
dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 1

4-Ch RAID0 NVMe-IP for Gen5 reference design manual
Rev1.0 2-Oct-23

1 Introduction ... 2
2 Hardware overview ... 3

2.1 TestGen .. 5
2.2 NVMeRAID0x4IP .. 9

2.2.1 NVMe-IP for Gen5 .. 10

2.2.2 PCIe Hard IP (R-Tile Avalon-ST Intel Hard IP for PCIe) ... 10
2.2.3 Two-port RAM .. 10
2.2.4 FIFO ... 11
2.2.5 RAID0x4 ... 11

2.3 CPU and Peripherals .. 17
2.3.1 AsyncAvlReg .. 18
2.3.2 UserReg ... 20

3 CPU Firmware .. 23
3.1 Test firmware (nvmeraid0g5test.c) .. 23

3.1.1 Identify command ... 23
3.1.2 Write/Read command ... 24

3.1.3 SMART Command, .. 24
3.1.4 Flush Command ... 25

3.1.5 Secure Erase Command .. 25
3.1.6 Shutdown Command .. 25

3.2 Function list in Test firmware ... 26

4 Example Test Result ... 29
5 Revision History .. 30

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 2

1 Introduction

Figure 1-1 RAID0 by 4 SSDs data format

The RAID0 system utilizes multiple storage device to expand total storage capacity and enhance
write/read performance. Assuming the total number of devices connecting in the RAID0 system is
represented by N, the overall storage capacity of RAID0 becomes N times the capacity of a single
device. Similarly, the write and read performance of RAID0 is nearly N times that of a single
device.

Figure 1-1 illustrates the data format of RAID0. The data stream from the host side is divided into
stripe unit for transferring data with each SSD at a time. The stripe size refers to the amount of
data transferred with an SSD before switching to others. In this RAID0 reference design, the stripe
size is set to 4Kbytes.

For this demo, a system with four SSDs is employed. It is recommended to use the same SSD
model for all channels to ensure compatibility and achieve optimal performance. As a result, the
total capacity becomes four times that of a single SSD, while the write/read performance is nearly
four times that of a single SSD.

In this demo, FIFO buffer implemented by Block Memory is utilized, which has smaller size
compared to using DDR. Therefore, if the SSD suspends data transmission for an extended
duration during the Write process, it results in the buffer becoming full, necessitating a pause in
data transfer. The performance tested in the demo represents the average speed, rather than the
sustained rate. User have the flexibility to modify the RAID0 reference design by increasing the
numbers of SSD to attain improved performance and larger capacity. Furthermore, user can
integrate DDR as a data buffer in the system to support high-speed transfers at a sustained rate.

Before running the reference design, it is recommended to read NVMe-IP for Gen5 datasheet and
the standard demo which is a single-channel demo, via the following links.
https://dgway.com/products/IP/NVMe-IP/dg_nvme_datasheet_g5_intel/
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_g5_intel/

https://dgway.com/products/IP/NVMe-IP/dg_nvme_datasheet_g5_intel/
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_g5_intel/

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 3

2 Hardware overview

Figure 2-1 4-Channel RAID0 NVMe-IP for Gen5 hardware in refdesign

This test system consists of three hardware modules: TestGen, NVMeRAID0x4IP, and the CPU
system consisting of CPU and Avl2Reg.

The TestGen module connects to the user interface of NVMeRAID0x4IP, which is specifically
designed to be compatible with the NVMe-IP but quadrupling the data bus size. TestGen serves
as an example of user logic for generating test data stream of Write command and verifying test
data stream of Read command. The write and read data streams are stored at two FIFOs
(U2IPFIFO and IP2UFIFO). TestGen always writes or reads data when the FIFO is ready,
allowing for optimal transfer performance evaluation of the NVMeRAID0x4 system.

The NVMeRAID0x4IP module consists of RAID0x4, four NVMe-IPs, and a PCIe hard IP (R-Tile)
enabling direct access to four NVMe Gen5 SSDs without PCIe switch. The PCIe hard IP is
configured as 4x4-lane PCIe Gen5, capable of connecting up to 4 NVMe Gen5 SSDs. The CPU
inputs command requests and parameters for each command though Avl2Reg module. RAID0x4
manages the command requests of four NVMe-IPs and controls the data transfer for Write and
Read commands. The data interface of Custom and Identify commands is connected to RAMs,
accessible by the CPU.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 4

The CPU integrates a JTAG UART for communication with the user. The user can select the
command type, configure command parameters, and monitor test progress through the console.
The CPU firmware is designed to facilitate the execution of multiple test cases, ensuring
comprehensive verification of IP functionality.

Figure 2-1 illustrates three clock domains: CpuClk, UserClk, and PCIeClk. CpuClk is the clock
domain for the CPU and its peripherals, requiring a stable clock. It can be independent clock from
other hardware. UserClk is the main clock domain for the user logic (TestGen) and
NVMeRAID0x4IP. According to the NVMe-IP for Gen5 datasheet, the frequency of UserClk must
be equal to or greater than half of the PCIeClk frequency. In the reference design, UserClk
frequency is set to 280 MHz. PCIeClk is generated by PCIe hard IP, synchronized with the 256-bit
Avalon stream. The frequency of PCIeClk is 500 MHz for 4-lane PCIe Gen5. Using a lower
frequency of PCIeClk is possible, but it will limit the maximum bandwidth on the user interface of
PCIe hard IP to be lower than PCIe Gen5 performance. Further hardware details are described
below.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 5

2.1 TestGen

Figure 2-2 TestGen interface

The TestGen module manages the data interface of NVMeRAID0x4IP, enabling data
transfer for both Write and Read commands. In case of a Write command, TestGen sends
2048-bit test data to NVMeRAID0x4IP via U2IPFIFO. In contrast, for a Read command, the
test data is received from IP2UFIFO for comparison with the expected value, ensuring data
accuracy. Data bandwidth of TestGen is configured to match that of NVMeRAID0x4IP by
operating at the same clock frequency and data bus size.

The control logic within TestGen guarantees that the Write or Read enable signal is always
asserted to 1b when the FIFO is ready to write or read data, respectively. This ensures that
both U2IPFIFO and IP2UFIFO are always ready to transfer data with NVMeRAID0x4IP
without delay, maximizing performance when writing and reading data with four SSDs
through NVMeRAID0x4IP.

To provide a flexible test environment, user can adjust test parameters via the console such
as total transfer size, transfer direction, and test pattern selector. These test parameters are
stored in the Register block. The detailed hardware logic of TestGen is illustrated in Figure
2-3.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 6

Figure 2-3 TestGen hardware

Figure 2-3 provides an overview of the TestGen module. The right side of the figure shows
the utilization of flow control signals within the FIFO, including WrFfAFull and RdFfEmpty
signals. During a write operation, if the FIFO almost reaches its capacity (indicated by
WrFfAFull=1b), WrFfWrEn is set to 0b to pause data transmission to the FIFO. Similarly,
during a read operation, if there is data available in the FIFO (denoted by RdFfEmpty=0b),
the logic retrieves data from the FIFO for comparison by setting RdFfRdEn to 1b.

