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1 Introduction 

 
Figure 1-1 NVMe-IP with and without DDR demo comparison 

 
This reference design is modified from standard NVMe-IP demo by using DDR to be data buffer 
instead of FIFO, as shown in yellow block of Figure 1-1 . DDR is applied to the system that 
requires large data buffer to transfer data as sustain rate but the used SSD has long pause time 
while writing the data.  
 
In Write command, some SSDs has long pause time which cannot accept more Write data from 
user logic. During SSD pause time, the data from the source (TestGen) must be stored in data 
buffer. If the SSD is paused for long time, the buffer size must be large enough by using DDR 
instead of FIFO. The minimum buffer size is equal to (the maximum pause time of SSD in Write 
command x data input rate). This is general requirement for data logger system. 
 
In Read command, data from SSD is stored in DDR before forwarding to user logic (TestGen). 
Sometimes SSD may pause data transmission, so the buffer must have enough data for user 
reading until the SSD transfers the next read data. Similar to Write command, the minimum buffer 
size is equal to (the maximum pause time of SSD in Read command x data output rate). The 
application that requires to read data as sustain rate is the high-resolution display system. 
 
Note: More information of NVMe-IP demo that uses FIFO can be download from following link. 
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf 

https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf
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2 Hardware overview 
 

 
Figure 2-1 NVMe-IP with DDR demo hardware 

 
The hardware system can be divided to four groups following the function, i.e., Test function 
(TestGen), DDR controller (DdrIP, AxiMtWr, AxiMtRd, AxiTxFIFO, and AxiRxFIFO), NVMe 
function (IdenRAM, CtmRAM, NVMe-IP, and PCIe block), and CPU system (CPU and LAxi2Reg). 
Similar to standard NVMe-IP demo, TestGen generates and verifies test data with NVMe-IP. 
However, it is modified to transfer data at constant rate instead of the best performance rate. The 
data is transferred with DDR, the system data buffer. The clock frequency of TestGen and 
NVMe-IP user interface use the same clock as PCIe clock frequency, 250 MHz. 
 
The user interface of DDR controller is AXI4 bus which has 512-bit data and runs at 300 MHz. 
AxiMtWr and AxiMtRd are designed to transfer data between DDR and AxiFIFO in Write 
command and Read command, respectively. AxiTxFIFO and AxiRxFIFO are asynchronous FIFO 
and asymmetric FIFO for interface between 512-bit on AXI4 bus and 128-bit on NVMe/TestGen. 
 
IdenRAM and CtrmRAM are included for running Identify command and SMART command 
respectively. The NVMe command can be selected by the user which is controlled via Serial 
console. UART interface is a part of CPU system. The user can configure some test parameters 
such as the data rate of TestGen, the buffer size, NVMe command – Write, Read, etc., and the 
parameters for running the command. CPU interface with hardware is AXI4-Lite bus, so LAxi2Reg 
is the adapter logic to convert AXI4-Lite bus to be register interface for controlling the hardware. 
More details of the hardware are described as follows. 
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2.1 TestGen 
 

 
Figure 2-2 TestGen interface 

 
TestGen module is the test logic to send test data to DDR through AxiTxFIFO when operating 
Write command. On the other hand, the test data is applied to be the expected value to verify 
the read data from DDR through AxiRxFIFO when operating Read command. Besides, the 
duty cycle for asserting write enable and read enable of FIFO are controlled by pulse-width 
control logic. The duty cycle of enable time is set by the user. The error is asserted if 
AxiTxFIFO is overflow or AxiRxFIFO is underflow. 
 
Register file in the TestGen receives test parameters from user, i.e., total transfer size, 
transfer direction, and test pattern. To control transfer size, the counter is designed to count 
total amount of transferred data. The details of hardware logic within TestGen module are 
shown in Figure 2-3. 

 

 
Figure 2-3 TestGen hardware 



dg_nvmeddr_refdesign_en.doc  

27-Jul-22 Page 4 

 
The main feature of TestGen is to control data rate for transferring with FIFO to check the best 
write performance and read performance of the SSDs in sustain rate. The user sets two 
parameters, NmtTrnRate and DmtTrnRate which are 4-bit signals. Next, Pulse Generator 
(4-bit counter) loads both parameters and then asserts enable pulse (rTrnRateEn) for 
NmtTrnRate cycles in every DmtTrnRate cycle. Therefore, transfer data rate for writing FIFO 
and reading FIFO is equal to (NmtTrnRate/DmtTrnRate) x Clock Frequency (300 MHz) x 
128-bit or (NmtTrnRate/DmtTrnRate) x 4800 Mbyte/sec, as shown in Figure 2-4. 

 

 
Figure 2-4 rTrnRateEn Timing diagram 

 
After that, rTrnRateEn is fed to the logic for asserting FIFO write enable or FIFO read enable. 
Timing diagram to assert rWrFfWrEn and rRdFfRdEn is shown in Figure 2-5. 
 

 
Figure 2-5 rWrTrans/rRdTrans Timing diagram 

 
1) When user sets command register to start Write/Read command, WrPattStart/RdPattStart 

is asserted to ‘1’ for one cycle. After that, rWrTrans/rRdTrans is asserted to ‘1’ until the 
operation is done, monitored by rDataCnt. 

2) While transferring data, rWrFfWrEn/rRdFfRdEn is asserted to ‘1’ when rTrnRateEn=’1’ 
and rWrTrans/rRdTrans=’1’. 

3) To control the amount of transferred data, the data counter (rDataCnt) is counted when 
rWrFfWrEn/rRdFfRdEn is asserted to ‘1’. 

4) rDataCnt is counted from 0 to N-1 for transferring N data. EndSize value is set by (total 
transfer size – 1). rWrTrans/rRdTrans and rWrFfWrEn/rRdFfRdEn are de-asserted to ‘0’ 
when the last data (rDataCnt=EndSize) is transferred to FIFO. 
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While transferring data to FIFO, the error monitoring logic is operating. When running Write 
command, WrFfFull is monitored. TrnError[1] is overflow error flag which is asserted to ‘1’ 
when WrFfFull is equal to ‘1’. Also, when running Read command, RdFfEmpty is monitored. 
TrnError[2] is underflow error flag which is asserted to ‘1’ when RdFfEmpty is equal to ‘1’ but 
Read operation is not finished. If TrnError[1] or [2] is asserted, it is expected that the transfer 
rate is more than the SSD characteristic. The user should try to reduce the transfer rate until 
there is no error flag asserted. 
 

