
dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 1

2-ch RAID0 Design (NVMe-IP) reference design manual
Rev1.1 5-Jun-18

1 Introduction

Figure 1-1 RAID0 by 2 SSDs data format

RAID0 system uses multiple storages to extend total storage capacity and increase write/read
performance. Assumed that total number of device is N, total storage capacity is equal to N
multiply by amount of storage. Write and read speed of RAID0 are almost equal to N multiply by
speed of one SSD.

Data format of RAID0 is shown in Figure 1-1. Data stream of the host side are split into a small
stripe and transfer to one SSD at a time. Stripe size is the data size to store in one SSD before
switching to other SSDs.

In the reference design, two SSDs are applied to run RAID0 system. Stripe size is equal to 512
bytes (one sector unit). Two SSDs connecting in the system should use same model to match
characteristic and get the best performance and capacity. By using RAID0 design, the total
capacity is equal to two times of one SSD and the performance for both write and read are almost
two times of one SSD performance. In our test system, Write speed of RAID0 by NVMe-IP is
about 4200 MB/s and Read speed is about 6200 MB/s. (Performance of one NVMe-IP demo by
using one SSD are 2100 MB/s for Write command and 3200 MB/s for Read command).

The demo does not include DDR, but uses only FIFO implemented by Embedded Memory to be
the buffer. Test performance in the demo is average speed. The demo is suitable for ultra-speed
data recording application which has flow control to pause data transferring when SSD is not
ready to transfer data. User can modify RAID0 reference design to increase the numbers of
NVMe SSD to achieve the better performance and bigger disk capacity. Also, DDR can be added
to be data buffer when high performance as sustain rate is required.

Before running the reference design, it is recommended to study NVMe-IP datasheet and single
channel demo firstly from following link.
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_datasheet_intel_en.pdf
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_intel_en.pdf
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_instruction_intel_en.pdf

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 2

2 Hardware overview

N
V

M
e

 S
S

D
 #

0
N

V
M

e
 S

S
D

 #
1

Figure 2-1 RAID0x2 demo system by using NVMe-IP

The hardware system is split into three groups following the interface i.e.

1) TestGen: This block is the example of user logic to write and read data with RAID0 system.
TestGen module generates test data to U2IPFIFO at the highest speed in Write command.
FIFO full is monitored to pause data writing. For Read command, TestGen reads and
verifies test data from IP2UFIFO at the highest speed. FIFO empty is monitored to pause
data reading. TestGen uses 256-bit data bus and runs in UserClk domain which is equal to
275 MHz, so maximum bandwidth of TestGen is 8800 MB/s which is more than maximum
performance of two NVMe SSDs.

2) RAID: Two NVMe-IPs are applied to control two NVMe SSDs. Raid0x2 arranges data
stored in two SSDs as RAID0 format. Raid0x2 decodes the current address to select one
SSD to transfer data with TestGen. Data bus size of RAID0 is 256-bit which is two times of
NVMe-IP to match data bandwidth of two SSDs. Two FIFO sets (TxFF and RxFF) are
connected between Raid0x2 and NVMe-IP to convert data bus size.

3) CPU: Test operation in the demo is controlled by user through JTAG UART. CPU firmware
is designed to receive test parameters and the command from user. CPU sets parameters
to the hardware through Avalon-MM bus. Avl2Reg has the register sets of test parameters
which are mapped to different CPU memory address. Avl2Reg decodes the address of
Avalon-MM bus to select the active parameter. For write access, Write data from
Avalon-MM bus is set to the selected parameter following the address. For read access,
Read data from selected parameter is returned to Avalon-MM bus. Read access is applied
for CPU monitoring and displaying the hardware status to the user.

More details of the hardware are described as follows.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 3

2.1 TestGen

This module is designed to generate Test pattern to WrFf in Write command or reads data
from RdFf to verify in Read command at the fastest speed to check system performance. The
details of hardware inside TestGen are shown in Figure 2-2.