The left side of Figure 2-3 shows the logic designed to count the transfer size. Once the total
data count (rDataCnt) matches the user-defined end size (rEndSize), the Write enable or
Read enable of the FIFO is set to 0b to halt data transfer. The lower side of Figure 2-3
provides the details to generate test data for writing to the FIFO or verifying data from the
FIFO. There are five available test patterns: all-zero, all-one, 32-bit incremental data, 32-bit
decremental data, and LFSR, selected by Pattern Selector. In case of all-zero or all-one
pattern, each data bit is set to zero or one, respectively. The remaining patterns involve
splitting the data into two parts to create unique test data within each 4Kbytes data block, as
shown in Figure 2-4.

Figure 2-4 Test pattern format in each 4Kbytes data for Increment/Decrement/LFSR pattern

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 7

Within every 4Kbytes block, the first two double words (Dword#0 and Dword#1) form a
64-bit header, while the remaining words (Dword#2 – Dword#1023) are the actual test data.
The header is generated using the address counter block, which employs a 4Kbyte address
(rTrnAddr) to create a 512byte address (Ad512B). The initial value of the address counter is
configured by the user (TrnAddr). Its value is incremented to the next 4Kbyte address value
upon the completion of each 4Kbytes data transfer. The value of the remaining Dwords
(DW#2 – DW#1023) depends on the pattern selector, which may be 32-bit incremental data,
32-bit decremental data, or LFSR. The 32-bit incremental data is generated using Data
counter, while the decremental data can be obtained by connecting NOT logic to
incremental data. The LFSR pattern is generated using the LFSR counter with the
polynomial equation x^31 + x^21 + x + 1.

By employing a 4-step lookahead logic design, the system can generate four consecutive
32-bit LFSR data sets, resulting in a total of 128 bits of test data, within a single clock cycle.
However, the RAID0 module requires 2048 bits of test data as input for each clock cycle,
necessitating the incorporation of sixteen instances of the logic responsible for generating
128-bit test data. Each of these sixteen sets is individually configured with a unique initial
value. These distinct sixteen initial values are derived from a combination of two signals: the
32 bits of 512bytes unit address (LBAAd) and its inverted counterpart (LBAAdB). The 32-bit
initial values for these sixteen sets (PattD0, PattD1, …, PattD31) are listed in Table 2-1.

Table 2-1 Initial value of 16 data sets when using LFSR pattern

Sets of Data Initial value Sets of Data Initial value

PattD0 [31:0] LBAAd [31:0] PattD8 [31:0] LBAAdB [31:0]

PattD1 [31:4] LBAAd [31:4] PattD9 [31:4] LBAAdB [31:4]

PattD1 [3:0] LBAAdB [3:0] PattD9 [3:0] LBAAd [3:0]

PattD2 [31:8] LBAAd [31:8] PattD10 [31:8] LBAAdB [31:8]

PattD2 [7:0] LBAAdB [7:0] PattD10 [7:0] LBAAd [7:0]

PattD3 [31:12] LBAAd [31:12] PattD11 [31:12] LBAAdB [31:12]

PattD3 [11:0] LBAAdB [11:0] PattD11 [11:0] LBAAd [11:0]

PattD4 [31:16] LBAAd [31:16] PattD12 [31:16] LBAAdB [31:16]

PattD4 [15:0] LBAAdB [15:0] PattD12 [15:0] LBAAd [15:0]

PattD5 [31:20] LBAAd [31:20] PattD13 [31:20] LBAAdB [31:20]

PattD5 [19:0] LBAAdB [19:0] PattD13 [19:0] LBAAd [19:0]

PattD6 [31:24] LBAAd [31:24] PattD14 [31:24] LBAAdB [31:24]

PattD6 [23:0] LBAAdB [23:0] PattD14 [23:0] LBAAd [23:0]

PattD7 [31:28] LBAAd [31:28] PattD15 [31:28] LBAAdB [31:28]

PattD7 [27:0] LBAAdB [27:0] PattD15 [27:0] LBAAd [27:0]

As illustrated in Figure 2-5, each 32-bit initial value serves as the basis for generating the
next three data using a look-ahead technique within a single clock cycle, as represented by
the same color. This process facilitates the creation of the required 2048-bit test data, which
can be either written to the FIFO as write data or compared with the data read from the FIFO
to perform verification. In cases where the data verification process encounters an error, the
Fail flag is set to 1b. For a more comprehensive understanding of the data generation
process for the FIFO, it is recommended referring to Figure 2-6, which provides detailed
step-by-step instructions.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 8

Figure 2-5 2048 bits of LFSR data generating in a single clock cycle

Figure 2-6 Timing diagram of Write operation in TestGen

1) The write operation is initiated by setting WrPattStart signal to 1b for one clock cycle,

which is followed by the assertion of rWrTrans to enable the control logic for generating
write enable to FIFO.

2) If two conditions are met (rWrTrans is asserted to 1b during the write operation and the
FIFO is not full, indicated by WrFfAFull=0b), the write enable (rWrFfWrEn) to FIFO is
asserted to 1b.

3) The write enable is fed back to the counter to count the total amount of data in the write
operation.

4) If FIFO is almost full (WrFfAFull=1b), the write process is paused by de-asserting
rWrFfWrEn to 0b.

5) The write operation is finished when the total data count (rDataCnt) is equal to the set
value (rEndSize). At this point, both rWrTrans and rWrFfWrEn are de-asserted to 0b.

Unlike the write enable, the read enable signal is not stopped by total data count and not
started by start flag. For read transfer, the read enable of FIFO is controlled by the empty
flag of FIFO. When the read enable is asserted to 1b, the data counter and the address
counter are increased for counting the total amount of data and generating the header of
expected value, respectively.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 9

2.2 NVMeRAID0x4IP

Figure 2-7 NVMeRAID0x4IP hardware

In the reference design, the NVMeRAID0x4IP’s user interface consists of a control interface
and a data interface. The control interface receives commands and parameters from either
the Custom command interface or dgIF typeS, depending on the type of command. For
instance, Custom command interface is used when operating SMART command, Flush
command, or Secure Erase command.