 
Figure 2-6 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern 

 
Pattern Generator block creates test data for writing to FIFO (rWrFfWrData) in Write 
command or using to be expected data to compare to read data from FIFO (RdFfRdData) in 
Read command. There are five patterns that can be selected, controlled by PattSel, i.e., all 
zero, all one, 32-bit incremental pattern, 32-bit decremental pattern, and LFSR pattern. When 
creating all-zero or all-one pattern, every bit of data is set to zero or one, respectively. While 
other patterns are designed by separating the data as two parts to create unique test data in 
every 512-byte data, as shown in Figure 2-6. 
 
512-byte data consists of 64-bit header in Dword#0 and Dword#1 and the test data in 
remaining words of 512-byte data (Dword#2 – Dword#127). The header is created by using 
the address in 512-byte unit, the output of Address counter block (rTrnAddr). The initial value 
of the address counter is set by user and the value is increased when finishing transferring 
each 512-byte data. Remaining Dwords (DW#2 – DW#127) depends on pattern selector 
which may be 32-bit incremental data, 32-bit decremental data, or LFSR counter. 32-bit 
incremental data is designed by using the data counter (rDataCnt). The decremental data is 
designed by connecting NOT logic to incremental data.  
 
The LFSR pattern is designed by using LFSR counter. The equation of LFSR is x^31 + x^21 + 
x + 1. To create 128-bit LFSR data, the look-ahead technique is applied for generate four 
32-bit LFSR data within one clock cycle. 
 
When running Read command, TrnError[0] is designed to be data verification fail flag. This bit 
is asserted to ‘1’ when the received data (RdFfRdData) is not equal to expected data. 
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2.2 NVMe 

 
Figure 2-7 NVMe hardware 

 
Figure 2-7 shows the interface of NVMe-IP in the reference design. The user interface of 
NVMe-IP consists of control interface and data interface. The control interface receives the 
command and the parameters via dgIF typeS or custom command interface, depending on 
the command. Custom command interface is applied when the command is SMART 
command or Flush command. Otherwise, dgIF typeS is applied. 
 
The data interface of NVMe-IP has four signal groups, i.e., FIFO input interface (dgIF typeS), 
FIFO output interface (dgIF typeS), custom command RAM interface, and Identify interface. 
All data bus width is 128-bit. The custom command RAM interface is bi-directional interface 
while the others are one directional interface. In the reference design, the custom command 
RAM interface is used to transfer data of SMART command from NVMe-IP to LAxi2Reg only. 
Another direction is not used. 
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2.2.1 NVMe-IP 

NVMe-IP implements NVMe protocol of the host side to access one NVMe SSD directly 
without PCIe switch connection. NVMe-IP supports six commands, i.e., Write, Read, Identify, 
Shutdown, SMART, and Flush. NVMe-IP can connect to the PCIe hard IP directly. More 
details of NVMe-IP are described in datasheet. 
https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf 
 

2.2.2 Integrated Block for PCIe 
This block is the hard IP in Xilinx device which implements Physical, Data Link, and 
Transaction Layers of PCIe specification. More details are described in Xilinx document. 
PG054: 7 Series FPGAs Integrated Block for PCI Express 
PG023: Virtex-7 FPGA Gen3 Integrated Block for PCI Express 
PG156: UltraScale Devices Gen3 Integrated Block for PCI Express 
PG213: UltraScale+ Devices Integrated Block for PCI Express 

 
2.2.3 Dual port RAM 

Two dual port RAMs, CtmRAM and IdenRAM, store data from Identify command and SMART 
command, respectively. IdenRAM is simple dual-port RAM which has one read port and one 
write port. The data size of Identify command is 8 Kbytes, so IdenRAM size is 8Kbyte. 
NVMe-IP and LAxi2Reg have different data bus size, so IdenRAM is asymmetric RAM that 
has the different bus size for write port and read port. The data interface of NVMe-IP (write 
port) is 128-bit while the interface of LAxi2Reg (read port) is 32-bit. Besides, NVMe-IP has 
double word enable to write only 32-bit data in some cases. The RAM setting on Xilinx IP 
wizard supports the write byte enable. Therefore, small logic is designed to convert double 
word enable to be write byte enable as shown in Figure 2-8 

 

 
Figure 2-8 Byte write enable conversion logic 

 
Bit[0] of WrDWEn with WrEn signal are the inputs to AND logic. The output of AND logic is fed 
to bit[3:0] of IdenRAM byte write enable. Bit[1], [2], and [3] of WrDWEn are applied to be 
bit[7:4], [11:8], and [15:12] of IdenRAM write byte enable, respectively. 
 
Comparing with IdenRAM, CtmRAM is implemented by true dual-port RAM (two read ports 
and two write ports) with byte write enable. The small logic to convert double word enable of 
custom interface to be byte write enable must be used, similar to IdenRAM. True dual-port 
RAM is used to support the additional features when the customized custom command needs 
the data input. To support SMART command, using simple dual port RAM is enough. Though 
the data size returned from SMART command is 512 bytes, CtmRAM is implemented by 
8Kbyte RAM for customized custom command. 

https://dgway.com/products/IP/NVMe-IP/dg_nvme_ip_data_sheet_en.pdf
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2.3 DdrCtrl 

 

 
Figure 2-9 DdrCtrl hardware 

 
This module is designed to interface with DDR memory which is the data buffer to support 
transferring data as sustain rate in this system. MIG is Xilinx IPcore to control external 
memory such as DDR4. The IP includes clock generator to generate many clock sources for 
interface with DDR. This reference design uses clock generator inside MIG to generate 
CpuClk (100 MHz) for running CPU and its peripherals. AxiClk is clock output from MIG to be 
user interface of DDR controller. AxiClk frequency is 300 MHz for running DDR4 at 1200 MHz. 
 