Figure 2-2 TestGen hardware

Figure 2-3 Timing diagram of Write operation in TestGen

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 4

To start Write operation, rWrTrans is asserted to ‘1’ when WrPattStart from Avl2Reg is
asserted to ‘1’. When rWrTrans=’1’ and WrFfAFull=’0’, rWrFfWrEn[0] is asserted to ‘1’ to send
test data to WrFf. If WrFfAFull=’1’, rWrFfWrEn[0] will be de-asserted to ‘0’ to pause data
transferring. rDataCnt is data counter to check total transfer size, increased by rWrFfWrEn[0].
When total data are transferred completely (rDataCnt=EndSize), rWrTrans and rWrFfWrEn[0]
are de-asserted to ‘0’ to stop data transferring.

For Read operation, RdFfRdEn signal is designed by using NOT logic to RdFfEmpty.
rDataCnt is increased when RdFfRdEn is asserted to ‘1’.

Block no.1 in lower side of Figure 2-2 shows the logic for generating test pattern in TestGen
module. To create unique test data for each sector, test pattern in this demo is designed as
shown in Figure 2-4.

Figure 2-4 Test pattern format in each sector

Test pattern consists of two parts, i.e. 64-bit header in word#0 and word#1 of each sector and
test data in word#2 – word#127. 64-bit header is created by using LBA address value of the
data (LBA address is the address in sector unit). As shown in Figure 2-2, TrnAddr is used to
be initial value of rTrnAddr. rTrnAddr is applied to be 64-bit header of each sector and
increased after completing transfer one sector data. rDataCnt and write/read enable signal
are monitored to check end of sector transferring.

TestGen supports to generate five patterns, i.e. 32-bit increment, 32-bit decrement, all 0, all 1,
and 32-bit LFSR. 32-bit increment is generated by using lower-bit of rTrnAddr and rDataCnt.
Decrement pattern is designed by using NOT logic with increment data. To create 32-bit LFSR
counter, 256-bit data is designed by using two sets of 32-bit LFSR pattern as shown in Figure
2-5.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 5

Figure 2-5 LFSR pattern in TestGen

Start value of LFSR is designed by using combination signal of 32-bit LBA address and NOT
logic of LBA address (LBAAddrB means NOT logic of LBAAddr signal). PattD0/D2/D4/D6 are
the sequence of LFSR counter set#0. The initial value of LFSR#0 consists of LBAAddr[15:0]
and NOT LBAAddr[31:16]. PattD1/D3/D5/D7 are the sequence of LFSR counter set#1. The
initial value of LFSR#1 consists of NOT LBAAddr[15:0] and LBAAddr[31:16]. 256-bit data is
generated within one clock, so PattD2-D7 must be calculated as look-ahead logic.

3-bit PattSel signal are used to select one of five test patterns. Header Inserter logic inserts
64-bit header to be the 1st data of each sector. After that, test data from pattern counter is
selected to be rWrFfWrData. In Read command, rWrFfWrData is used to be expected value to
compare with read data from FIFO (RdFfRdData). PattFail is asserted to ‘1’ when data
verification is failed.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 6

2.2 RAID

User interface of RAID is designed by using dgIF typeS format. CMD interface is connected to
Avl2Reg to receive the parameter from user through JTAG UART. Data bus size of RAID
block is 256-bit which is connected with U2IPFIFO and IP2UFIFO. Another side of RAID is
connected to two NVMe SSDs. The system includes two IdenRAMs for receiving Iden I/F of
NVMe-IP#0 - #1. The hardware details of RAID are shown in Figure 2-6.

Raid0x2

State

M/C

Data

Switch

dgIF typeS (CMD)

dgIF typeS (Data)

Avl2Reg

U2IPFIFO

(Write)
TXFF#1

RXFF#1

256

dgIF typeS (CMD)#0

dgIF typeS (CMD)#1

128

128

256

256

256

256

NVMeRaid0x2IP

256IP2UFIFO

(Read)

IdenRAM

x 2 Iden I/F#0

Iden I/F#1

DG

NVMe IP

#1

DG

NVMe IP

#0

TXFF#1

RXFF#1

128

128

Avalon-ST

PCIe

Hard IP

#0

Avalon-ST

PCIe

Hard IP

#1

Figure 2-6 RAID hardware

The hardware inside RAID consists of three modules, i.e. Raid0x2, two FIFO sets, and two
NVMe-IPs.