On the other hand, the data interface of NVMeRAID0x4IP has four different interfaces,
including Custom command RAM interface, Identify interface, FIFO input interface (dgIF
typeS), and FIFO output interface (dgIF typeS). While the Custom command RAM interface
is a bi-directional interface, the other interfaces are one directional interface. In the
reference design, the Custom command RAM interface is used for one-directional data
transfer when NVMeRAID0x4IP sends SMART data to Avl2Reg.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 10

2.2.1 NVMe-IP for Gen5

The NVMe-IP module implements the NVMe protocol on the host side, enabling direct
access to an NVMe SSD without the need for a PCIe switch connection. It supports seven
commands, i.e., Write, Read, Identify, Shutdown, SMART, Flush, and Secure Erase. The
NVMe-IP module can be connected to the PCIe Hard IP (R-Tile) within the Intel FPGA
device directly. For a more comprehensive understanding of the NVMe-IP module, you can
refer to the detailed information provided in the datasheet, available at following link.
https://dgway.com/products/IP/NVMe-IP/dg_nvme_datasheet_g5_intel/

2.2.2 PCIe Hard IP (R-Tile Avalon-ST Intel Hard IP for PCIe)

This block represents hard IP integrated into Intel FPGA devices and is responsible for
implementing the Physical, Data Link, and Transaction Layers of the PCIe protocol. Further
details about this component can be found in the official Intel FPA documentation,
accessible at following link.

R-Tile Avalon-ST Intel FPGA for PCIe
https://www.intel.com/content/www/us/en/docs/programmable/683501/

2.2.3 Two-port RAM

Two of two-Port RAMs, CtmRAM and IdenRAM, are utilized to store data returned from the
Identify and SMART commands, respectively. IdenRAM is simple dual-port RAM with one
read port and one write port, featuring an 8 Kbytes data capacity to store the 8 Kbyte data
output from the Identify command.

The data bus sizes for NVMe-IP and Avl2Reg differ. NVMe-IP utilizes a 512-bit bus size,
whereas Avl2Reg employs a 32-bit bus size. Consequently, IdenRAM operates as an
asymmetric RAM, with different bus sizes for its Write and Read interfaces. Additionally,
NVMe-IP incorporates a double-word enable feature, enabling it to write only 32-bit data in
specific scenarios.

The RAM settings in the IP catalog of Quartus facilitate write byte enable, resulting in each
bit of the double-word enable being expanded to a 4-bit write byte enable, as shown in
Figure 2-8.

Figure 2-8 Byte enable conversion logic

The 16 bits of the WrDWEn are used to drive the byte write enable of IdenRAM as follows:
bits[0], [1], …, [15] of WrDWEn are fed to bits[3:0], [7:4], …, [63:60] of IdenRAM byte write
enable.

https://dgway.com/products/IP/NVMe-IP/dg_nvme_datasheet_g5_intel/
https://www.intel.com/content/www/us/en/docs/programmable/683501/

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 11

On the other hand, CtmRAM is implemented as a two-Port RAM with two read ports and two
write ports, and with byte write enable. The connection from the double-word enable of
NVMe-IP to byte enable of CtmRAM is similar to that of IdenRAM. The two-Port RAM is
utilized to support additional features when the customized Custom command requires data
input. For supporting SMART command, a simple dual-port RAM is sufficient, even though
the data size returned from the SMART command is 512 bytes. However, CtmRAM is
implemented with an 8Kbyte RAM for the customized Custom command.

2.2.4 FIFO

Within NVMeRAID0x4IP, the data interface of each NVMe-IP is connected to two FIFOs:
TxFF and RxFF. These FIFOs are applied for two purposes: buffering the data and
converting the data bus size between the RAID0x4 interface, which has a size of 2048 bits,
and the NVMe-IP interface, which has a size of 512 bits. Both TxFF and RxFF are
asymmetric FIFOs with a capacity of 128 Kbytes.

2.2.5 RAID0x4

Figure 2-9 RAID0x4 operation

RAID0x4 includes a state machine responsible for managing the control interface and a data
switch for managing the data interface. When a new command request is received from
Avl2Reg, the state machine decodes the command type and determines the corresponding
parameters of each NVMe-IP. For instance, when executing the Write and Read commands,
the state machine determines the address and transfer length required of each NVMe-IP.
Then, the state machine generates a command request to the NVMe-IP.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 12

Figure 2-9 provides a comprehensive overview of the data flow required to operate the
RAID0x4 function. The input data stream from the user (TestGen) is partitioned into
segments of the stripe size (measured in 4Kbyte units). RAID0 determines the first active
NVMe-IP and transfers the first 4Kbyte data to it.

For instance, in the scenario depicted in Figure 2-9, a Write command is executed, and the
first active NVMe-IP is determined to be Ch#0. Consequently, Stripe#0 is stored in SSD#0
through TxFF#0 and NVMe-IP#0. Subsequently, the active channel switches to the next one
(Ch#1) where the subsequent stripe (Stripe#1) is stored in SSD#1 through TxFF#1 and
NVMe-IP#1. This process continues, with the active channel transitioning in a cyclical
sequence: Ch#0 -> Ch#1 -> Ch#2 -> Ch#3 -> Ch#0, with each switch occurring after every
4Kbyte data transfer, until all the data has been successfully transferred.

To determine the first active channel, it is based on the LSB of the start address, measured
in 4Kbyte units. Specifically, when the LSB is 00b, the first active channel is Ch#0; when it is
01b, it corresponds to Ch#1. Similarly, a LSB of 10b designates Ch#2 as the first active
channel, and 11b designates Ch#3.

The data switch operation involves the use of pipeline registers, which introduce an
overhead time when transitioning the active channel during each 4Kbyte data transfer. In the
reference design, this overhead time corresponds to 1 clock cycle out of every 16 clock
cycles, making up 6.25% of the overall operation time, as 16 clock cycles are required for a
4Kbyte data transfer.

To address this overhead, the clock frequency for RAID0x4 must be set 6.25% higher than
the clock frequency required for the NVMe module. For instance, to operate with PCIe Gen5
at 250 MHz, the clock frequency for RAID0x4 would need to be adjusted to 265.625 MHz
(106.25% of 250 MHz). In the reference design, a clock frequency of 280 MHz is employed
to optimize Write/Read performance.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 13

The user interface of RAID0x4 is designed to be compatible with the user interface of
NVMe-IP, utilizing dgIF typeS. Table 2-2 shows the detailed information of the user interface.

Table 2-2 Signal description of RAID0x4 (only User interface)

Signal Dir Description

Control I/F of dgIF typeS

RstB In Synchronous reset signal. Active low. De-asserted to 1b when the Clk signal is stable

Clk In User clock source to both RAID0x4 and NVMe-IP. The frequency of this clock must be equal

to or greater than 265.625 MHz for PCIe Gen5 clock frequency of 250 MHz.

