
dg_ftp10g_server_refdesign_en.doc

11-Aug-23

FTP 10G Server Demo reference design
Rev1.2 11-Aug-23

1 Introduction ... 2

1.1 FTP Connection Establishment and User Authentication ... 4
1.2 FTP Data Connection Management by Passive Mode ... 5
1.3 LIST Command ... 6
1.4 STOR Command .. 7
1.5 RETR Command .. 8

2 Hardware Structure ... 9
2.1 10/25Gb Ethernet PCS/PMA (BASE-R) .. 11
2.2 10G/25G Ethernet MAC .. 11
2.3 TenGMacIF (only when using Xilinx EMAC IP) ... 12
2.4 TopTCP10G .. 15

TOE10G-IP ... 16
Transmitted data (NVMe2TOEFifo) .. 17
Received data (TOE2NVMeFifo) .. 18

2.5 UserMAC .. 19
2.5.1 UserTxMAC .. 20
2.5.2 UserRxMAC ... 21

2.6 exFATNVMe .. 23
2.7 CPU and Peripherals .. 24

2.7.1 AsyncAXIReg ... 25
2.7.2 TOEReg ... 27
2.7.3 exFATReg .. 29

3 CPU Firmware .. 31
3.1 FTP command without data connection .. 33
3.2 FTP command with data connection ... 35

3.2.1 LIST ... 35
3.2.2 STOR ... 36
3.2.3 RETR ... 36

3.3 Function List in Test Firmware .. 37
3.3.1 Function for exFAT-IP ... 37
3.3.2 Function for TOE10G-IP ... 39
3.3.3 Function for ftp operation ... 40

4 Revision History .. 42

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 2

FTP 10G Server Demo reference design
Rev1.2 11-Aug-23

1 Introduction

File Transfer Protocol (FTP) is a standard network protocol used for file transmission between a
client and server on a network. For the reliable and efficient transmission, TCP/IP is used as lower
layer.

Reference documents
1. File Transfer Protocol: http://tools.ietf.org/html/rfc959
2. File Transfer Protocol: http://www.tcpipguide.com/free/t_FileTransferProtocolFTP.htm
3. FTP Sequence: www.eventhelix.com/realtimemantra/networking/FTP.pdf
4. List of FTP commands: http://en.wikipedia.org/wiki/List_of_FTP_commands
5. List of FTP server return codes: http://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

Figure 1-1 Model of FTP Use

In the model described in Figure 1-1, there are two hosts with their own data storage. One is
server with shared data in the network and another is client for general users who can
authenticate themselves with sign-in protocol, normally in form of username and password. For
this protocol, two connections are required, i.e., control connection for FTP command and FTP
replies transferring between client and server and data connection for data transmission between
two hosts.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 3

Control connection is taken responsibility by the server-protocol interpreter (Server-PI) and the
user-protocol interpreter (User-PI). The server-PI listens on its own port number (Port 21 is used
since it is a well-known control port) until the connection is established. After that, Server-PI waits
FTP commands from User-PI, returns standard FTP replies over the control connection in
response of the command, and manages the server data transfer process (Server-DTP) when the
command needs data transfer. For client side, User-PI is responsible to forward the command
received from the user interface to Server-PI, wait FTP replies, and manage the user data transfer
process (User-DTP) when the command needs data transfer.

Data connection is taken responsibility by the server data transfer process (Server-DTP) and the
user data transfer process (User-DTP) for sending or receiving data. The data connection
establishment can be done by Server-DTP (active mode) or User-DTP (passive mode). Passive
mode is commonly used to resolve the firewall problem on FTP client. The data connection is
established to transfer information or files between the server and the client. The data connection
is terminated after finishing information or file transferring. Both Server-DTP and User-DTP
interact with the local file system when reading or writing files.

User Interface provides the interface for a person requiring to obtain file transfer service through
the FTP software. The command is issued and the response is checked.

More details to transfer data between Server and Client by using FTP protocol are described as
belows.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 4

1.1 FTP Connection Establishment and User Authentication

After user creates the connection on control port, the next process is user authentication. FTP
server can be accessed by authorized user only. The details of the connection establishment and
login process are described as follows.

Figure 1-2 Connection Establishment on Control port

According to Transmission Control Protocol (TCP), 3-Way Handshake process is the way to
establish the connection, as shown in Figure 1-2. FTP client starts sending TCP packet with SYN
flag to server on Port 21 to be the request for creating the new connection. After this packet is
detected by FTP Server, the server returns the TCP packet with SYN and ACK flag to allow the
new connection creating. Finally, client sends acknowledgement (ACK flag) to finish this process
and the control port is in ready status for server and client communication. The control port is
applied for transferring FTP commands and replies.

Figure 1-3 User Authentication

As shown in Figure 1-3, after the connection was established, the authorized users have to
identify themselves with allowed username and password. For user authentication, client sends
two FTP commands which are USER command with username and PASS with password
respectively. Finally, the server replies the client with FTP response 230 to allow opening the new
session.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 5

1.2 FTP Data Connection Management by Passive Mode

This reference design implements the data connection establishment by Client (Passive mode)
which is generally used. So, only the step for running as Passive mode is described in this topic.

Some FTP commands, e.g., LIST (List subdirectories or files), STOR (Store files), and RETR
(Retrieve files) must transfer information or file through the data connection. Before transferring
data in previously mentioned commands, PASV command is firstly sent from client to specify the
parameters for the data connection, i.e., IP address and port number of Server-DTP.

Figure 1-4 Data Connection Management in Passive Mode

After receiving PASV command, the server returns FTP response 227 to inform IP address and
port number of Server to Client. Assume the data port number of the server is equal to Ds.
Server-PI instructs Server-DTP to listen on Port Ds and wait for data connection establishment.
Next, User-PI sends FTP command which requires data transfer to Server-PI. At the same time,
User-DTP establishes the data connection to transfer data with Server-DTP. The sequence of
Step 3a) for transferring FTP command and step 3b) for the data connection establishment can
be swapped, depending on FTP client behavior. When the data transfer is finished, the data
connection is terminated by the side transmitting data.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 6

1.3 LIST Command

The LIST command is issued to transfer information about files in the specified directory, stored
on the server’s side, through an established data connection. PASV command is sent firstly to
initialize the data connection. After that, User-PI sends LIST command to Server-PI and
User-DTP establishes data connection at the same time. The sequence of Step 2a) for
transferring FTP command and step 2b) for the data connection establishment is possibly
swapped.

Figure 1-5 LIST Command Operation

For the server side, after the data connection was established, Server-PI returns response 125 for
LIST command and Server-DTP returns information of files or the list of files to client. When the
data transfer is finished, Server-DTP terminates the data connection. Finally, Server-PI sends
response 226 to complete LIST command operation.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 7

1.4 STOR Command

The STOR command is issued by client when the user requires to upload a copy of a file to store
on the server’s storage. The client provides the file name for uploading with the STOR command.
If the file already exists on the server, it is replaced by the uploaded file. Otherwise, the uploaded
file is created. Next, the server decodes file name to be a parameter to store a file. After that, data
transmission begins, similar to the operation of LIST command. Data transfer direction is opposite
from LIST and RETR command by sending from User-DTP (client) to Server-DTP (server).
User-DTP terminates the data connection after finishing all data transmission.