AxiMtWr and AxiMtRd decode the command request from LAxi2Reg. After that, data is 
transferred between MIG and AxiTxFIFO/AxiRxFIFO, following the current command (Write 
or Read). AxiMtWr and AxiMtRd are designed to be AXI4 master mode for connecting with 
DDR which is run in Slave mode by using 512-bit data bus. Two master channels are created 
to connect with AxiMtWr and AxiMtRd. Though AXI4 interface supports bi-directional 
transferring, only one direction is applied for AxiMtWr/AxiMtRd. AxiMtWr is designed to Write 
DDR while AxiMtRd is designed to read DDR. All AXI4 modules are run in AxiClk domain. 
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2.3.1 AxiMtWr 

 

 
Figure 2-10 AxiMtWr hardware 

 
AxiMtWr receives BufSize signal to specify the buffer size usage in this transfer. 4-bit signal is 
applied to select 16 buffer sizes, starting from 64 Kbytes to 2 Gbytes. The core engine of 
AxiMtWr is state machine which handles to generate write request to DDR and start data 
transferring from AxiTxFIFO to DDR. As shown in Figure 2-10, the interface of AxiMtWr is 
separated to two groups, i.e., command interface and data interface. 
 
The sequence of write transaction by using AXI4 interface is as follows. 
1) Send address and address control signals (AxiAwAddr, AxiAwLen, and AxiAwValid) 
2) Send data and data control signals (AxiwData and AxiwValid) 
3) Wait response (AxiBValid).  
 
From above specification, six state machines are designed to be the core controller. 
1) stIdle: This is the first state which receives the write request from LAxi2Reg (AxiWrReq). 

The state changes to the next state (stChkWrRdy) when the new request is received. At 
the same time, Length counter loads total transfer size from AxiWrLen and Address 
counter is reset to 0.  

2) stChkWrRdy: This state waits until AxiTxFIFO and DDR buffer are ready for transferring 
data. At least 512-byte data must be available in AxiTxFIFO, monitored from AxiFfRdCnt. 
Also, rBufWrCntPad (the signal to show the amount of data in the buffer) is read to confirm 
that free space in DDR is more than 512 bytes. After that, it changes to the next state, 
stGenWrReq. 
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3) stGenWrReq: This state generates write request to DDR (AxiAwValid). Also, other 

parameters, write address (AxiAwAddr) and write length (AxiAwLen), must be valid. It 
changes to the next state, stWrTrans, when the MIG accepts the request by asserting 
AxiAwReady to ‘1’. 

4) stWrTrans: This state transfers the data to DDR. AxiFfRdEn is asserted to ’1’ to read data 
from FIFO. After that, the read data (AxiFfRdData) is loaded to the latch register to be the 
output of AxiwData. At the same time, AxiwValid is asserted to ‘1’ to be data valid for DDR. 
Two-step pipeline registers in data path are designed to solve timing constraint problem. 
rBurstCnt counts the amount of data in the current burst transfer. Data transfer state is 
completed after rBurstCnt shows that current data is the last data. AxiwLast is asserted 
to ’1’ for sending the last data in the burst transfer. After that, it changes to the next state, 
stWtResp. 

5) stWtResp: This state waits the response returned from DDR to confirm the previous data 
transferring is completed. AxiBValid is asserted to ‘1’ by MIG if DDR receives all write data 
completely. After that, the remaining transfer size (rTrnLenCnt) is read. If rTrnLenCnt is 
not equal to 0, the next state is stWtBufCnt. Otherwise, the state is returned to stIdle. 
rTrnLenCnt loads total transfer size from AxiWrLen when receiving the request from 
LAxi2Reg. rTrnLenCnt is decreased after finishing each burst transfer loop. 

6) stWtBufCnt: This state is run for one clock cycle to wait until rBufWrCntPad is updated and 
ready for using in stChkWrRdy. Next, it returns to stChkWrRdy to start transferring the next 
data.  

 
From above sequence, address, data, and response in each burst loop are run sequentially 
by using one state machine, not pipelined transferring for simple design. To improve transfer 
performance, the burst size of each loop can be set by four values, i.e., 512 bytes, 1024 bytes, 
2048 bytes, and 4096 bytes. The value of burst size (AxiAwLen) is calculated by BurstLenCal 
block. The burst size depends on several conditions. First, the amount of available data in 
AxiTxFIFO (monitored by AxiFfRdCnt) and the free space size in DDR (monitored by 
rBufWrCntPad). Second, the value of AxiAwAddr that must be aligned to the burst size to 
avoid overlapped DDR area. Last is the remaining transfer size, rTrnLenCnt. For example, 
burst size is set to 4096 bytes when following conditions are met.  

 
i) Remaining transfer size (rTrnLenCnt) is more than or equal to 4096 bytes (Bit[47:3] of 

rTrnLenCnt is not equal to 0). 
ii) Current write address (AxiAwAddr) is aligned to 4096 bytes (Bit[11:0] of AxiAwAddr is 

equal to 0). 
iii) Data in AxiTxFIFO (AxiFfRdCnt) is more than or equal to 4096 bytes (Bit[15:6] of 

AxiFfRdCnt is not equal to 0). 
iv) Data in DDR (rBufWrCntPad) has at least 8 Kbyte free space (Bit[30:13] of rBufWrCntPad 

is not equal to all 1). 
 
After AxiAwLen is completely calculated, this signal is fed to Address counter to calculate the 
next write address (AxiAwAddr). Also, it is fed to Length Counter to calculate remaining 
transfer size (rTrnLenCnt). 
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Figure 2-11 shows the example operation of AxiMtWr when burst size is equal to 8 for 
transferring 512-byte data. 
 

 
Figure 2-11 AxiMtWr Timing diagram when burst size = 512 byte 
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1) After AxiWrReq is asserted to ‘1’, state machine changes to stChkWrRdy. 
2) If FIFO and DDR are ready to transfer 512-byte data, state machine will change to next 

state, stGenWrReq. Two functions are run in stGenWrReq. First, asserts Write request 
(AxiAwValid) to ’1’ until AxiAwReady is asserted to ’1’. Second, asserts AxiFfRdEn to 1 for 
two clock cycles to read two data from AxiTxFIFO.  

3) After write request is received (AxiAwValid=’1’ and AxiAwReady=’1’), state machine 
changes to stWrTrans. 

4) Eight data is transferred in stWrTrans by asserting AxiwValid to ‘1’ for 8 cycles. At the 
same time, AxiwData is valid by loading the previous data from AxiFfRdData.  