UserCmd[2:0] In User Command. Valid when UserReq=1b. The possible values are

000b: Identify, 001b: Shutdown, 010b: Write SSDs, 011b: Read SSDs,

100b: SMART/Secure Erase, 110b: Flush, 101b/111b: Reserved

UserAddr[47:0] In Start address to write/read from the RAID0x4 is specified in 512byte units. However, since

RAID0x4 is designed with a 4KB stripe size, the bits[2:0] are ignored and automatically set

to 000b internally. It is valid when UserReq=1b.

UserLen[47:0] In The Total transfer size to write/read from the RAID0x4 is specified in 512byte units.

However, since RAID0x4 is designed with a 4KB stripe size, the bits[2:0] are ignored and

automatically set to 000b internally. It is valid from 8 to (LBASize-UserAddr).

UserReq In Asserts to 1b to send a new command request and de-asserts to 0b after the RAID0x4

initiates the operation by asserting UserBusy to 1b. This signal can only be asserted when

the RAID0x4 is Idle (UserBusy=0b). Command parameter (UserCmd, UserAddr, UserLen,

and CtmSubmDW0-DW15) must be valid and stable during UserReq being set to 1b.

UserAddr and UserLen are inputs for the Write/Read command while CtmSubmDW0-DW15

are inputs for SMART/Secure Erase/Flush command.

UserBusy Out Asserted to 1b when the RAID0x4 is busy.

A new request must not be sent (UserReq to 1b) while the RAID0x4 is busy.

LBASize[47:0] Out The total capacity returned by the RAID0x4 in 512-byte units. Default value is 0, and it

becomes valid upon the completion of the Identify command. This value is set to be four

times the LBASize output from NVMe-IP#0.

UserError Out Error flag. Asserted to 1b when the UserErrorType is not equal to 0.

The flag is de-asserted to 0b by asserting RstB to 0b.

UserErrorType[0-3][31:0] Out Error status, directly mapped from UserErrorType in each NVMe-IP.

[0]-IP#0, [1]-IP#1, [2]-IP#2, and [3]-IP#3.

Data I/F of dgIF typeS

UserFifoWrCnt[15:0] In Write data counter of the Receive FIFO to monitor the FIFO’s full status. When the FIFO is

full, it pauses the transmission of returned data from the Read command. In cases where

the size of the FIFO data count is less than 16 bits, the remaining upper bits must be filled

with the value 1b.

UserFifoWrEn Out Asserted to 1b to write data to the Receive FIFO while executing the Read command.

UserFifoWrData[2047:0] Out Write data bus of the Receive FIFO. Valid when UserFifoWrEn=1b.

UserFifoRdCnt[15:0] In Read data counter of the Transmit FIFO to indicate the data size stored in the FIFO. When

the FIFO is empty, data transmission is paused. If the FIFO data count is less than 16 bits,

the remaining upper bits are padded with 0b.

UserFifoEmpty In Unused for this IP.

UserFifoRdEn Out Asserted to 1b to read data from the Transmit FIFO while executing the Write command.

UserFifoRdData[2047:0] In Read data returned from the Transmit FIFO.

Valid in the next clock after UserFifoRdEn is asserted to 1b.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 14

Timing diagram of RAID0x4 module when running Write command is shown as follows.

Figure 2-10 RAID0x4 timing diagram during executing Write command

When initiating a Write command to RAID0x4, data is transmitted from UserFIFO
(U2IPFIFO) to TxFIFO[0]-[3]. Only one TxFIFO operates at a time to transfer 4Kbyte data.
Following the RAID0 behavior, the active channel switches to the next channel upon
completing the 4Kbyte data transfer. The procedure of executing the Write command is as
follows.

1) The key state of the RAID0x4 module is stWaitData. Firstly, it checks the remaining

transfer size. If the remaining transfer size is 0, the operation is finished. Otherwise, it
monitors UserFifoRdCnt and TxFfWrCnt to ensure that at least 4Kbyte data is stored in
U2IPFIFO and TxFIFO has at least 8Kbyte free space. If the FIFOs are ready, the write
operation begins.
Note:
i) TxFfWrCnt of four channels are fed to multiplexer to select the active channel. This

introduces a one-clock latency compared to UserFifoRdCnt.
ii) rNxtChSel controls TxFfWrCnt and indicates the next active channel for running in

stTransfer. After starting the first transfer loop, rNxtChSel is incremented to monitor the
free space in the FIFO of the next active channel.

2) The state machine enters stTransfer to start forwarding write data from user logic to
TxFIFO. This state remains active for 16 clock cycles.

3) During the stTransfer state, UserFifoRdEn is asserted to read 4Kbyte data from
UserFIFO.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 15

4) The read data (UserFifoRdData) becomes valid in the next cycle after UserFifoRdEn is

asserted.
5) The data is forwarded to the TxFIFO of the active channel, selected by rChSel2, which is

two-clock latency signal of rChSel0.
Note: rChSel0 indicates the active channel for data transfer in the stTransfer state.

6) In stTransfer state, rNxtChSel is computed to determine the next active channel based on
rChSel0. This result is then employed to read the TxFfWrCnt value from the selected
channel in the stWaitData state.

7) After finishing 4Kbyte data transfer, the active channel for data transfer (rChSel0) is
incremented.

8) To minimize the overhead time for initiating the next transfer, UserFifoRdCnt is monitored
in advance during the stTransfer state, before the current data transfer is completed. If
the read counter indicates at least two sets of 4Kbyte stored in the FIFO, the new transfer
can commence in the next cycle by transitioning back to the stWaitData state and
returning to step 1. Otherwise, the next state is stWaitFifo, as further described in step 9.

9) stWaitFIFO is designed to wait until the current data transfer is completed and
UserFifoRdCnt becomes valid for monitoring. After waiting for three clock cycles, the
state enters stWaitData to continue the next transfer or complete the operation.

Figure 2-11 RAID0x4 timing diagram in Read command

When initiating a Read command for RAID0x4, data is forwarded from RxFIFO[0]-[3] to
IP2UFIFO. Similar to the Write command, only one RxFIFO is active at a time to transfer
4Kbyte data. Following the RAID0 behavior, the active channel switches to the next channel
after completing the transfer of 4Kbyte data. The operational sequence outlines as follows.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 16

1) The state “stWaitData” is responsible for checking the remaining transfer length and two

FIFO status signals: RxFfRdCnt and UserFifoWrCnt. It needs to ensure that at least
4Kbyte data is stored in RxFIFO and IP2UFIFO has at least 8Kbyte free space. If the
FIFOs are ready and the remaining transfer size is not 0, the read operation begins.
Note:
i) RxFfRdCnt of four channels are fed to multiplexer to select the active channel. This

introduces a one-clock latency compared to UserFifoWrCnt.
ii) rNxtChSel controls RxFfRdCnt and indicates the next active channel for running in

stTransfer.

2) The state machine enters stTransfer to start forwarding the read data from RxFIFO to
user logic.