Figure 1-6 STOR Command Operation

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 8

1.5 RETR Command

The RETR command is sent from the client when user requires to download a copy of a file on the
server. The client provides the file name along with the RETR command. On the server side, after
the file name is decoded, the data of the requested file is returned. The step of data sequence is
similar to LIST command. The data connection is released by Server-DTP after the data transfer
is completed.

Figure 1-7 RETR Command Operation

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 9

2 Hardware Structure

Figure 2-1 Demo Block Diagram

As described in the introduction, at least two connections are necessary for running FTP protocol,
i.e., control connection for transferring FTP command and response and data connection for
transferring data in some FTP commands such as LIST, STOR, and RETR command.

The control connection is handled by CPU system for creating and decoding Ethernet packet with
10G/25G Ethernet MAC via UserMAC. UserMAC forwards FTP command sent by FTP client to
CPU for decoding and then returns FTP response from CPU to 10G/25G Ethernet MAC.
UserMAC is mapped to TOEReg to allow CPU access via AXI4-Lite bus. To operate data
connection, both TOEReg and exFATReg are accessed by CPU.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 10

The data connection is handled by TOE10G-IP which is integrated inside TopTCP10G. The data
source of TOE10G-IP has two sources. First is file information, created by CPU system, when
operating LIST command. Second is data in the requested file, read from NVMe SSD by
exFATNVMe module, when operation RETR command. The received data in the data connection
is directly connected to exFATNVMe module for operating STOR command.

By using TOE10G-IP operating with exFAT for NVMe block which consists of exFAT-IP and
NVMe(G3)-IP, data transferring in FTP demo achieves the best performance on 10G Ethernet
speed. Though exFAT for NVMe performance is equal to NVMe PCIe Gen3 device speed (about
3300 MB/s), the performance in the demo is limited by 10 Gb Ethernet speed which has maximum
speed about 1200 MB/s.

More details of the hardware inside the demo are described in this topic.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 11

2.1 10/25Gb Ethernet PCS/PMA (BASE-R)

10/25Gb PCS/PMA implements physical layer of 10G Ethernet. It connects to the external
hardware which is 10G BASE-R SFP+ module. The user interface is 64-bit XGMII interface
running at 156.25 MHz for connecting with Ethernet MAC. This IP core is provided by Xilinx
without the charge. More details of the core are described in the following link.

10G (10G/25G) Ethernet PCS/PMA (BASE-R)
https://www.xilinx.com/products/intellectual-property/10gbase-r.html
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

2.2 10G/25G Ethernet MAC

10G/25G EMAC connects between TOE10G-IP and 10G/25G PCS/PMA module. The
interface with TOE10G-IP is 64-bit AXI4 stream while the interface with 10G/25G PCS/PMA
module is 64-bit XGMII interface at 156.25 MHz.

When using DG 10G25GEMAC-IP, TOE10G IP can connect to EMAC IP directly, as shown in
Figure 2-2. More details about DG 10G25GEMAC-IP are described in the following link.
https://dgway.com/products/IP/GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx.pdf

When connecting with Xilinx 10G/25G EMAC-IP, the small buffer must be connected between
TOE10G-IP and Xilinx 10G/25G EMAC-IP. So, TenGMacIF module is designed to be the Tx
interface module. More details of TenGMacIF are described in the next topic. The details of
Xilinx EMAC are described in the following link.
https://www.xilinx.com/products/intellectual-property/do-di-10gemac.html
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

Figure 2-2 TOE10G-IP with EMAC-IP connection

https://www.xilinx.com/products/intellectual-property/10gbase-r.html
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://dgway.com/products/IP/GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx.pdf
https://www.xilinx.com/products/intellectual-property/do-di-10gemac.html
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 12

2.3 TenGMacIF (only when using Xilinx EMAC IP)

Figure 2-3 TenGMacIF Block Diagram

Tx interface timing diagram of Xilinx 10G/25G EMAC and TOE10G-IP are different.
TOE10G-IP needs to send data of one packet continuously, but Xilinx EMAC does not support
this feature. Xilinx EMAC may de-assert ready signal to pause data receiving before end of
the packet. TenGMacIF is designed to store transmitted data from TOE10G-IP when Xilinx
10G/25G EMAC is not ready to receive new data. According to real-board testing, tready
output from Xilinx 10G EMAC is not de-asserted for long time per packet, so small FIFO which
has 32-data depth is included to store the data during pausing time.

The operation of TenGMacIF is split into two sides, following the interface, i.e., Writing FIFO
and Reading FIFO. Timing diagram for writing FIFO from TOE10G-IP is shown in Figure 2-4
while timing diagram for reading FIFO and forwarding to Xilinx 10G EMAC is shown in Figure
2-5.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 13

Figure 2-4 Write FIFO timing diagram of TenGMacIF

(1) Before asserting ToeMacReady to ‘1’ for receiving the new data, two conditions must be

met.
a) The logic checks if free space in FIFO is more than 16 by monitoring when FfDataCnt

is less than 16.
Note: By real-board monitoring, it is found that Xilinx 10G/25G EMAC-IP de-asserts
tx_axis_tready to ‘0’ less than 16 cycles for each packet.

b) The previous packet is completely transferred more than two clock cycles by checking
rToeMacReady[2]=’0’. rToeMacReady[2] is created by ToeMacReady with two clock
cycle latency time. To pause the packet transmission, ToeMacReady is de-asserted to
‘0’ to wait until EMAC and TenGMacIF is ready.

(2) During packet transmission, ToeMacValid from TOE10G-IP and ToeMacReady are
asserted to ‘1’ continuously until end of packet, so the packet is transferred without
pausing time. In the next clock after ToeMacReady and ToeMacValid are asserted to ‘1’,
rFfWrEn is asserted to ‘1’ to store received data. FIFO data size is 73-bit for storing 64-bit
data (ToeMacData), 8-bit of byte enable (ToeMacKeep), and last flag (ToeMacLast).

(3) When the last data is received (ToeMacLast=’1’), ToeMacReady is de-asserted to ‘0’ for 3
clock cycles to be the gap size for each packet transmission.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 14

Timing diagram to forward data from FIFO to Xilinx 10G EMAC is shown in Figure 2-5.

Figure 2-5 Read FIFO timing diagram of TenGMacIF

(1) When the new packet is received from TOE10G-IP, FIFO empty (FfEmpty) is de-asserted

to ‘0’. Since the packet from TOE10G-IP is transferred continuously, FIFO is not empty
until a packet is completely transferred. The logic asserts read enable of FIFO (FfRdEn) to
‘1’ for reading data from FIFO and forwarding data to Ethernet MAC.

(2) After reading data from FIFO, tx_axis_tvalid is asserted to ‘1’ with the valid data for
transferring to EMAC in the next cycle.

(3) When EMAC is not ready to receive data (tx_axis_tready=’0’), read enable must be
de-asserted to ‘0’ to pause data transmission.

(4) After the packet is completely transferred, the FIFO shows empty status (FfEmpty=’1’). At
the same time, FfRdEn is de-asserted to ‘0’ to stop data transmission.