5) While transferring data, rBurstCnt is decreased by AxiFfRdEn signal.  
6) When rBurstCnt=2 and AxiwReady=’1’, rAxiwLast[0] is asserted to ‘1’ to pause data 

reading from FIFO by de-asserting AxiFfRdEn to ’0’. After that, AxiwLast (the previous 
status of rAxiwLast[0]) is asserted to ‘1’ with the last data available on the bus to complete 
data transfer.  

7) State machine changes to stWtResp to wait until AxiBValid asserting to ‘1’.  
8) State machine changes to stWtBufCnt which is run for one cycle. 
9) State machine enters to stIdle when total data are transferred. Otherwise, state machine 

returns to stChkWrRdy to start transferring the next data. 
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2.3.2 AxiMtRd 

 

 
Figure 2-12 AxiMtRd hardware 

 
Similar to AxiMtWr, AxiMtRd receives BufSize signal to specify the buffer size usage in this 
transfer. 4-bit signal is applied to select 16 buffer sizes, starting from 64 Kbytes to 2 Gbytes. 
The core engine of AxiMtRd is state machine which handles to generate read request to DDR 
and wait until the data is returned from DDR. As shown in Figure 2-12, the interface of 
AxiMtRd is separated to two groups, i.e., command interface and data interface. 
 
The sequence of read transaction by using AXI4 interface is as follows. 
1) Send address and address control signals (AxiArAddr, AxiArLen, and AxiArValid) 
2) Receive data and data control signals (AxirValid, AxirLast, and AxirData) 
 
From above specification, four state machines are designed to be the core controller. 
1) stIdle: This is the first state which receives the read request from LAxi2Reg (AxiRdReq). 

The state changes to the next state (stChkRdRdy) when the new request is received. At 
the same time, Length counter loads total transfer size from AxiRdLen and Address 
counter is reset to 0.  

2) stChkRdRdy: This state has two functions. First, check remained transfer length 
(rTrnLenCnt). If total data are completely transferred (rTrnLenCnt=0), the next state will be 
stIdle. Otherwise, it prepares to transfer the data by monitoring buffer status. Therefore, 
the second function of this state is checking that AxiRxFIFO and DDR buffer are ready for 
transferring data. At least 512-byte data must be available in DDR, monitored from 
BufRdCnt. Also, AxiFfWrCnt is read to confirm that free space in AxiRxFIFO is more than 
512 bytes. After that, it changes to the next state, stGenWrReq. 

3) stGenRdReq: This state generates read request to DDR (AxiArValid). Also, other 
parameters, read address (AxiArAddr) and read length (AxiArLen), must be valid. It 
changes to the next state, stRdTrans, when the MIG accepts the request by asserting 
AxiArReady to ‘1’. 
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4) stRdTrans: This state transfers the data from DDR to AxiRxFIFO. Read data (AxirData) 

and Read data valid (AxirValid) are fed to be write data and write enable of AxiRxFIFO 
(AxiFfWrData and AxiFfWrEn). After receiving the last data of the burst transfer 
(AxirValid=’1’ and AxirLast=’1’), the state returns to stChkRdRdy. 

 
Similar to AxiMtWr, the burst size of each loop can be set by four values, i.e., 512 bytes, 1024 
bytes, 2048 bytes, and 4096 bytes. The value of burst size (AxiArLen) is calculated by 
BurstLenCal block. The burst size depends on several conditions. First, the amout of 
available data in DDR (monitored by BufRdCnt) and the free space size in AxiRxFIFO 
(monitored by AxiFfWrCnt). Second, the value of AxiArAddr that must be aligned to the burst 
size to avoid overlapped DDR area. Last is the remaining transfer size, rTrnLenCnt. For 
example, burst size is set to 4096 bytes when following conditions are met. 
 
i) Remaining transfer size (rTrnLenCnt) is more than or equal to 4096 bytes (Bit[47:3] of 

rTrnLenCnt is not equal to 0). 
ii) Current read address (AxiArAddr) is aligned to 4096 bytes (Bit[11:0] of AxiArAddr is equal 

to 0). 
iii) Data in DDR (BufRdCnt) is more than or equal to 4096 bytes (Bit[30:12] of BufRdCnt is not 

equal to 0). 
iv) Data in AxiRxFIFO (AxiFfWrCnt) has at least 8 Kbyte free space (Bit[15:7] of AxiFfWrCnt 

is not equal to all 1). 
 
After AxiArLen is completely calculated, this signal is fed to Address counter to calculate the 
next write address (AxiArAddr). Also, it is fed to Length Counter to calculate the remaining 
transfer size (rTrnLenCnt). 
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Figure 2-13 shows the example operation of AxiMtRd when burst size is equal to 8 for 
transferring 512-byte data. 

 

 
Figure 2-13 AxiMtRd Timing diagram when burst size = 512 byte 

 
1) After AxiRdReq is asserted to ‘1’, state machine changes to stChkRdRdy. 
2) If available data in DDR is at least 512 bytes and free space in AxiRxFIFO is more than 

512 bytes, it will change to the next state, stGenRdReq, for starting data transferring. 
3) AxiArValid is asserted to ‘1’ to generate read request to DDR.  
4) AxiArValid is de-asserted to ‘0’ after DDR accepts the request by asserting AxiArReady to 

‘1’. Also, state machine changes to stRdTrans. 
5) Eight data is transferred in stRdTrans by asserting AxirValid to ‘1’ for 8 cycles. At the same 

time, AxirData is valid. AxirData are forwarded to store to AxiRxFIFO. 
6) AxirLast and AxirValid are asserted to ‘1’ when the last data of the burst transfer are 

transferred from DDR. After that, the state returns to stChkRdRdy. 
7) Before starting the new transfer loop, the remained transfer length (rTrnLenCnt) is read. If 

rTrnLenCnt is equal to 0, the next state will be stIdle to complete the operation. Otherwise, 
repeat step 2 to wait until FIFO and DDR are ready for data transferring. 
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2.4 CPU and Peripherals 

 
32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such 
as Timer and UART. The test system of NVMe-IP connects with CPU as a peripheral on 32-bit 
AXI4-Lite bus for CPU controlling and monitoring. CPU assigns the different base address 
and the address range to each peripheral for accessing one peripheral at a time. 
 