2.2.1 NVMe-IP

NVMe-IP implements NVMe protocol of Host side to access NVMe SSD. User interface is
simple designed by using dgIF typeS format. NVMe-IP is designed to connect with Avalon-ST
PCIe Hard IP which is Hard IP in IntelFPGA device. More details of NVMe-IP are described in
datasheet.
http://www.dgway.com/products/IP/NVMe-IP/dg_nvmeip_datasheet_intel_en.pdf

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 7

2.2.2 FIFO

Two FIFOs are applied for one NVMe-IP. TxFIFO is designed to convert 256-bit data which is
Raid0x2 bus size to 128-bit data which is NVMe-IP bus size. FIFO size is 16 kByte, so it can
store data up to 31 sectors. RxFIFO size is same as TxFIFO, but it converts data from 128-bit
to 256-bit.

2.2.3 Raid0x2

Raid0x2 consists of state machine for controlling command interface and Data Switch for
controlling data interface.

After receiving new command request from Avl2Reg, state machine calculates the address
and transfer length of each NVMe-IP by decoding user parameter inputs. Next, state machine
generates command request with the valid address and length to all NVMe-IPs.

State machine is responsible to control Data Switch for selecting the active NVMe-IP channel.
State machine calculates the current sector address by loading the initial value from user
inputs. The address is updated (increased by 1) at the end of one sector data transferring with
U2IPFIFO/IP2UFIFO. The lower bit of current sector is used to select NVMe channel (‘0’ for
NVMe-IP#0 and ‘1’ for NVMe-IP#1).

There are many pipeline registers to switch data bus of two NVMe channels. The overhead
time from pipeline register and control signal is about 6 clock cycles for transferring 512-byte
data (16x256-bit). The overhead time to transfer 512-byte data is 27% (6 / (16+6) = 27%). To
compensate the overhead time, clock frequency of Raid0x2 must be high enough. From
calculation, at least 317.5 MHz should be used (317.5 = 1.27 x 250 MHz, 250 MHz is PCIe
Clock frequency for Gen3 speed). 317.5 MHz is too high to meet timing constraint in some
FPGA devices. In the reference design, 275 MHz is the maximum frequency which can
implement without timing constraint problem. So, performance of RAID0 operation may less
than two times of one SSD. From test result, read performance of RAID0 = 6200 MB/s which
is almost equal to two times of one channel (one channel shows read performance = 3200
MB/s). But write performance of RAID0 is equal to two times of one channel.

The user interface of Raid0x2 is shown in Table 2-1. Command and data interface are
designed as dgIF typeS format. Please see more details of dgIF types format from NVMe-IP
datasheet.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 8

Table 2-1 Signal description of Raid0x2 (only User interface)

Signal Dir Description

User Interface

RstB In Reset signal. Active low. Please use same reset signal as NVMe-IP.

Clk In Use same clock as Clk signal of NVMe-IP. The frequency must be more than or equal to

PCIeClk (Clock output of Avalon-ST PCIe Hard IP: 125 MHz for Gen2, 250 MHz for Gen3).

dgIF typeS

UserCmd[1:0] In User Command. “00”: Identify command, “10”: Write PCIe SSD, ”11”: Read PCIe SSD.

UserAddr[47:0] In Start address to write/read SSD in sector unit (512 byte). From SSD characteristic, it is

recommended to set bit[3:0]=”0000” to align 8 Kbyte size (2xSSD page size).

Write/Read performance in most SSD are reduced when start addrss is not aligned to page

size (4 Kbyte).

UserLen[47:0] In Total transfer size in the request in sector unit (512 byte). Valid from 1 to

(LBASize-UserAddr).

UserReq In Request the new command. Asserted to ‘1’ with valid value on UserCmd/UserAddr/UserLen

signals. Can be asserted to ‘1’ when the IP is Idle (UserBusy=’0’).

UserBusy Out IP Busy status. ‘0’-IP is idle, ‘1’-IP is busy.

New request will not be allowed if this signal is asserted to ‘1’.

LBASize[47:0] Out Total capacity of SSD in sector unit (512 byte). Default value is 0.

This value is equal to two times of LBASize value output from IP#0.

UserError Out Error flag. Assert to ‘1’ when UserErrorType is not equal to 0.

The flag can be reset only by de-asserting RstB to ‘0’.

UserErrorType[0-1][31:0] Out Error status, directly mapped from UserErrorType in each NVMe-IP. [0]-IP#0, [1]-IP#1

UserFifoWrCnt[15:0] In Write data counter of User received FIFO. Used to check FIFO space size.