(5) Next, tx_axis_tvalid is de-asserted to ‘0’ to finish the packet transmission.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 15

2.4 TopTCP10G

Figure 2-6 TopTCP10G block diagram

TopTCP10G is the module for transferring data with 10G/25G Ethernet MAC
(10G/25GEMAC). To run FTP server application, two ports are implemented on the hardware.
First is control connection and another is data connection. The control connection is
responsible to decode FTP command and return FTP response. Control connection uses
small packet size and transfers less frequently. Therefore, this port is implemented by using
UserMAC controlled by CPU which is low-speed channel. While data connection that is
applied to transfer the data in RETR (file), STOR (file), and LIST (list of files) command
requires high bandwidth to support big data size. Therefore, this port is implemented by using
TOE10G-IP to achieve high-speed performance. The data source of TOE10G-IP is selected
between LAxi2Reg and exFATNVMe. List of files of LIST command is prepared by CPU
through LAxi2Reg while file data of RETR command is read from SSD by exFATNVMe.

While Tx packet output from UserMAC and TOE10G-IP are selected by the switch logic for
sending to EMAC, the received interface of EMAC is connected to both UserMAC and
TOE10G-IP directly. There is filter logic inside UserMAC and TOE10G-IP to check the port
number in the header before operating. Therefore, the received packet of control port is
operated by UserMAC while the received packet of data port is operated by TOE10G-IP.

There are two clock domains inside TopTCP10G, NVMeClk (interface with exFATNVMe) and
TOEClk (interface with 10G/25GEMAC). Therefore, asynchronous FIFOs are included to
support clock domain crossing and convert data bus size between TOE10G-IP (64-bit) and
exFATNVMe (128-bit). NVMe2TOEFifo forwards the read data returned from the SSD to
TOE10G-IP while TOE2NVMeFifo forwards the received data from TOE10G-IP to write to
SSD.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 16

TOE10G-IP

TOE10G-IP implements TCP/IP stack and offload engine. Control and status signals for user
interface are accessed through register interface. Data interface is accessed through FIFO
interface. More details are described in datasheet.
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_xilinx_en.pdf

Figure 2-7 TOE10G-IP interface for data connection

In this demo, TOE10G-IP is applied for transferring data of data connection at high-speed rate.
The network parameters of TOE10G-IP are set by CPU through LAxi2Reg to run as data
connection of FTP command.

In transmit path, the data from TOEReg or NVMe2TOEFifo is forwarded to Tx FIFO interface
of TOE10G-IP. Total amount of transmitted data is calculated by CPU. Also, CPU sets total
transmit size to TOE10G-IP before starting sending data for LIST and RETR FTP command.

In received path, there is no need to calculate the data size. All received data from
TOE10G-IP is forwarded to TOE2NVMeFifo when the FIFO is not full. CPU reads TOE10G-IP
register for status monitoring. Next topic describes more details of data interface for
transmitted data and received data.

https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_xilinx_en.pdf

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 17

Transmitted data (NVMe2TOEFifo)

Figure 2-8 Transmitted data of TOE10G-IP

To transmit data to client through TOE10G-IP, there are two data sources, i.e., the list of file
name stored in the SSD written by CPU firmware and the data of the file returned from the
SSD through exFATNVMe, as shown in Figure 2-8.

To transfer the data of the file in RETR command, the step for transferring data from FIFO to
TOE10G-IP is described as follows.
(1) The hardware must ensure that NVMe2TOEFifo has remaining data

(NVMe2TOEFfEmpty=’0’), Tx FIFO of TOE10G-IP is not full (TCPTxFfFull=’0’), and the
data connection establishment is completed (ConnOn=’1’). After that, asserts read enable
of NVMe2TOEFifo (NVMeTOEFfRdEn=’1’).

(2) The read data from FIFO (NVMe2TOEFfRdData) is ready to forward to TOE10G-IP in the
next clock. So, write enable to TOE10G-IP (TCPTxFfWrEn) is asserted after
NVMeTOEFfRdEn is asserted with one clock latency time.

To transfer file name in LIST command, the design allows CPU to write data to TOE10G-IP
directly by asserting TOE10GWrEn and assigning TOE10GWrData.

The FIFO is generated for supporting independent clock and asymmetric port width. The size
is 64 Kbytes. exFATFifoWrCnt is monitored by exFATNVMe module to check the free space
size in the FIFO. When the free space is much enough and data of the SSD is ready, 512-byte
data is sent to NVMe2TOEFifo.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 18

Received data (TOE2NVMeFifo)

Figure 2-9 Received data of TOE10G-IP

The data read from client through TOE10G-IP is stored to TOE2NVMeFifo when operating
STOR command. Data of the file received from FTP client is stored to the SSD through
exFATNVMe. exFATFifoRdCnt and exFATFifoEmpty are monitored to check the amount of
data in FIFO before forwarding to the SSD.

TOE2NVMeFifo is also generated for supporting independent clock and asymmetric port
width. Similar to NVMe2TOEFifo, the size is 64 Kbytes, but the data path is reversed.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 19

2.5 UserMAC

Figure 2-10 UserMAC Block Diagram

UserMAC is responsible to transfer TCP/IP packet for FTP control connection. The step of
FTP control connection is designed by CPU firmware to access UserMAC registers through
TOEReg module. Data interface of UserMAC with TOEReg is 32-bit RAM standard while data
interface with 10G/25GEMAC is 64-bit AXI4 Stream standard.

UserMAC consists of two modules, i.e., UserTxMAC and UserRxMAC. UserTxMAC includes
TxRAM which stores the data written by CPU to 10G/25GEMAC. UserRxMAC includes
RxRAM which stores the received packet from 10G/25GEMAC. The header of received
packet has been verified by the packet filtering logic before stored to RxRAM. More details of
UserTxMAC and UserRxMAC are described as follows.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 20

2.5.1 UserTxMAC

Figure 2-11 UserTxMAC Logic Diagram

The step to transfer the packet from TxRAM to EMAC is as follows.
(1) CPU checks that UserTxBusy=’0’ to confirm UserTxMAC is in Idle state.
(2) CPU writes transmit packet to TxRAM, starting from the 1st address (TxRamWrAddr=0).
(3) CPU sets UserTxLen=Packet size while asserting UserTxReq to ‘1’ to begin data

transmission.
(4) UserTxBusy is asserted to ‘1’ during transmitting data. At the same time, Counter loads

total transfer size and starts counting to control packet size. AddressCalUnit resets the
read address (wTxRamRdAddr) to 0 for reading the data starting from the 1st address.
Read data of TxRAM (UserTx10GMACData) is valid after the read address is valid with
1-clock latency time. The read data is applied to send to EMAC directly.

(5) UserTx10GMACValid is asserted to ‘1’ to send the data along with UserTx10GMACData.
(6) Wait until UserTx10GMACReady is asserted to ‘1’ to confirm that the 1st data of the packet

is accepted. After that, the next data is read from TxRAM and sent to 10G/25GEMAC
continuously until end of the packet. At the same time, UserTx10GMACKeep is always set
to all ‘1’.

(7) After the counter to show the remaining transfer size of each packet (rLenCnt) is equal to
2, showing that the final data of the packet is ready to transfer, UserTx10GMACKeep
value reads rLastLen to generate the byte valid of the final data which may be equal to
0x01 (1-byte), 0x03 (2-byte), 0x07 (3-byte), 0x0F (4-byte), 0x1F (5-byte), 0x3F (6-byte),
0x7F (7-byte), or 0xFF (8-byte). UserTx10GMACLast is also asserted to ‘1’ for sending the
final data of a packet.