3) RxFfRdEn of the active channel, selected by rChSel0, is asserted to 1b for 16 clock
cycles to read 4Kbyte data from RxFIFO.

4) Following the standard FIFO behavior, the Read data (RxFfRdData) becomes valid in the
next cycle after asserting the Read enable (RxFfRdEn).

5) The data of the active channel, selected by rChSel2, is forwarded to the UserFIFO.
Note: rChSel2 is ChSel0 signal with a two-clock latency.

6) In stTransfer state, rNxtChSel computes the next active channel based on rChSel0. This
calucated value guides the selection of the active channel for reading RxFfRdCnt in
advance during in stWaitData state.

7) After finishing 4Kbyte data transfer, the active channel for data transfer (rChSel0) is
incremented.

8) If there is remaining transfer length, the state returns to stTransfer to start a new data
transfer, similar to step 2. Otherwise, the next state is stWaitEnd, as described in step 9.

9) If all data has been completely transferred, the state enters stWaitEnd to wait until all
devices finish their operation by de-asserting the Busy signal to 0b.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 17

2.3 CPU and Peripherals

The CPU system uses a 32-bit Avalon-MM bus as the interface to access peripherals such
as the Timer and JTAG UART. The system also integrates an additional peripheral to access
NVMeRAID0x4IP test logic by assigning a unique base address and address range. To
support CPU read and write operations, the hardware logic must comply with the
Avalon-MM bus standard. Avl2Reg module, as shown in Figure 2-12, is designed to connect
the CPU system via the Avalon-MM interface, in compliance with the standard.

Figure 2-12 CPU and peripherals hardware

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg converts Avalon-MM signals
into a simple Register interface with a 32-bit data bus size, similar to the Avalon-MM data
bus size. It also includes asynchronous logic to handle clock domain crossing between the
CpuClk and UserClk domains.

UserReg includes the register file of the parameters and the status signals of other modules
in the test system, including the CtmRAMs, IdenRAMs, NVMeRAID0x4IP, and TestGen.
More details of AsyncAvlReg and UserReg are explained below.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 18

2.3.1 AsyncAvlReg

Figure 2-13 AsyncAxiReg Interface

The Avalon-MM bus interface signal can be grouped into three categories: Write channel
(blue), Read channel (red), and Shared control channel (black). More details about the
Avalon-MM interface specification can be found in the following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_a
valon_spec.pdf

According to Avalon-MM specification, only one command (write or read) can be executed
at a time. AsyncAvlReg’s logic is divided into three groups: Write control logic, Read control
logic, and Flow control logic. The flow control logic asserts SAvlWaitReq to hold the next
request from the Avalon-MM interface if the current request has not finished. Write control
and Write data I/F of the Avalon-MM bus are latched and transferred to the Write register
interface with clock domain crossing registers. Similarly, Read control I/F are latched and
transferred to be Read register interface. Afterward, the data returned from Register Read
I/F is transferred to Avalon-MM bus with using clock domain crossing registers. The Address
I/F of Avalon-MM is also latched and transferred to the Address register interface.

The Register interface is compatible with the single-port RAM interface for write transaction.
However, the read transaction of the Register interface is slightly modified from RAM
interface by adding RdReq and RdValid signals to control the read latency time. Since the
address of the Register interface is shared for write and read transactions, the user cannot
write and read the register simultaneously. The timing diagram of the Register interface is
shown in Figure 2-14.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 19

Figure 2-14 Register interface timing diagram

1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units),
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte
enable consists of four bits that indicate the validity of the byte data. For example, bit[0],
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid,
respectively.

2) To read register, AsyncAvlReg sets the RegRdReq signal to 1b with a valid value for
RegAddr. The 32-bit data is returned after the read request is received. The slave detects
the RegRdReq signal being set to start the read transaction. In the read operation, the
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address
can then be used to select the returned data using multiple layers of multiplexers.

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b.
After that, AsyncAvlReg forwards the read value to the SAvlRead interface.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 20

2.3.2 UserReg

Figure 2-15 UserReg Interface

The UserReg module consists of an Address decoder, a Register File, and a Register Mux.
The Address decoder decodes the address requested by AsyncAvlReg and selects the
active register for either write or read transactions. The assigned address range in UserReg
is divided into six areas, as shown in Figure 2-15.
1) 0x00000 – 0x000FF: mapped to set the command with the parameters of TestGen and

NVMeRAID0x4IP. This area is write-access only.
2) 0x00400 – 0x004FF: mapped to set the parameters for the Custom command interface of

NVMeRAID0x4IP. This area is write-access only.
3) 0x00100 – 0x002FF: mapped to read the status signals of NVMeRAID0x4IP. This area is

read-access only.
4) 0x00600 – 0x006FF: mapped to read the status of Custom command interface

(NVMeRAID0x4IP). This area is read-access only.
5) 0x01000 – 0x017FF: mapped to read the status signals of TestGen. This area is

read-access only.
6) 0x10000 – 0x17FFF: mapped to read data from IdenRAM. This area is read-access only.
7) 0x18000 – 0x1FFFF: mapped to write or read data using Custom command RAM

interface. This area allows both write-access and read access. However, the demo shows
only read-access by running the SMART command.

The Address decoder decodes the upper bits of RegAddr to select the active hardware
(NVMeRAID0x4IP, TestGen, IdenRAM, or CtmRAM). The Register File within UserReg has
a 32-bit bus size, so the write byte enable (RegWrByteEn) is not used in the test system, and
the CPU uses a 32-bit pointer to set the hardware register.

To read the register, multi-level multiplexers (mux) select the data to return to the CPU by
using the address. The lower bits of RegAddr are fed to the submodule to select the active
data within each submodule. While the upper bits are used in UserReg to select the
submodule to read the returned data. The latency time of read data equals three clock
cycles, so RegRdValid is created by RegRdReq, with three D Flip-flops asserted. More
details of the address mapping within the UserReg module are shown in Table 2-3.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 21

Table 2-3 Register Map

Address Register Name Description

Wr/Rd (Label in “nvmeraid0g5test.c”)

0x00000 – 0x000FF: Control signals of NVMeRAID0x4IP and TestGen (Write access only)

BA+0x00000 User Address (Low) Reg [31:0]: Input to be bit[31:0] of start address in 512-byte unit

(UserAddr[31:0] of dgIF typeS for NVMeRAID0x4IP) (USRADRL_INTREG)

BA+0x00004 User Address (High) Reg [15:0]: Input to be bit[47:32] of start address in 512-byte unit

(UserAddr[47:32] of dgIF typeS for NVMeRAID0x4IP) (USRADRH_INTREG)

BA+0x00008 User Length (Low) Reg [31:0]: Input to be bit[31:0] of transfer length in 512-byte unit

(UserLen[31:0] of dgIF typeS for NVMeRAID0x4IP) (USRLENL_INTREG)

BA+0x0000C User Length (High) Reg [15:0]: Input to be bit[47:32] of transfer length in 512-byte unit

(UserLen[47:32] of dgIF typeS for NVMeRAID0x4IP) (USRLENH_INTREG)

BA+0x00010 User Command Reg [2:0]: Input to be user command

(UserCmd of dgIF typeS for NVMeRAID0x4IP)

000b: Identify, 001b: Shutdown, 010b: Write RAID, 011b: Read RAID,

100b: SMART/Secure Erase, 110b: Flush, 101b/111b: Reserved.