In the reference design, the CPU system is built with one additional peripheral to access the 
test logic. Therefore, the hardware logic must be designed to support AXI4-Lite bus standard 
for CPU writing and reading. LAxi2Reg module is designed to connect with the CPU system 
as shown in Figure 2-14. 

 

 
Figure 2-14 CPU and peripherals hardware 

 
LAxi2Reg consists of AsyncAxiReg, UserReg, and AsyncCtrl. AsyncAxiReg is designed to 
convert the AXI4-Lite signals to be the simple register interface which has 32-bit data bus size, 
similar to AXI4-Lite data bus size. Besides, AsyncAxiReg includes asynchronous logic to 
support clock domain crossing between CpuClk domain and UserClk domain. 
 
UserReg includes the register file of the parameters and the status signals to control the other 
modules, i.e., CtmRAM, IdenRAM, NVMe-IP, TestGen, and DdrCtrl I/F.  
 
While clock domain of DdrCtrl is DdrClk, clock domain of UserReg is UserClk. Therefore, 
AsyncCtrl includes asynchronous logic to support clock domain crossing between between 
DdrClk domain and UserClk domain. More details of each hardware are described as follows. 
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2.4.1 AsyncCtrl 

 
There are two styles to transfer the signal from source clock domain to destination clock 
domain. First, the signal which is one-bit signal or stable value for long time. The signal is 
forwarded to D Flip-Flop to synchronous on destination clock domain. Second, the bus signal 
that has multiple bits. This signal must be fed to latched register to generate stable value. 
After that, the stable signal is transferred to the destination clock domain by using D Flip-Flop.  

 
2.4.2 AsyncAxiReg 

 
Figure 2-15 AsyncAxiReg Interface 

 
The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write 
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* 
(Read address channel), and LAxir* (Read data channel). More details to build custom logic 
for AXI4-Lite bus is described in following document. 
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf 
 
According to AXI4-Lite standard, the write channel and the read channel are operated 
independently. Also, the control and data interface of each channel are run separately. So, the 
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write 
control logic, Write data logic, Read control logic, and Read data logic as shown in the left 
side of Figure 2-15. Write control I/F and Write data I/F of AXI4-Lite bus are latched and 
transferred to be Write register interface with clock domain crossing registers. Similarly, Read 
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface while 
Read data is returned from Register interface to AXI4-Lite through clock domain crossing 
registers. In Register interface, RegAddr is shared signal for write and read access, so it loads 
the value from LAxiAw for write access or LAxiAr for read access. 
 
The simple register interface is compatible with single-port RAM interface for write transaction. 
The read transaction of the register interface is slightly modified from RAM interface by 
adding RdReq and RdValid signals for controlling read latency time. The address of register 
interface is shared for write and read transaction. Therefore, user cannot write and read the 
register at the same time. The timing diagram of the register interface is shown in Figure 2-16. 

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
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Figure 2-16 Register interface timing diagram 

 
1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is 

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit), 
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte 
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when 
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively. 

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr. 
32-bit data must be returned after receiving the read request. The slave must monitor 
RegRdReq signal to start the read transaction. In read operation, the address value 
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the 
address can be used for selecting the returned data by using multiple layers of multiplexer. 

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’. 
After that, AsyncAxiReg forwards the read value to LAxir* interface. 
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2.4.3 UserReg 

 

 
Figure 2-17 UserReg Interface 

 
The logic inside UserReg consists of Address decoder, RegFile, and RegMux. The address 
decoder decodes the address which is requested from AsyncAxiReg and then selects the 
active register for write or read transaction. The address range assigned in UserReg is split 
into six areas, as shown in Figure 2-17. 
1) 0x0000 – 0x00FF : mapped to set the command with the parameters of NVMe-IP, 

TestGen, and DdrCtrl. This area is write-access only. 
2) 0x0100 – 0x01FF : mapped to read the status signals of NVMe-IP, TestGen, and 

DdrCtrl. This area is read-access only. 
3) 0x0200 – 0x02FF : mapped to set the test parameters of custom command 

interface. This area is write-access only. 
4) 0x0300 – 0x03FF : mapped to read the status of custom command interface. This 

area is read-access only. 
5) 0x2000 – 0x3FFF : mapped to read data from IdenRAM. This area is read-access 

only. 
6) 0x4000 – 0x5FFF : mapped to custom command RAM interface. Although this area 

supports both write and read access, the demo shows only read access by running 
SMART command. 

 
Address decoder decodes the upper bit of RegAddr for selecting the active hardware that is 
NVMe-IP, DdrCtrl, TestGen, Iden RAM, or CtmRAM. The register file inside UserReg is 32-bit 
bus size. Therefore, write byte enable (RegWrByteEn) is not applied in the test system and 
the CPU uses 32-bit pointer to set the hardware register. 
 
To read register, two-step multiplexers select the data to return to CPU by using the address. 
The lower bit of RegAddr is fed to the submodule to select the active data from each 
submodule. While the upper bit is applied in UserReg to select the returned data from each 
submodule. Totally, the latency time of read data is equal to two clock cycles. Therefore, 
RegRdValid is created by RegRdReq with asserting two D Flip-flops. More details of the 
address mapping within UserReg module are shown in Table 2-1. 
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Table 2-1 Register Map 

 
Address Register Name  Description 

Rd/Wr (Label in “nvmeddrterst.c”) 

0x0000 – 0x00FF: Status signals of NVMe-IP, TestGen, and DdrCtrl (Write access only) 

BA+0x000 User Address (Low) Reg [31:0]: Input to be bit[31:0] of start address in 512-byte unit  

(UserAddr[31:0] of dgIF typeS for NVMe-IP) (USRADRL_REG) 

BA+0x004 User Address (High) Reg [15:0]: Input to be bit[47:32] of start address in 512-byte unit 

(UserAddr[47:32] of dgIF typeS for NVMe-IP) (USRADRH_REG) 

BA+0x008 User Length (Low) Reg [31:0]: Input to be bit[31:0] of transfer length in 512-byte unit  

(UserLen[31:0] of dgIF typeS for NVMe-IP) (USRLENL_REG) 

BA+0x00C User Length (High) Reg [15:0]: Input to be bit[47:32] of transfer length in 512-byte unit  

(UserLen[47:32] of dgIF typeS for NVMe-IP) (USRLENH_REG) 

BA+0x010 User Command Reg [2:0]: Input to be user command (UserCmd of dgIF typeS for NVMe-IP) 

000b: Identify, 001b: Shutdown, 010b: Write SSD, 011b: Read SSD, 

100b: SMART, 110b: Flush, 101b/111b: Reserved 

When this register is written, the command request is sent to NVMe-IP. 