(8) After that, UserTx10GMACValid and UserTxBusy are de-asserted to ‘0’.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 21

2.5.2 UserRxMAC

Figure 2-12 UserRxMAC Logic Diagram

The step when the new packet is received from EMAC is as follows.
(1) a) When the first data of the packet is detected, the enable signal to compare 38-byte

header of each packet is asserted to ‘1’ for 5 clock cycles (one clock cycle can compare
8-byte data).
b) At the same time, the address counter (AddrCounter) for generating write address of
RxRAM (rRxRamWrAddr) loads the latest position of valid packet from rLastAddrLat. After
that, the write address is increased to store the next data to the next address of RxRAM.
c) The received packet is stored to RxRAM by using UserRx10GMACValid to be write
enable of RxRAM and UserRx10GMACData to be write data.

(2) Byte#0 – #37 of received data (UserRx10GMACData) are fed to header comparator
module (HeaderCmp) to compare with the expected value (UserRxHdData), set by CPU
firmware. UserRxHdValid is enable/disable flag to compare each byte of the header. Bit0
of UserRxHdValid is byte0 enable, bit1 is byte1 enable, and so on.

(3) When the final data of the packet is received (UserRx10GMACLast=’1’), the header result
flag (rHdOK) are read. When all headers are valid (rHdOK=all ‘1’), rLastAddrValid is
asserted to ‘1’. At the same time, the latest address (rRxRamWrAddr) is loaded to
rLastAddrLat to update the latest position of valid packet. Otherwise, rLastAddrLat is not
updated and the current packet will be replaced by the new packet.

(4) CPU reads FIFO count (UserRxMacFfCnt) to check if the new packet is received
(UserRxMacFfCnt is not equal to 0). Next, CPU asserts read enable (UserRxMacFfRdEn)
to read the end address for storing the final data of each packet (UserRxMacFfRdData).
After that, CPU reads and decodes each received packet until the read address
(UserRxRamRdAddr) is equal to the last address. Step (4) is repeated until FIFO count is
equal to 0.
Note: UserRxRamRdAddr is the address for 32-bit data while rRxRamWrAddr is the
address for 64-bit data. So, CPU firmware must convert the 64-bit address to 32-bit
address before starting reading data from RxRAM.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 22

The 38-byte header of received packet for control connection of FTP application is shown as
Figure 2-13.

Figure 2-13 TCP/IP Packet header for FTP application

HeaderCmp is the packet filtering module which is controlled by CPU firmware. 38-byte
header is verified by the set value from CPU. In the demo, CPU firmware assigns the enable
flag and the verification value to compare six parameters as follows (blue color in Figure
2-13).

1) Ethernet Type (2 bytes) = 0x0800 (IPv4)
2) IP version (1 byte) = 0x45 (Version 4)
3) Protocol (1 byte) = 0x06 (TCP Protocol)
4) Source IP Address (4 bytes) = IP address of FTP client
5) Destination IP Address (4 bytes) = IP address of FPGA
6) Destination Port Number (2 bytes) = 0x0015 (Port 21)

When the header of the packet is matched to the above parameters, the received packet is
stored to RxRAM for CPU processing. Otherwise, the packet is ignored.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 23

2.6 exFATNVMe

Figure 2-14 exFATNVMe Block Diagram

exFATNVMe is exFAT-IP core for NVMe SSD which consists of exFAT-IP and NVMe(G3)-IP.
More details of exFAT-IP are described in the data sheet.
https://dgway.com/products/IP/NVMe-IP/dg_exfatip_nvme_data_sheet_en.pdf

In FTP 10G demo system, the control interface for setting file parameters is controlled by
CPU through exFATReg inside LAxi2Reg module. The data interface (FIFO standard) is
connected to TopTCP10G to transfer data with TOE10G-IP.

https://dgway.com/products/IP/NVMe-IP/dg_exfatip_nvme_data_sheet_en.pdf

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 24

2.7 CPU and Peripherals

32-bit AXI4-Lite is applied to be the bus interface for the CPU accessing the peripherals such
as Timer and UART. To control and monitor the test system, the control and status signals are
connected to register for CPU access as a peripheral through 32-bit AXI4-Lite bus. CPU
assigns the different base address and the address range to each peripheral for accessing
the internal registers of the peripheral.

In the reference design, the CPU system is built with two additional peripherals to access the
two hardware systems. First is applied to control Ethernet system which is run under TOEClk.
Second is applied to control exFAT system which is run under NVMeClk. The interface logic
must support AXI4-Lite bus standard to allow CPU access for both writing and reading
direction, designed by LAxi2Reg as shown in Figure 2-15.

Figure 2-15 LAxi2Reg Block diagram

In Figure 2-15, LAxi2Reg consists of three modules, i.e., AsyncAXIReg, TOEReg, and
exFATReg. Two AsyncAXIReg modules are included in the system for supporting two clock
domains, TOE clock domain and NVMe clock domain. The function of AsyncAXIReg is to
convert 32-bit AXI4-Lite interface in CPU clock domain to register interface in the local clock
domain, (TOEClk and NVMeClk). AXI4-Lite is the standard interface for CPU. Another side of
AsyncAXIReg connects to TOEReg and exFATReg which include the register file of the
parameters and the status signals for UserMAC and exFATNVMe respectively. More details
of each module are described as follows.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 25

2.7.1 AsyncAXIReg

Figure 2-16 AsyncAXIReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAXIReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-16. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface. While
the returned data from Register Read I/F is transferred to AXI4-Lite bus by using clock
domain crossing registers. In Register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the value from LAxiAw for write access or LAxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-17.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 26

Figure 2-17 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2] and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16] and [31:24] are valid respectively.

2) To read register, AsyncAXIReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAXIReg forwards the read value to LAxir* interface.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 27

2.7.2 TOEReg

Figure 2-18 TOEReg Block diagram

TOEReg includes the registers of the modules processing Ethernet packet such as
TOE10G-IP within TopTCP10G, UserTxMAC, and UserRxMAC. The address range is split
into seven areas.
1) 0x0000 – 0x00FF: mapped to TOE10G-IP register for setting and monitoring

network parameters and control signals.
2) 0x1000: mapped to write TCP data which is the list of file name, sent to

TOE10G-IP for LIST command.
3) 0x2000 – 0x2FFF: mapped to the control/status signals of UserTxMAC for

transmitting packet.
4) 0x3000 – 0x3FFF: mapped to write TxRAM which stores Tx packet of FTP control

connection. This area is write-access only.
5) 0x4000 – 0x4FFF: mapped to read RxRAM which stores Rx packet of FTP control

connection. This area is read-access only.
6) 0x5000 – 0x5FFF: mapped to the control/status signals of UserRxMAC for receiving

packet.
7) 0x6000 – 0x6FFF: mapped to read the status signal, output from TOE10G-IP. This

area is read-access only.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. To read
register, three-step multiplexers are designed to select the read data, returned to CPU. The
latency of read data is equal to three clock cycles, so RegRdValid is created by RegRdReq
with asserting three D Flip-flops. More details of the address mapping within TOEReg module
are shown in Table 2-1.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 28