When this register is written, the command request is sent to

NVMeRAID0x4IP to start the operation.

(USRCMD_INTREG)

BA+0x00014 Test Pattern Reg [2:0]: Select test pattern

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR (PATTSEL_INTREG)

BA+0x00020 NVMe Timeout Reg [31:0]: Input to be timeout value of all NVMe-IPs

(TimeOutSet[31:0] of NVMe-IP) (NVMTIMEOUT_INTREG)

0x00100 – 0x002FF: Status signals of NVMeRAID0x4IP (Read access only)

BA+0x0100 User Status Reg [0]: UserBusy of dgIF typeS for NVMeRAID0x4IP (0b: Idle, 1b: Busy)

[1]: UserError of dgIF typeS for NVMeRAID0x4IP

(0b: Normal, 1b: Error)

[2]: Data verification fail in TestGen (0b: Normal, 1b: Error)

(USRSTS_INTREG)

BA+0x0104 Total device size (Low) Reg [31:0]: Mapped to LBASize[31:0] of NVMeRAID0x4IP

(LBASIZEL_INTREG)

BA+0x0108 Total device size (High) Reg [15:0]: Mapped to LBASize[47:32] of NVMeRAID0x4IP

(LBASIZEH_INTREG)

(BA+0x0120)-

(BA+0x012F)

User Error Type CH#0-#3 Reg [31:0]: Mapped to UserErrorType of NVMe-IP

0x0120: NVMe-IP#0, 0x0124: NVMe-IP#1,

0x0128: NVMe-IP#2, 0x012C: NVMe-IP#3

(USRERRTYPECH0-3_INTREG)

(BA+0x0140)-

(BA+0x014F)

PCIe Status CH#0-#3 Reg [0]: PCIe linkup status from PCIe hard IP (0b: No linkup, 1b: linkup)

[3:2]: Two lower bits to show PCIe link speed.

Note: Two upper bits are [17:16].

(0000b: Not linkup, 0001b: PCIe Gen1, 0010b: PCIe Gen2,

0011b: PCIe Gen3, 0111b: PCIe Gen4, 1111b: PCIe Gen5)

[6:4]: PCIe link width status from PCIe hard IP

(001b: 1-lane, 010b: 2-lane, 100b: 4-lane)
[13:8]: Current LTSSM State of PCIe hard IP. Please see more details

of LTSSM value in Avalon-ST PCIe Hard IP datasheet

[17:16]: Two upper bit to show PCIe link speed.

Note: Two lower bits are [3:2].

0x0140: NVMe-IP#0, 0x0144: NVMe-IP#1,

0x0148: NVMe-IP#2, 0x014C: NVMe-IP#3

(PCIESTSCH0-3_INTREG)

(BA+0x0160)-

(BA+0x016F)

Completion Status CH#0-#3 Reg [15:0]: Status from Admin completion

(AdmCompStatus[15:0] of NVMe-IP)

[31:16]: Status from I/O completion

(IOCompStatus[15:0] of NVMe-IP)

0x0160: NVMe-IP#0, 0x0164: NVMe-IP#1,

0x0168: NVMe-IP#2, 0x016C: NVMe-IP#3

(COMPSTSCH0-3_INTREG)

(BA+0x0180)-

(BA+0x018F)

NVMe CAP CH#0-#3 Reg [31:0]: Mapped to NVMeCAPReg[31:0] of NVMe-IP

0x0180: NVMe-IP#0, 0x0184: NVMe-IP#1,

0x0188: NVMe-IP#2, 0x018C: NVMe-IP#3

(NVMCAPCH0-3_INTREG)

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 22

Address Register Name Description

Wr/Rd (Label in “nvmeraid0g5test.c”)

0x00100 – 0x002FF: Status signals of NVMeRAID0x4IP (Read access only)

(BA+0x00200)-

(BA+0x0020F)

NVMe IP Test pin CH#0 Reg Mapped to TestPin[127:0] of NVMe-IP #0

0x0200: Bit[31:0], 0x204: Bit[63:32],

0x0208: Bit[95:64], 0x20C: Bit[127:96]

(NVMTESTPIN0-3CH0_INTREG)

(BA+0x00210)-

(BA+0x0023F)

NVMe IP Test pin CH#1–#3 Reg 0x0210 – 0x021F: TestPin[127:0] of NVMe-IP#1

0x0220 – 0x022F: TestPin[127:0] of NVMe-IP#2

0x0230 – 0x023F: TestPin[127:0] of NVMe-IP#3

0x00400 – 0x005FF: Custom command of NVMeRAID0x4IP

(BA+0x00400)-

(BA+0x004FF)

Custom Submission Queue

CH#0–#3 Reg

[31:0]: Submission queue entry of SMART, Flush, or Secure Erase

command. Input to be CtmSubmDW0-DW15 of NVMe-IP#0-#3.

0x400: DW0, 0x404: DW1, …, 0x43C: DW15 of NVMe-IP#0

0x440: DW0, 0x444: DW1, …, 0x47C: DW15 of NVMe-IP#1

0x480: DW0, 0x484: DW1, …, 0x4BC: DW15 of NVMe-IP#2

0x4C0: DW0, 0x4C4: DW1, …, 0x4FC: DW15 of NVMe-IP#3

Wr (CTMSUBMQ0-3_STRUCT)

(BA+0x00600)-

(BA+0x0063F)

Custom Completion Queue

CH#0–#3 Reg

[31:0]: CtmCompDW0-DW3 output from NVMe-IP#0-#1

successively.