After that, the IP starts operating the command. 

(USRCMD_REG) 

BA+0x014 Test Pattern Reg [2:0]: Select test pattern 

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR (PATTSEL_REG) 

BA+0x020 NVMe Timeout Reg [31:0]: Mapped to TimeOutSet[31:0] of NVMe-IP 

(NVMTIMEOUT_REG) 

BA+0x040 Transfer Ratio Reg Set the sustain rate for write or read access of TestGen module. 

[11:8]: the numerator of the ratio, [3:0]: the denominator of the ratio. 

Transfer Rate (bit/sec) = (Numerator/Denominator) x UserClk (250MHz) x 

128-bit 

(TRNRATIO_REG) 

BA+0x044 DDR Read threshold [3:0]: The threshold value of DDR buffer before starting reading. TestGen 

module waits until the data in DDR is more than or equal to the threshold 

value and then it starts reading the data from DDR as sustain rate in Read 

command. Valid from 0 - 15. 

0:    64 Kbyte,   1:  128 Kbyte,   2: 256 Kbyte,   3: 512 Kbyte, 

  4:     1 Mbyte,   5:     2 Mbyte,   6:     4 Mbyte,  7:     8 Mbyte, 

  8:   16 Mbyte,   9:   32 Mbyte, 10:   64 Mbyte, 11: 128 Mbyte, 

12: 256 Mbyte, 13: 512 Mbyte, 14:     1 Gbyte, 15:    2 Gbyte 

(DDRRDTHR_REG) 

BA+0x048 DDR Size Setting Reg [3:0]: Setting buffer size for usage. Valid from 0 – 15. The mapped value 

from 4-bit signal to the buffer size is similar to DDRRDTHR_REG. DDRBUFFSET_REG 

0x0100 – 0x01FF: Status signals of NVMe-IP, TestGen, and DdrCtrl (Read access only) 

BA+0x0100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy) 

[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error) 

[2]: Data verification fail (‘0’: Normal, ‘1’: Error) 

[3]: Error from buffer overflow during Write command  

(‘0’: Normal, ‘1’: AxiTxFIFO is full during running sustain write) 

[4]: Error from buffer underflow during Read command 

(‘0’: Normal, ‘1’: AxiRxFIFO is empty during running sustain read) 

[5]: Busy flag of write operation from TestGen 

(‘0’: No operation, ‘1’: Write is operating) 

[6]: Busy flag of read operation from TestGen 

(‘0’: No operation, ‘1’: Read is operation) 

Note that this flag is asserted after data in DDR is equal or more than 

threshold value, set by DDRRDTHR_REG. 

[7]: Busy flag of write operation from DdrCtrl 

(‘0’: No operation, ‘1’: Write is operating) 

[8]: Busy flag of read operation from DdrCtrl 

(‘0’: No operation, ‘1’: Write is operating) 

(USRSTS_REG) 
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Address Register Name  Description 

Rd/Wr (Label in “nvmeddrterst.c”) 

0x0100 – 0x01FF: Status signals of NVMe-IP, TestGen, and DdrCtrl (Read access only) 

BA+0x0104 Total disk size (Low) Reg [31:0]: Mapped to LBASize[31:0] of NVMe-IP 

 (LBASIZEL_REG) 

BA+0x0108 Total disk size (High) Reg [15:0]: Mapped to LBASize[47:32] of NVMe-IP 

[31]: Mapped to LBAMode of NVMe-IP (LBASIZEH_REG) 

BA+0x010C User Error Type Reg [31:0]: Mapped to UserErrorType[31:0] of NVMe-IP to show error status 

(USRERRTYPE_REG) 

BA+0x0110 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup) 

[3:2]: PCIe link speed from PCIe hard IP. MSB is bit[16]. 

(000b: Not linkup, 001b: PCIe Gen1, 010b: PCIe Gen2, 

 011b: PCIe Gen3, 111b: PCIe Gen4) 

[7:4]: PCIe link width status from PCIe hard IP 

(0001b: 1-lane, 0010b: 2-lane, 0100b: 4-lane, 1000b: 8-lane) 

[13:8]: Current LTSSM State of PCIe hard IP.  

Please see more details of LTSSM value in PCIe hard IP datasheet 

[16]: The upper-bit to show PCIe link speed of PCIe hard IP.  

Two lower bits are bit[3:2]. 

(PCIESTS_REG) 

 

BA+0x0114 Completion Status Reg [15:0]: Mapped to AdmCompStatus[15:0] of NVMe-IP 

[31:16]: Mapped to IOCompStatus[15:0] of NVMe-IP (COMPSTS_REG) 

BA+0x0118 NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of NVMe-IP 

(NVMCAP_REG) 

BA+0x011C NVMe IP Test pin Reg [31:0]: Mapped to TestPin[31:0] of NVMe-IP 

(NVMTESTPIN_REG) 

BA+0x0130-

BA+0x013F 

Expected value Word0-3 Reg 128-bit of the expected data at the 1st failure data in TestGen when 

operating Read command 

0x0130: Bit[31:0], 0x0134: Bit[63:32], …, 0x013C: Bit[127:96] 

(EXPPATW0-W3_REG) 

BA+0x0140-

BA+0x014F 

Read value Word0-3 Reg 128-bit of the read data at the 1st failure data in TestGen when operating 

Read command  

0x0140: Bit[31:0], 0x0144: Bit[63:32], …, 0x014C: Bit[127:96] 

(RDPATW0-W3_REG) 

BA+0x0150 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure data in TestGen when 

operating Read command (RDFAILNOL_REG) 

BA+0x0154 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure data in TestGen 

when operating Read command (RDFAILNOH_REG) 

BA+0x0158 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module 

(CURTESTSIZEL_REG) 

BA+0x015C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size of TestGen module 