Table 2-1 Memory Map of TOEReg

Address Register Name Description

Wr/Rd Label in “ftp10cputest.c”

BA0+0x0000 - BA0+0x00FF: TOE10G-IP Register Area

More details of each register are described in TOE10G-IP datasheet

BA0+0x0000 TOE_RST_INTREG Mapped to RST register within TOE10G-IP

BA0+0x0004 TOE_CMD_INTREG Mapped to CMD register within TOE10G-IP

BA0+0x0008 TOE_SML_INTREG Mapped to SML register within TOE10G-IP

BA0+0x000C TOE_SMH_INTREG Mapped to SMH register within TOE10G-IP

BA0+0x0010 TOE_DIP_INTREG Mapped to DIP register within TOE10G-IP

BA0+0x0014 TOE_SIP_INTREG Mapped to SIP register within TOE10G-IP

BA0+0x0018 TOE_DPN_INTREG Mapped to DPN register within TOE10G-IP

BA0+0x001C TOE_SPN_INTREG Mapped to SPN register within TOE10G-IP

BA0+0x0020 TOE_TDL_INTREG Mapped to TDL register within TOE10G-IP

BA0+0x0024 TOE_TMO_INTREG Mapped to TMO register within TOE10G-IP

BA0+0x0028 TOE_PKL_INTREG Mapped to PKL register within TOE10G-IP

BA0+0x002C TOE_PSH_INTREG Mapped to PSH register within TOE10G-IP

BA0+0x0030 TOE_WIN_INTREG Mapped to WIN register within TOE10G-IP

BA0+0x0034 TOE_ETL_INTREG Mapped to ETL register within TOE10G-IP

BA0+0x0038 TOE_SRV_INTREG Mapped to SRV register within TOE10G-IP

BA0+0x003C TOE_VER_INTREG Mapped to VER register within TOE10G-IP

BA0+0x1000 - BA0+0x3FFF: Tx interface for EMAC

BA0+0x1000 Write data to TOE10G-IP [31:0] - Transmitted data written by CPU for sending through TOE10G-IP
 Wr (TOE_TXDATA_INTREG)

BA0+0x2000 Total Transmit Length Wr: [11:0] - Total transmitted size in byte unit. Valid from 1-0xFFF.
UserTxMAC starts transmitting packet after this register is written.
Rd: [0] – Busy flag of UserTxMAC. ‘0’-Idle, ‘1’-Busy.

Wr/Rd (TXEMAC_LEN_INTREG)

BA0+0x3000 –
BA0+0x3FFF

TxRAM in UserTxMAC Transmitted data written by CPU for sending to UserTxMAC

Wr (TXRAM_ADDR_CHARREG)

BA0+0x4000 - BA0+0x5FFF: UserRxMAC Area

BA0+0x4000 –
BA0+0x4FFF

RxRAM in UserRxMAC Received data stored in RxRAM within UserRxMAC

Rd (RXRAM_ADDR_CHARREG)

BA0+0x5000 –
BA0+0x5024

UserRxMAC Header Data 38-byte to set the packet filtering inside UserRxMAC for comparing byte#0 –
byte#37 of received packet when header byte enable is asserted to ‘1’.
If header byte enable is de-asserted to ‘0’, the filter bypasses that byte.
0x5000[7:0] – byte#0, [15:8] – byte#1, [23:16] – byte#2, [31:24] – byte#3
0x5004[7:0] – byte#4, [15:8] – byte#5, [23:16] – byte#6, [31:24] – byte#7
…
0x5020[7:0] – byte#32, [15:8] – byte#33, [23:16] – byte#34, [31:24] – byte#35
0x5024[7:0] – byte#36, [15:8] – byte#37

Wr (RXEMAC_HDVAL_INTREG)

BA0+0x5028 –
BA0+0x502C

UserRxMAC Header Byte
Enable

38-bit enable to compare 38-byte header of received packet in UserRxMAC
0x50028[0] – Compare enable of byte#0, [1] – byte#1, …, [31] – byte#31
0x5002C[0] – byte#32, [1] – byte#33, .., [5] – byte#37 Wr (RXEMAC_HDEN_INTREG)

BA0+0x5040 RxEMAC Last Address Wr: Assert read enable for one clock cycle to RxMacFf when this register is
written. Please check RXEMAC_FFCNT_INTREG is not equal to 0 before
writing this register.
Rd: [8:0] – Read the address to store the final data of each packet from
RxMacFf. Data can be read after read enable is asserted by writing this
register.

Wr/Rd (RXEMAC_LASTADDR_
INTREG)

BA0+0x5044 FIFO Counter of RxMacFf [4:0] – FIFO counter to show total amount of data in RxMacFf.
 Rd (RXEMAC_FFCNT_INTREG)

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 29

Address Register Name Description

Wr/Rd Label in “ftp10cputest.c”

BA0+0x6000 - BA0+0x7FFF: TOE10G-IP and 10G25GEMAC-IP Status Area

BA0+0x6000 TOE10G Status Register [0] - Reserved
[1] - Mapped to ConnOn signal of TOE10G-IP
[2] - Mapped to TCPTxFfFull signal of TOE10G-IP

Rd (TOEIP_STS_INTREG)

BA0+0x6004 Interrupt Status of Ethernet
interface

Wr:
[0] - Set ‘1’ to clear TimerInt latch value
[8] – Set ‘1’ to clear interrupt when RxMacFf is full
Rd:
[0] – ‘1’: Detect TimerInt from TOE10G-IP to be asserted to ‘1’, ‘0’: Normal
[8] – ‘1’: Detect Full flag of RxMacFf to be asserted to ‘1’, ‘0’: Not full

Wr/Rd (ETHER_INTSTS_INTREG)

BA0+0x6010 TenGEMAC-IP Status
Register

[0] – Mapped to linkup signal of DG 10G25GEMAC -IP.
(‘0’: No link up, ‘1’: link up)

Rd (EMAC_STS_INTREG)

BA0+0x6014 TenGEMAC-IP Version Reg [31:0] – 10G25GEMAC-IP version number, mapped to IPVersion [31:0] of DG
10G25GEMAC -IP Rd (EMAC_VER_INTREG)

2.7.3 exFATReg

Figure 2-19 exFATReg Block diagram

The address range to map to exFATReg is split into two areas, as shown in Figure 2-19.
1) 0x0000 – 0x00FF: mapped to set file parameters of exFATNVMe module. This area

is write-access only.
2) 0x0100 – 0x08FF: mapped to read the status of exFATNVMe module. This area is

read-access only.