0x600: DW0, 0x604: DW1, …, 0x60C: DW3 of NVMe-IP#0

0x610: DW0, 0x614: DW1, …, 0x61C: DW3 of NVMe-IP#1

0x620: DW0, 0x624: DW1, …, 0x62C: DW3 of NVMe-IP#2

0x630: DW0, 0x634: DW1, …, 0x63C: DW3 of NVMe-IP#3

Rd (CTMCOMPQ0-3_STRUCT)

BA+0x00800 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of NVMe-IP

Rd (IPVERSION_INTREG)

0x01000 – 0x017FF: Status signals of TestGen (Read access only)

BA+0x01000 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure when executing a

Read command (RDFAILNOL_INTREG)

BA+0x01004 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure when executing

a Read command (RDFAILNOH_INTREG)

BA+0x01008 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module

(CURTESTSIZEL_INTREG)

BA+0x0100C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size in TestGen module

(CURTESTSIZEH_INTREG)

BA+0x01200 Expected value Word0 Reg 2048-bit of the expected data at the 1st failure data in Read command

0x1200: Bit[31:0], 0x1204: Bit[63:32], …, 0x12FC: Bit[2047:2016] (EXPPATW0_INTREG)

(BA+0x01204)-

(BA+0x012FC)

Expected value Word1-63 Reg

BA+0x01400

Read value Word0 Reg 2048-bit of the read data at the 1st failure data in Read command

0x1400: Bit[31:0], 0x1404: Bit[63:32], …, 0x14FC: Bit[2047:2016] (RDPATW0_INTREG)

(BA+0x01404)-

(BA+0x014FC)

Read value Word1-63 Reg

0x10000 – 0x1FFFF: Identify RAM and Custom RAM

(BA+0x10000) –

(BA+0x17FFF)

Identify Controller Data CH#0

Identify Namespace Data CH#0

0x10000-0x10FFF: 4Kbyte Identify controller data of NVMe-IP#0

0x11000-0x11FFF: 4Kbyte Identify namespace data of NVMe-IP#0

 Rd IDENCTRL/NAME0_CHARREG

(BA+0x12000) –

(BA+0x17FFF)

Identify Controller and Namespace

Data CH#1-3

0x12000-0x13FFF: NVMe-IP#1, 0x14000-0x15FFF: NVMe-IP#2,

0x16000-0x17FFF: NVMe-IP#3

(BA+0x18000) –

(BA+0x1FFFF)

Custom command RAM CH#0-#3

8K byte CtmRAM interface of NVMe-IP#0-#3 for storing 512-byte

data output from SMART command.

0x18000-0x19FFF: NVMe-IP#0, 0x1A000-0x1BFFF: NVMe-IP#1,

0x1C000-0x1DFFF: NVMe-IP#2, 0x1E000-0x1FFFF: NVMe-IP#3

Wr/Rd (CTMRAM0-3_CHARREG)

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 23

3 CPU Firmware

3.1 Test firmware (nvmeraid0g5test.c)

The CPU follows these steps upon system startup to complete the initialization process.
1) Initializes JTAG UART and Timer parameters.
2) Waits until the PCIe connection becomes active (PCIESTSCH0-3_INTREG[0]= 1b).
3) Waits until NVMeRAID0x4IP completes its own initialization process

(USRSTS_INTREG[0]=0b). The error message is displayed and the process stops when
some errors are found.

4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) of each
channel by reading PCIESTSCH0-3_INTREG[17:2].

5) CPU displays the main menu. There are seven menus for running seven commands of
RAID0 module, i.e., Identify, Write, Read, SMART, Flush, Secure Erase, and Shutdown.

More details of the operation flow in each command are described as follows.

3.1.1 Identify command

The sequence for the firmware when the Identify command is selected by user is as follows.
1) Set USRCMD_INTREG[2:0]=000b to send the Identify command request to

NVMeRAID0x4IP. The busy flag (USRSTS_INTREG[0]) will then change from 0b to 1b.
2) The CPU waits until the operation is completed or an error is detected by monitoring

USRSTS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the data of Identify
command returned by NVMe-IP will be stored in IdenRAM.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on the
console with details decoded from USRERRTYPECH0-3_INTREG[31:0]. The process
will then stop.

3) Once the busy flag (USRSTS_INTREG[0]) is de-asserted to 0b, the CPU will display

decoded information from IdenRAM (IDENCTRL0-3_CHARREG). This information
includes the model name of SSD#0-SSD#3 and the device details obtained from the
output signals of NVMeRAID0x4, such as the device capacity (LBASIZEL/H_INTREG),
and support for Secure Erase command.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 24

3.1.2 Write/Read command

The sequence for the firmware when the Write/Read command is selected is as follows.
1) Receive start address, transfer length, and test pattern from JTAG UART. If any inputs are

invalid, the operation will be cancelled.
2) After obtaining all the inputs, set them to USRADRL/H_INTREG, USRLENL/H_INTREG,

and PATTSEL_INTREG.
3) To execute the Write or Read command, set USRCMD_INTREG[2:0]= 010b or 011b,

respectively. This sends the command request to the NVMeRAID0x4IP. Once the
command is issued, the busy flag of NVMeRAID0x4IP (USRSTS_INTREG[0]) will
change from 0b to 1b.

4) The CPU waits until the operation is completed or an error (excluding verification error) is
detected by monitoring USRSTS_INTREG[2:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the CPU will then proceed to
the next step.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on the
console with details decoded from USRERRTYPECH0-3_INTREG[31:0]. The process
will then stop.

• If bit[2] is asserted to 1b, indicating a data verification fails, the verification error
message will be displayed on the console, but the CPU will continue to run until the
operation is completed or the user cancels the operation by pressing any key.

While the command is running, the current transfer size, read from
CURTESTSIZEL/H_INTREG, will be displayed every second.

5) After the busy flag (USRSTS_INTREG[0]) is de-asserted to 0b, CPU will calculate and

display the test result on the console including the total time usage, total transfer size,
and transfer speed.

3.1.3 SMART Command,

The sequence of the firmware when the SMART command is selected is as follows.
1) The 16-Dword of Submission Queue entry (CTMSUBMQ0-3_STRUCT) is set to the

SMART command value.
2) Set USRCMD_INTREG[2:0]=100b to send the SMART command request to

NVMeRAID0x4IP. The busy flag (USRSTS_INTREG[0]) will then change from 0b to 1b.
3) The CPU waits until the operation is completed or an error is detected by monitoring

USRSTS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the data of SMART
command returned by NVMe IP will be stored in CtmRAM.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on the
console with details decoded from USRERRTYPECH0-3_INTREG[31:0]. The process
will then stop.

4) After the busy flag (USRSTS_INTREG[0]) is de-asserted to 0b, the CPU will display

information decoded from CtmRAM (CTMRAM0-3_CHARREG), i.e., Remaining Life,
Percentage Used, Temperature, Total Data Read, Total Data Written, Power On Cycles,
Power On Hours, and Number of Unsafe Shutdown.

For more information on the SMART log, refer to the NVM Express Specification.
https://nvmexpress.org/resources/specifications/

https://nvmexpress.org/resources/specifications/

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 25

3.1.4 Flush Command

The sequence of the firmware when the Flush command is selected is as follows.
1) The 16-Dword of Submission Queue entry (CTMSUBMQ0-3_STRUCT) is set to the

Flush command value.
2) Set USRCMD_INTREG[2:0]=110b to send Flush command request to NVMeRAID0x4IP.

