Write, User#1 Read) demonstrates good load
balancing under both test conditions. However, when the test conditions change, such as using
larger transfer size and random test pattern, the performance of most SSDs tends to decrease.

dg_exfat2ip_refdesign_g4_amd.doc

7-May-24 Page 32

5 Revision History

Revision Date Description

1.00 7-May-24 Initial release

Copyright: 2024 Design Gateway Co,Ltd.