Similar to TOEReg, Address decoder decodes the upper bit of RegAddr for selecting the
active hardware. The latency of read data is equal to two clock cycles, so RegRdValid is
created by RegRdReq with asserting two D Flip-flops. More details of the address mapping
within exFATReg module are shown in Table 2-2.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 30

Table 2-2 Memory Map of exFATReg

Address Register Name Description

Wr/Rd Label in “ftp10cputest.c”

BA1+0x0000 – BA1+0x00FF: Control signals of exFAT-IP (Write access only)

BA1+0x0000 User File Name Reg [26:0] - Input to be UserFName of exFAT-IP for NVMe
(USRFNAME_INTREG)

BA1+0x0004 User File Length Reg [26:0] - Input to be UserFLen of exFAT-IP for NVMe

 (USRFLEN_INTREG)

BA1+0x0008 User File Size Reg [2:0] - Input to be FSize of exFAT-IP for NVMe.
Set File size to exFAT-IP when running Format command. (USRFSIZE_INTREG)

BA1+0x000C Date and Time Reg [4:0] - Input to be FTimeS of exFAT-IP for NVMe
[10:5] - Input to be FTimeM of exFAT-IP for NVMe
[15:11] - Input to be FTimeH of exFAT-IP for NVMe
[20:16] - Input to be FDateD of exFAT-IP for NVMe
[24:21] - Input to be FDateM of exFAT-IP for NVMe
[31:25] - Input to be FDateY of exFAT-IP for NVMe

(DATETIME_INTREG)

BA1+0x0010 exFAT Command Reg [1:0] - Input to be UserCmd of exFAT-IP for NVMe
When this register is written, exFATIPReg is asserted to ’1’ to start new
command operation.

(EXFATCMD_INTREG)

BA1+0x0100 – BA1+0x08FF: Status signals of exFAT-IP and NVMe(G3)-IP (Read access only)

BA1+0x0100 exFAT Status Reg [0] - Mapped to UserBusy of exFAT-IP for NVMe
[1] - Mapped to UserError of exFAT-IP for NVMe (FATSTS_INTREG)

BA1+0x0104 Total file capacity Reg [26:0] - Mapped to TotalFCap[26:0] of exFAT-IP for NVMe

(TOTALFCAP_INTREG)

BA1+0x0108 User Error Type Reg [31:0] - Mapped to UserErrorType[31:0] of exFAT-IP for NVMe

(FATERRTYPE_INTREG)

BA1+0x010C exFAT IP Test pin (Low) Reg [31:0] - Mapped to TestPin[31:0] of exFAT-IP for NVMe

(FATTESTPINL_INTREG)

BA1+0x0110 exFAT IP Test pin (High) Reg [31:0] - Mapped to TestPin[63:32] of exFAT-IP for NVMe

(FATTESTPINH_INTREG)

BA1+0x0114 Directory capacity Reg [19:0] - Mapped to DirCap[19:0] of exFAT-IP for NVMe

(DIRCAP_INTREG)

BA1+0x0118 File Size in the disk Reg [2:0] - Mapped to DiskFsize of exFAT-IP for NVMe. This register shows the
current file size used in the device, read by exFAT-IP for NVMe. (DFSIZE_INTREG)

BA1+0x011C Total num of files in the disk Reg [26:0] - Mapped to DiskFnum of exFAT-IP for NVMe

(DFNUM_INTREG)

BA1+0x0120 Disk Capacity (Low) Reg [31:0]: Mapped to LBASize(bit[31:0]) of NVMe(G3)-IP to check total

capacity of the NVMe device. (DCAPL_INTREG)

BA1+0x0124 Disk Capacity (High) reg [15:0]: Mapped to LBASize(bit[47:32]) of NVMe(G3)-IP to check total

capacity of the NVMe device. (DCAPH_INTREG)

BA1+0x0128 Completion Status Reg Completion Status from NVMe(G3)-IP

[15:0]: Admin completion (AdmCompStatus[15:0])

[31:16]: I/O completion (IOCompStatus[15:0])

(COMPSTS_INTREG)

BA1+0x012C NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg [31:0] of NVMe(G3)-IP
(NVMCAP_INTREG)

BA1+0x0130 NVMe Test pin Reg [31:0]: Mapped to TestPin[31:0] of NVMe(G3)-IP
(NVMTESTPIN_INTREG)

BA1+0x0134 NVMe MAC Test pin (Low) Reg [31:0]: Mapped to MACTestPin[31:0] of NVMeG3-IP only
(MACTESTPINL_INTREG)

BA1+0x0138 NVMe MAC Test pin (High) Reg [31:0]: Mapped to MACTestPin[63:32] of NVMeG3-IP only

(MACTESTPINH_INTREG)

BA1+0x0200 Current transfer size (Low) Reg [31:0]: Bit[31:0] of the current transfer byte size in exFATNVMe module
(FATCURSIZEL_INTREG)

BA1+0x0204 Current transfer size (High) Reg [24:0]: Bit[56:32] of the current transfer byte size in exFATNVMe module
(FATCURSIZEH_INTREG)

BA1+0x0800 exFAT-IP Version Reg [31:0]: exFAT-IP version number, mapped to IPVersion [31:0] of exFAT-IP

(EXFATIPVER_INTREG)

BA1+0x0804 NVMe-IP Version Reg [31:0]: NVMe(G3)-IP version number,
mapped to IPVersion [31:0] of NVMe(G3)-IP (NVMVER_INTREG)

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 31

3 CPU Firmware

CPU firmware implements two functions for running ftp server demo. First, CPU handles TCP/IP
packet of FTP control connection through TOEReg and UserMAC module which transmits and
receives TCP/IP packet of control connection. Second, CPU controls and monitors the registers
of exFATNVMe and TOE10G-IP for handling TCP/IP packet of FTP data connection.

To run FTP server demo, CPU firmware operation is shown in Figure 3-1.

Figure 3-1 Firmware operation overview

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 32

1. Receive and validate the network and IP parameters to initialize the SSD and TOE10G-IP.

Then, set the parameters to TOE10G-IP, UserRxMAC, and exFAT-IP.
2. CPU waits until the hardware finishes the initialization process by monitoring busy flag of

TOE10G-IP (TOE10_CMD_INTREG) and exFAT-IP (FATSTS_INTREG).
3. Enter to main menu for selecting the test mode. Four options are displayed as follows.

a) Run the FTP server. This menu starts receiving FTP packet from client. This menu is run as
forever loop. User must enter special keys to return to main menu.

b) Change file created time and display the SSD information such as current file size
(DFSIZE_INTREG), maximum file in the disk (TOTALFCAP_INTREG), and total number of
file in the disk (DFNUM_INTREG). After displaying SSD information is done, CPU returns
to main menu.

c) Change network parameters such as IP address, MAC address, and port number. After
changing network parameters is done, CPU returns to main menu.

d) Shutdown the server by sending the shutdown command to the SSD. Busy flag
(FAT_STS_BUSY[0]) is de-asserted to ‘0’ after the shutdown process is completed. The
SSD and CPU change to inactive status and the system cannot receive any command
from user.

4. CPU waits until the new packet is received from UserRxMAC. When the new packet is
detected, CPU decodes TCP flag to select the next step.

a) When the flag is SYN and total session now is less than 32, CPU goes to step 5.
b) If total session is equal to 32 which means that maximum session is reached, CPU stays in

this step to wait until some sessions are closed.
c) Otherwise, CPU goes to step 6.

5. Create the new connection by running following step.
5.1 Return SYN/ACK packet and wait until the valid ACK without data packet is received.
5.2 Change the session status from Inactive to Active.

6. CPU finds the active session which the port number is matched and confirms that sequence
number is correct value.

a) When the flag is FIN, CPU goes to step 7.
b) When the flag is ACK and TCP data length is not equal to 0, CPU goes to step 8.
c) Otherwise, CPU has no operation and goes back to step 4.