(CURTESTSIZEH_REG) 

BA+0x0160 DDR Write Address Reg [31:0]: Current DDR write address in byte unit 

(bit[8:0] is fixed to 0 to align 512-byte unit) (DDRWRADDR_REG) 

BA+0x0164 DDR Read Address Reg [31:0]: Current DDR read address in byte unit  

(bit[8:0] is fixed to 0 to align 512-byte unit) (DDRRAADDR_REG) 

BA+0x016C DDR Maximum Size Usage [31:0]: The maximum DDR size that is used in Write command. It is 

calculated by finding the maximum value of (DDRWRADDR_REG – 

DDRRDADDR_REG). Similar to DDRWR/RDADDR_REG, bit[8:0] is 

always equal to 0 to align 512-byte unit 

(DDRMAXUSED_REG) 
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Address Register Name  Description 

Rd/Wr (Label in “nvmeddrterst.c”) 

Other interfaces (Custom command of NVMe-IP, IdenRAM, and Custom RAM) 

BA+0x0200-

BA+0x023F 

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush command. 

Input to be CtmSubmDW0-DW15 of NVMe-IP. 

0x200: DW0, 0x204: DW1, …, 0x23C: DW15 Wr (CTMSUBMQ_REG) 

BA+0x0300- 

BA+0x030F 

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from NVMe-IP. 

0x300: DW0, 0x304: DW1, …, 0x30C: DW3 

Rd (CTMCOMPQ_REG) 

BA+0x0800 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of NVMe-IP 

Rd (IPVERSION_REG) 

BA+0x2000- 

BA+0x2FFF 

Identify Controller Data 4Kbyte Identify Controller Data Structure 

Rd (IDENCTRL_REG) 

BA+0x3000- 

BA+0x3FFF 

Identify Namespace Data 4Kbyte Identify Namespace Data Structure 

Rd (IDENNAME_REG) 

BA+0x4000- 

BA+0x5FFF 

Custom command Ram Connect to 8K byte CtmRAM interface. 

Used to store 512-byte data output from SMART Command. 

Wr/Rd (CTMRAM_REG) 
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3 CPU Firmware 
 
3.1 Test firmware (nvmeddrtest.c) 
 

After system boot-up, CPU runs following steps to finish the initialization process. 
1) CPU initializes its peripherals such as UART and Timer. 
2) CPU waits until PCIe connection links up (PCIESTS_REG[0]=’1’). 
3) CPU waits until NVMe-IP completes initialization process (USRSTS_REG[0]=’0’). If some 

errors are found, the process stops with displaying the error message. 
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading 

PCIESTS_REG[16:2]. 
5) CPU displays the main menu. There are six menus for running six commands of NVMe-IP, 

i.e., Identify, Write, Read, SMART, Flush, and Shutdown.  
More details of the sequence in each command in CPU firmware are described as follows. 

 
3.1.1 Identify command 

The sequence of the firmware when user selects Identify command is below. 
1) Set USRCMD_REG[2:0]=000b to send Identify command request to NVMe-IP. After that, 

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’. 
2) CPU waits until the operation is completed or some errors are found by monitoring 

USRSTS_REG[1:0].  
 
Bit[0] is de-asserted to ‘0’ after finishing operating the command. After that, the data from 
Identify command of NVMe-IP is stored in IdenRAM. 
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on 
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally, 
the process is stopped. 
 

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays some information 
decoded from IdenRAM (IDENCTRL_REG) such as SSD model name and the information 
from NVMe-IP such as SSD capacity (LBASIZEL/H_REG). 
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3.1.2 Write/Read command 

The sequence of the firmware when user selects Write/Read command is below. 
1) Receive start address, transfer length, test pattern, sustain rate, DDR threshold value 

(DDR threshold is the parameter for Read command only), and DDR size from Serial 
console. If some inputs are invalid, the operation is cancelled. 
Note: If LBA unit size = 4 Kbyte, start address, and transfer length must be aligned to 8. 

2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, PATTSEL_REG, 
TRNRATIO_REG, DDRRDTHR_REG, and DDRBUFFSET_REG. 

3) Set USRCMD_REG[2:0]=010b for Write command or 011b for Read command and then 
the command request is asserted. After that, busy flag (USRSTS_REG[0]) changes from 
‘0’ to ‘1’.  

4) CPU waits until the operation is completed or some errors (except verification error) are 
found by monitoring USRSTS_REG[8:0].  
 
Bit[0] and bit[8:5] are de-asserted to ‘0’ when command is completed. 
Bit[1] is asserted when some errors are detected. The error message is displayed on the 
console to show the error details (decoded from USRERRTYPE_REG[31:0]) and then the 
process is stopped.  
Bit[2] is asserted when data verification is failed. The verification error message is 
displayed on the console to show the error details. In this condition, CPU is still run until the 
operation is done or user presses any key(s) to cancel operation. 
Bit[3] is asserted to ‘1’ when buffer is overflow in Write command. After that, error message 
is displayed on the console and waits for 2 seconds to check USRSTS_REG[1] to confirm 
that overflow is not caused by NVMe error. 
Bit[4] is asserted to ‘1’ when buffer is underflow in Read command. After that, error 
message is displayed on the console and waits for 2 seconds to check USRSTS_REG[1] 
to confirm that underflow is not caused by NVMe error. 
Bit[8:5] is de-asserted to ‘0’ when all submodules are completed. 

 
While the command is running, current transfer size read from CURTESTSIZEL/H_REG is 
displayed every second. 

 
5) After system busy flags (USRSTS_REG[0] and USRSTS_REG[8:5]) are all de-asserted to 

‘0’, CPU calculates and displays the test result on the console, i.e., total time usage, total 
transfer size, and transfer speed. For the Write command, maximum buffer usage is also 
displayed before returning to the main menu. 
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3.1.3 SMART Command 

The sequence of the firmware when user selects SMART command is below. 
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be SMART command 

value.  
2) Set USRCMD_REG[2:0]=100b to send SMART command request to NVMe-IP. After that, 

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’. 
3) CPU waits until the operation is completed or some errors are found by monitoring 

USRSTS_REG[1:0].  
 
Bit[0] is de-asserted to ‘0’ when command is completed. After that, the data returned from 
SMART command is stored in CtmRAM. 
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on 
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally, 
the process is stopped.  
 

4) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU decodes SMART command 
information from CtmRAM (CTMRAM_REG), i.e., Remaining Life, Percentage Used, 
Temperature, Total Data Read, Total Data Written, Power On Cycles, Power On Hours, 
and Number of Unsafe Shutdown. 
 
More details of SMART log are described in NVM Express Specification. 
https://nvmexpress.org/resources/specifications/ 

 
3.1.4 Flush Command 

The sequence of the firmware when user selects Flush command is below. 
1) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be Flush command 

value.  
2) Set USRCMD_REG[2:0]=110b to send Flush command request to NVMe-IP. After that, 

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’. 
3) CPU waits until the operation is completed or some errors are found by monitoring 

USRSTS_REG[1:0].  
 
Bit[0] is de-asserted to ‘0’ when command is completed. After that, CPU returns to the main 
menu. 
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on 
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally, 
the process is stopped. 

https://nvmexpress.org/resources/specifications/
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3.1.5 Shutdown Command 

The sequence of the firmware when user selects Shutdown command is below. 
1) Set USRCMD_REG[2:0]=001b to send Shutdown command request to NVMe-IP. After 

that, busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’. 
2) CPU waits until the operation is completed or some errors are found by monitoring 

USRSTS_REG[1:0]. 
 
Bit[0] is de-asserted to ‘0’ when command is completed. After that, the CPU goes to the 
next step. 
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on 
the console to show the error details, decoded from USRERRTYPE_REG[31:0]. Finally, 
the process is stopped. 
 

3) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, the SSD and NVMe-IP change to 
inactive status. The CPU cannot receive the new command from user. The user must 
power off the test system. 
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3.2 Function list in Test firmware 
 

int exec_ctm(unsigned int user_cmd) 

Parameters user_cmd: 4-SMART command, 6-Flush command 

Return value 0: No error, -1: Some errors are found in the NVMe-IP 

Description Run SMART command or Flush command, following in topic 3.1.3 
(SMART Command) and 3.1.4 (Flush Command). 

 

Unsigned long long get_cursize(void) 

Parameters None 

Return value Read value of CURTESTSIZEH/L_REG 

Description Read CURTESTSIZEH/L_REG and return read value as function result. 

 

Int get_param(userin_struct* userin, unsigned int user_cmd) 

Parameters userin: Parameters from user, i.e., start address, total length in 512-byte 
unit, test pattern, sustain rate, DDR threshold (when running Read 
command), and buffer size. 
user_cmd: 2-Write command, 3-Read command 

Return value 0: Valid input, -1: Invalid input 

Description Receive the input parameters from the user and verify the value. When 
the input is invalid, the function returns -1. Otherwise, all inputs are 
updated to userin parameter. 

 

Void iden_dev(void) 

Parameters None 
Return value None 

Description Run Identify command, following in topic 3.1.1 (Identify command). 

 

Int setctm_flush(void) 

Parameters None 
Return value 0: No error, -1: Some errors are found in the NVMe-IP 

Description Set Flush command to CTMSUBMQ_REG and call exec_ctm function to 
operate Flush command. 

 

int setctm_smart(void) 

Parameters None 
Return value 0: No error, -1: Some errors are found in the NVMe-IP 

Description Set SMART command to CTMSUBMQ_REG and call exec_ctm function 
to operate SMART command. Finally, decode and display SMART 
information on the console 
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void show_error(void) 

Parameters None 

Return value None 

Description Read USRERRTYPE_REG, decode the error flag, and display error 
message following the error flag. 

 

Void show_pciestat(void) 

Parameters None 

Return value None 

Description Read PCIESTS_REG until the read value from two read times is stable. 
After that, display the read value on the console. 

 

Void show_result(void) 

Parameters None 

Return value None 

Description Print total size by calling get_cursize and show_size function. After that, 
calculate total time usage from global parameters (timer_val and 
timer_upper_val) and then display in usec, msec, or sec unit. Finally, 
transfer performance is calculated and displayed in MB/s unit. 

 

Void show_size(unsigned long long size_input) 

Parameters size_input: transfer size to display on the console 

Return value None 

Description Calculate and display the input value in Mbyte, Gbyte, or Tbyte unit 

 

void show_smart_hex(unsigned char *char_ptr16B) 

Parameters *char_ptr16B 

Return value None 

Description Display SMART data as hexadecimal unit. 

 

Void show_smart_raw(unsigned char *char_ptr16B) 

Parameters *char_ptr16B 

Return value None 

Description Display SMART data as decimal unit when the input value is less than 4 
MB. Otherwise, display overflow message. 

 

Void show_smart_unit(unsigned char *char_ptr16B) 

Parameters *char_ptr16B 

Return value None 

Description Display SMART data as GB or TB unit. When the input value is more 
than limit (500 PB), the overflow message is displayed instead. 
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Void show_vererr(void) 

Parameters None 

Return value None 

Description Read RDFAILNOL/H_REG (error byte address), EXPPATW0-W3_REG 
(expected value), and RDPATW0-W3_REG (read value) to display 
verification error details on the console. 

 

Void shutdown_dev(void) 

Parameters None 
Return value None 

Description Run Shutdown command, following in topic 3.1.5 (Shutdown Command) 

 

int wrrd_dev(unsigned int user_cmd) 

Parameters user_cmd: 2-Write command, 3-Read command 
Return value 0: No error, -1: Receive invalid input or some errors are found. 

Description Run Write command or Read command, following in topic 3.1.2 
(Write/Read command) 
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4 Example Test Result 
 
The example test result when running demo system by using 512 GB Samsung 970 Pro is shown 
in Figure 4-1. 
 

 
Figure 4-1 Test Performance of NVMe-IP with DDR demo by using Samsung 970 Pro SSD 

 
When running NVMe-IP with DDR demo on KCU105 board, write sustain performance is about 
2,285 Mbyte/sec while read sustain performance is about 3,272 Mbyte/sec.  
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5 Revision History  
 

Revision Date Description 

1.3 27-Jul-22 Add buffer size setting 

1.2 2-Jul-21 Update DdrCtrl details 

1.1 30-Mar-21 Add SMART, Flush, and Shutdown command 

1.0 20-Apr-18 Initial version release 
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