The busy flag of NVMeRAID0x4IP (USRSTS_INTREG[0]) will then change from 0b to 1b
3) The CPU waits until the operation is completed or an error is detected by monitoring

USRSTS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the CPU will then return to
the main menu.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on the
console with details decoded from USRERRTYPECH0-3_INTREG[31:0]. The process
will then stop.

3.1.5 Secure Erase Command

The sequence of the firmware when the Secure Erase command is selected is as follows.
1) The 16-Dword of Submission Queue entry (CTMSUBMQ0-3_STRUCT) is set to the

Secure Erase command value.
2) Set NVMTIMEOUT_INTREG to 0 to disable timer to prevent the timeout error.
3) Set USRCMD_INTREG[2:0]=100b to send Secure Erase command request to

NVMeRAID0x4IP. The busy flag of NVMeRAID0x4IP (USRSTS_INTREG[0]) will then
change from 0b to 1b.

4) The CPU waits until the operation is completed or an error is detected by monitoring
USRSTS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the CPU will then proceed to
the next step.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on the
console with the details decoded from USRERRTYPECH0-3_INTREG[31:0]. The
process will then stop.

5) After completing the command, the timer is re-enabled to generate timeout error in

NVMe-IP by setting NVMTIMEOUT_INTREG to the default value.

3.1.6 Shutdown Command
The sequence of the firmware when the Shutdown command is selected is as follows.
1) Set USRCMD_INTREG[2:0]=001b to send the Shutdown command request to

NVMeRAID0x4IP. The busy flag of NVMeRAID0x4IP (USRSTS_INTREG[0]) will then
change from 0b to 1b.

2) The CPU waits until the operation is completed or an error is detected by monitoring
USRSTS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the CPU will then proceed to
the next step.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on the
console with details decoded from USRERRTYPECH0-3_INTREG[31:0]. The process
will then stop.

3) After Shutdown command completes, all four SSDs and all NVMe-IPs will become

inactive and the CPU will be unable to receive any new commands from the user. To
continue testing, the user must power off and power on the system.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 26

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART/Secure Erase command, 6-Flush command

Return value 0: No error, -1: Some errors are found in NVMeRAID0x4IP

Description Execute SMART command as outlined in section 3.1.3 (SMART
Command,), execute Flush command as outlined in section 3.1.4 (Flush
Command), or execute Secure Erase command as outlined in section
3.1.5 (Secure Erase Command).

unsigned long long get_cursize(void)

Parameters None

Return value Read value of CURTESTSIZEH/L_INTREG

Description Read the value of CURTESTSIZEH/L_INTREG and return it as the result
of the function.

int get_param(userin_struct* userin)

Parameters userin: Three inputs from user, i.e., start address, total length in 512-byte
unit, and test pattern

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Execute Identify command as outlined in section 3.1.1 (Identify
command).

int setctm_erase(void)

Parameters None
Return value 0: No error, -1: Some errors are found in NVMeRAID0x4IP

Description Set Secure Erase command to CTMSUBMQ0-3_STRUCT and call
exec_ctm function to execute Secure Erase command.

int setctm_flush(void)

Parameters None
Return value 0: No error, -1: Some errors are found in NVMeRAID0x4IP

Description Set Flush command to CTMSUBMQ0-3_STRUCT and call exec_ctm
function to execute Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in NVMeRAID0x4IP

Description Set SMART command to CTMSUBMQ0-3_STRUCT and call exec_ctm
function to execute SMART command. Finally, decode and display
SMART information on the console.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 27

void show_error(void)

Parameters None

Return value None

Description Read USRERRTYPECH0-3_INTREG, decode the error flag, and display
the corresponding error message. Also, call show_pciestat function to
check the hardware’s debug signals.

void show_pciestat(unsigned int channel)

Parameters channel: Select channel to display PCIe status on the console

Return value None

Description Read PCIESTSCH<channel>_INTREG until the read value from two
read times is stable. After that, display the read value on the console.
Also, debug signal is read by (NVMTESTPIN0-3CH0_INTREG +
<channel>*channel offset).

void show_result(void)

Parameters None

Return value None

Description Print total size by calling get_cursize and show_size functions. After that,
compute total time usage from global parameters (timer_val and
timer_upper_val) and display the result in usec, msec, or sec unit.
Finally, transfer performance is calculated and displayed in MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: Transfer size to display on the console.

Return value None

Description Calculate and display the input value in Mbyte or Gbyte unit. The
displayed format allows for representing data sizes with up to 6 digits and
3 decimal places. This means that the maximum value that can be shown
is 999,999.999 GB.

void show_smart_hex16byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 16-byte SMART data

Return value None

Description Display 16-byte SMART data as hexadecimal unit.

void show_smart_int8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 8-byte SMART data

Return value None

Description When the input value is less than 4 billion (32-bit), the 8-byte SMART
data is displayed in decimal units. If the input value exceeds this limit, an
overflow message is displayed.

void show_smart_size8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 8-byte SMART data

Return value None

Description Display 8-byte SMART data as GB or TB unit. When the input value is
more than limit (500 PB), the overflow message is displayed instead.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 28

void show_vererr(void)

Parameters None

Return value None

Description Read RDFAILNOL/H_INTREG (error byte address),
EXPPATW0_INTREG (expected value), and RDPATW0_INTREG (read
value) to display verification error details on the console.

void shutdown_dev(void)

Parameters None
Return value None

Description Execute Shutdown command as outlined in section 3.1.6 (Shutdown
Command)

int wrrd_dev(unsigned int user_cmd)

Parameters user_cmd: 2-Write command, 3-Read command
Return value 0: No error, -1: Receive invalid input or some errors are found.

Description Execute Write command or Read command as outlined in section 3.1.2
(Write/Read command). Call ‘show_result’ function to compute and
display transfer performance in Write/Read command.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 29

4 Example Test Result

Figure 4-1 illustrates the result of executing the RAID0x4 demo, using four SSDs: the 2TB CFD
Gaming PG5NFZ SSD, the 2TB AORUS Gen5 10000 SSD and the two 2TB Crucial T700. Since
all four SSDs utilize the same controller, their characteristics are expected to be similar. The result
was measured using Write and Read commands, utilizing an LFSR test data pattern and a
transfer size of 512 GB.

Figure 4-1 Performance of 4-ch RAID0 demo by using four Gen5 SSDs

Utilizing the Agilex 7 I-Series board with PCIe Gen5, the system demonstrates remarkable
performance levels. The write speed reaches approximately 40,000 Mbyte/sec, while the read
speed achieves around 34,000 Mbyte/sec.

dg_nvme_raid0x4_refdesign_g5_intel.doc

2-Oct-23 Page 30

5 Revision History

Revision Date Description

1.0 2-Oct-23 Initial version release

Copyright: 2023 Design Gateway Co,Ltd.