7. Terminate the connection by running following step.
7.1 Send FIN/ACK packet to close the connection and wait until the valid ACK without data is

received.
7.2 Change the session status from Active to Inactive.

8. CPU decodes FTP command. There are two command types, i.e., command without data
connection and command with data connection.

a) CPU goes to step 9 for processing command without data connection.
b) Otherwise, CPU goes to step 10.

9. CPU prepares FTP response of each FTP command to TxRAM and then sets the parameters
to start transmitting FTP response to UserTxMAC.
More details when running FTP command without data connection are described in topic 3.1.

10. Data connection and control connection are run as following step.
10.1 TOE10G-IP and exFATNVMe registers are set and monitored by CPU to start data

transferring on FTP data connection. Then, wait until data transmission is finished.
10.2 Return FTP response, similar to step 9.
More details when running FTP command with data connection are described in topic 3.2.

11. Send Shutdown command to SSD and hold in this step until the system is reset.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 33

3.1 FTP command without data connection

The step when the new FTP command is received and CPU returns response on control
connection is as follows.

1) Wait until new received packet is stored in RxRAM by monitoring data counter of

RxMacFIFO (RXEMAC_FFCNT_INTREG) is not equal to 0.
2) Reading the data in RxMacFIFO by write any value to RXEMAC_LASTADDR_INTREG.

After that, read data from RxMacFIFO by reading RXEMAC_LASTADDR_INTREG. CPU
copies data from RxRAM to Temp buffer on firmware, beginning from the latest position to
RXEMAC_LASTADDR value.
Note: Temp buffer on firmware is defined by BUFFSIZE parameter which is equal to 128.
So, the demo without modification supports up to 128-byte packet size which is enough for
processing FTP control connection.

3) Update the latest position in the firmware to be the new value that is read from
RXEMAC_LASTADDR_INTREG.

4) Find the active port which has the client port equal to the source port in the received
packet.
a) Continue to the next step when the port is matched, the sequence number in the
received packet is equal to the expected value, and received TCP flag is ACK without SYN
and FIN flag.
b) Otherwise, CPU creates or terminates the session when receiving SYN flag or FIN flag
following three-way handshake respectively.

5) Continue the next step when TCP data length in the received packet is not equal to 0. TCP
data length is calculated by (IP length – IP header length – TCP header length).

6) Create FTP response packet to Transmit temp buffer. The value of FTP response is
created following FTP command. Since there are a lot of standard FTP commands, the
demo implements some mandatory commands, related to FTP client application (FileZilla).
Lists of implemented command without data connection are described in Table 3-1.

7) Call function to prepare the header and calculate checksum for transmitting FTP response.
8) Copy the packet from Transmit temp buffer to TxRAM and set total transfer length to

TXEMAC_LEN_INTREG for starting packet transmission.
9) Wait until the packet transmission is finished, detected when busy flag of UserTxMAC

(TXEMAC_LEN_INTREG) is equal to 0.
10) Go back to step 1) for processing the next FTP command.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 34

Table 3-1 FTP Response for FTP command without data connection

FTP command Description Implemented FTP Response

USER Authentication username 331 User is correct. Password is required

PASS Authentication password 230 Logged in

530 Login is incorrect

PWD Print working directory 257 "PATHNAME" is the current directory

TYPE Set the transfer mode 200 Type set to I

PASV Enter passive mode 227 Enter Passive mode (h1,h2,h3,h4,p1,p2)
h1-h4: IP address, p1-p2: Port number

CWD Change working directory 250 Requested file action Okay

DELE Delete file 202 No implemented

QUIT Log out session 221 Bye.

When the command is not in the list such as AUTH, PORT, SYST, and FEAT command, FTP
response 500 (syntax error) is returned. PASV command is the command sent by client before
sending FTP command with data connection, i.e., LIST, RETR, and STOR. More details of
FTP command with data connection are described in the next topic.

Note: DELE command is not implemented in the reference design, so user cannot delete any
files from the server’s storage.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 35

3.2 FTP command with data connection

Table 3-2 FTP Response for FTP command with data connection

FTP command Description Implemented FTP Response

LIST Return File list in the current directory 125 Open data connection
226 Transferring complete STOR Accept the data and store the data

as a file at the server site

RETR Retrieve a copy of the file

Three FTP commands that use data connection are implemented in the demo, as shown in
Table 3-2. The details of each FTP command are described as follows.

3.2.1 LIST

This command is applied to return file list in the current directory. List of files is created by CPU
firmware and the packet must be returned in FTP data connection which is controlled by
TOE10G-IP. So, CPU prepares file list and sends to TOE10G-IP. The step to run LIST
command is described as follows.

1) Read the number of files stored in the device from DFNUM_INTREG.
2) Wait until data connection establishment completes by monitoring ConnOn of TOE10G-IP

(TOEIP_STS_INTREG[1]=’1’).
3) Call function to prepare FTP response 125 to TxRAM and start packet transmission.
4) Set TOE10G-IP parameters for sending file information, i.e., transmit packet size

(TOE_PKL_INTREG), total transmit data length (TOE_TDL_INTREG), and command for
sending data (TOE_CMD_INTREG=Send).

5) Prepare file information and write to TOE_TXDATA_INTREG. The file information is sent to
data connection through TOE10G-IP.

6) Wait until finishing data transmission by monitoring busy flag of TOE10G-IP
(TOE_CMD_INTREG[0]=’0’).

7) Write command register of TOE10G-IP to close connection (TOE_CMD_INTREG=Close).
8) Wait until TOE10G-IP completes to terminate the connection by monitoring busy flag of

TOE10G-IP (TOE_CMD_INTREG[0]=’0’).
9) Call function to return FTP response 226 to TxRAM and start packet transmission.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 36

3.2.2 STOR

1) Convert file name received from the client which is ASCII code to be unsigned integer.
2) Set exFAT-IP parameters to store received data from FTP client to the SSD, i.e., file name

(USRFNAME_INTREG) and command (EXFATCMD_INTREG=Write file). The number of
files is fixed to 1 to transfer one file data at a time.

3) Wait until data connection establishment completes by monitoring ConnOn status
(TOEIP_STS_INTREG[1]=’1’).

4) Call function to return FTP response 125 to TxRAM and start packet transmission.
5) Wait until finishing data transmission by monitoring busy flag of exFATNVMe

(FATSTS_REG=’0’).
6) Wait until data connection is completely terminated by monitoring ConnOn status

(TOEIP_STS_INTREG [1]=’0’).
7) Call function to return FTP response 226 to TxRAM and start packet transmission.

3.2.3 RETR

1) Convert file name received from the client which is ASCII code to be unsigned integer.
2) Set exFAT-IP parameters to return data from the SSD to FTP client, i.e., file name

(USRFNAME_INTREG) and command (EXFATCMD_INTREG=Read file). The number of
files is fixed to 1 to transfer one file data at a time.

3) Call function to return FTP response 125 to TxRAM and start packet transmission.
4) Set TOE10G-IP parameter to send data from the SSD, i.e., transfer packet size

(TOE_PKL_INTREG), total data length (TOE_TDL_INTREG), and command for sending
data (TOE_CMD_INTREG=Send).

5) Wait until finishing data transmission by monitoring busy flag of TOE10G-IP
(TOE_CMD_INTREG[0]=’0’). The maximum file size of the SSD is 512 GB which is more
than the maximum transfer size of TOE10G-IP (4 GB). So, step4) – 5) may be repeated
many times for supporting more than 4 GB file size until total transfer size of TOE10G-IP is
equal to total transfer size of exFATNVMe.

6) Follow step 7) – step 9) of LIST command to close the connection and return FTP
response.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 37

3.3 Function List in Test Firmware

The function in the firmware is split into three groups, i.e., exFAT-IP function, TOE10G-IP
function, and FTP function. The description of each function is shown as follows.

3.3.1 Function for exFAT-IP

Function in this topic is applied to control exFAT-IP.

void change_ftime(void)

Parameters None

Return value None

Description Print current create time and date by calling show_ftime function. After that,
ask user to change the value. If input is valid, DATETIME_REG and global
parameter (DateTime) are updated.

void format_fat(void)

Parameters None

Return value 0: User cancels command or command is finished.
-1: Receive invalid input or error is found.

Description Run Format command to exFAT-IP. More details are described
in topic 3.1.1 of exFAT-IP for NVMe reference design document.
https://dgway.com/products/IP/NVMe-IP/dg_exfatip_nvme_refdesign_en.pdf

unsigned long long get_cursize(void)

Parameters None

Return value Read value of FATCURSIZEH/L_INTREG

Description Read current transfer size from FATCURSIZEH/L_INTREG and return read
value as function result.

void show_diskinfo(void)

Parameters None

Return value None

Description Print the current disk information from global parameters, i.e., file size
(DFsizeB), maximum number of files in the disk (TotalFCap), and total number
of files in the disk (DFnum).

void show_faterror(void)

Parameters None

Return value None

Description Read FATERRTYPE_INTREG and decode the value. Print error type when
the flag is found. The example of error type is timeout error, NVMe(G3)-IP
error, and unsupported disk capacity.

void show_ftime(void)

Parameters None

Return value None

Description Print current created date and time from global parameter (DateTime)

https://dgway.com/products/IP/NVMe-IP/dg_exfatip_nvme_refdesign_en.pdf

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 38

void show_result(void)

Parameters None

Return value None

Description Print total size by calling get_cursize and show_size function. After that,
calculate total time usage from global parameters (timer_val and
timer_upper_val) and display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed on MB/s unit.

void show_size(unsigned long long size_input)

Parameters Size in byte unit

Return value None

Description Print input value in MB, GB, or TB unit

void show_testpin(void)

Parameters None

Return value None

Description Read FATTESTPINH/L_INTREG and NVMTESTPIN_INTREG to display
exFAT-IP and NVMe(G3)-IP test pin on the console for debugging.
For NVMeG3-IP, MACTESTPINL/H_INTREG are also read and displayed.

int shutdown_dev(void)

Parameters None

Return value 0: Shutdown success, -1: Shutdown cancelled

Description Set shutdown command to SSD (EXFATCMD_INTREG[1:0]=”01”) to change
the SSD to inactive state. After that, busy flag (FAT_STS_BUSY[0]) is
monitored until it is de-asserted to ‘0’.

void update_dfnum(void)

Parameters None

Return value None

Description Read total number of files in the disk from DFNUM_INTREG, and then update
read value to global parameter (DFnum).

void update_dfsize(void)

Parameters None

Return value None

Description Read maximum number of files (TOTALFCAP_INTREG) and current file size
in the disk (DFSIZE_INTREG) from hardware. File size is decoded and
converted to be byte unit. Finally, maximum number of files and file size are
updated to global parameters (TotalFCap and DFsizeB).

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 39

3.3.2 Function for TOE10G-IP

Function in this topic is applied to control TOE10G-IP.

void exec_port(unsigned int port_ctl, unsigned int mode_active)

Parameters port_ctl: 1-Open port, 0-Close port
mode_active: 1-Active open/close, 0-Passive open/close

Return value None

Description For active mode, write TOE_CMD_INTREG to open or close connection. After
that, call read_conon function to monitor connection status until it changes
from ON to OFF or OFF to ON, depending on port_ctl mode.

void init_toe_param(void)

Parameters None

Return value None

Description 1) Set network parameters to TOE10G-IP register from global parameters.
After reset is de-asserted, it waits until TOE10G-IP busy flag is de-asserted to
‘0’.
2) Set the header value and header enable for packet filtering in UserRxMAC.
3) Set default value to FTP response parameter.

int input_param(void)

Parameters None

Return value 0: Valid input, -1: Invalid input

Description Receive network parameters from user, i.e., mode, window threshold, FPGA
MAC address, FPGA IP address, FPGA port number, Target IP address, and
Target port number. When the input is valid, the parameters are updated.
Otherwise, the value does not change. After receiving all parameters, the
current value of each parameter is displayed.

unsigned int read_conon(void)

Parameters None

Return value 0: Connection is OFF, 1: Connection is ON.

Description Read value from TOEIP_STS_INTREG register and return only bit2 value to
show connection status.

void show_param(void)

Parameters None

Return value None

Description Print the current value of the network parameters setting to TOE10G-IP such
as IP address, MAC address, and port number.

void wait_ethlink(void)

Parameters None

Return value None

Description Read EMAC_STS_INTREG[0] and wait until ethernet connection is linked up.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 40

3.3.3 Function for ftp operation

unsigned int cal_checksum(unsigned int byte_len, unsigned char *buf)

Parameters bytel_len: the number of bytes input for calculating checksum
buf: the packet to calculate checksum

Return value Checksum value

Description Calculate 16-bit checksum of the data in the buffer

unsigned int decode_fname(void)

Parameters None

Return value The value output from file name

Description Convert filename from received packet which is ASCII code to the value

int read_rxpacket(void)

Parameters None

Return value 0: Packet is received, -1: Disconnect command from the client is received

Description Wait until the new packet is received from UserRxMAC or the disconnect
command is received. When the new packet is received, the packet is copied
to Receive temp buffer for processing.

void send_list(void)

Parameters None

Return value None

Description Return file list with the information such as modified date and time for LIST
command as described in topic 3.2.1.

void send_resp(unsigned int flag, unsigned int ftp_response)

Parameters flag: TCP flag in the received packet
ftp_response: FTP response message

Return value None

Description Send FTP response by UserTxMAC

void set_tx_csum(void)

Parameters None

Return value None

Description Assign checksum to Tx header

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 41

void set_tx_header(unsigned int flag, unsigned int data_len)

Parameters flag: TCP Flag for transmitted packet
data_len: Total transmitted length in byte unit

Return value None

Description Set packet header of the transmitted packet including Ethernet header, IP
header, and TCP header

void take_ftp_resp(void)

Parameters None

Return value None

Description Operate FTP command in Table 3-1 and Table 3-2 by creating FTP response
and controlling data connection as described in topic 3.2.

dg_ftp10g_server_refdesign_en.doc

11-Aug-23 Page 42

4 Revision History

Revision Date Description

1.0 2-Apr-20 Initial version release

1.1 22-Jul-20 Update Memory map

1.2 16-Mar-22 - Add NVMeG3 IP support
- Rename TenGEMAC IP to 10G25GEMAC IP
- Rename UserReg to TOEReg
- Update register map and function list in firmware