If FIFO size signal is less than 16-bit, please fill ‘1’ to upper bit.

UserFifoWrEn is asserted to ‘1’ for 16 clock cycles to send 512-byte data when

UserFifoWrCnt[15:5] is not equal to all 1.

UserFifoWrEn Out Write data valid of User received FIFO. Assert to ‘1’ to write data.

UserFifoWrData[255:0] Out Write data bus of User received FIFO. Synchronous to UserFifoWrEn.

UserFifoRdCnt[15:0] In Read data counter of User transmit FIFO. Used to check total data in FIFO.

If FIFO size signal is less than 16-bit, please fill ‘0’ to upper bit.

UserFifoRdEn can be asserted to ‘1’ for 16 clock cycles to read 512-byte data when

UserFifoRdCnt[15:4] is not equal to 0.

UserFifoEmpty In FIFO empty flag of User transmit FIFO. This signal is unused in the design.

UserFifoRdEn Out Read valid of User transmit FIFO. Assert to ‘1’ to read data.

UserFifoRdData[255:0] In Read data returned from User transmit FIFO. Valid the next clock after UserFifoRdEn is

asserted to ‘1’.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 9

The operation of data interface in Raid0x2 module is shown by using timing diagram as
follows.

UserFifoRdCnt[15:0]

TxFifoWrCnt[Ch][15:4]

UserFifoRdData[255:0] D0

Write Command

UserFifoRdEn

TxFifoWrData[Ch][255:0] D0

TxFifoWrEn[Ch]

D1

D15D1

D2

D14D13

16 clock periods

(1b) Read side of U2IPFIFO has at

least 1-sector data available

(1a) Write side of TxFIFO[Ch]

has space area at least 2 sectors

(2) Read 1-sector data from U2IPTxFIFO

after both FIFOs are ready for transferring

(3) Read data from U2IPFIFO is valid in the next clock

(4) Forward data to TxFIFO of active channel

Red color: Signal to interface

with NVMe-IP

<65,472

>=16

D15D14D13

D12

Figure 2-7 Raid0x2 data interface timing diagram in Write command

When user sends Write command to RAID0, data is forwarded from U2IPFIFO to
TxFIFO[0]-[1]. One TxFIFO is active to transfer one sector data. After that, the active NVMe
channel is switched to the next channel for transferring the next sector, following RAID0
behavior. Before forwarding one sector data, UserFifoRdCnt and TxFifoWrCnt of active
channel are monitored to confirm that at least 1 sector data is stored in U2IPFIFO and
TxFIFO of active channel has at least 2-sector free space. After FIFO is ready,
UserFifoRdEn is asserted to ‘1’ for 16 clock cycles to transfer 512-byte data continuously.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 10

Figure 2-8 Raid0x2 data interface timing diagram in Read command

When user sends Read command to RAID0, data is forwarded from RxFIFO[0]-[1] to
IP2UFIFO, as shown in Figure 2-8. Similar to Write command, one RxFIFO is active to
transfer 512-byte. The active channel is switched to the next channel to transfer next
512-byte data. Before forwarding data, UserFifoWrCnt and RxFifoRdCnt of active channel
are monitored to confirm that at least 1 sector data is available in RxFIFO and IP2UFIFO has
at least 2-sector free space. UserFifoWrEn is asserted to ‘1’ for 16 clock cycles to transfer
512-byte data continuously.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 11

2.3 CPU and Peripherals

The hardware is connected to CPU through Avalon-MM bus, similar to other CPU peripherals.
Memory map of hardware registers to CPU is shown in Table 2-1. Avl2Reg is the module to
interface with CPU following memory map.

Avl2Reg connects to many hardwares in the system such as TestGen, Raid0x2, and
IdenRAM to get the control and status signals of each module. As shown in Figure 2-9, there
are two clock domains applied in this block, i.e. CpuClk (CPU Clock and Avalon-MM bus) and
UserClk (User clock domain for TestGen and RAID0 block).

AsyncAvlReg includes asynchronous circuit between CpuClk and UserClk. More details of
each hardware are described as follows.

CPU

AsyncAvlReg

Avalon-MM bus

Register I/F

Address Decoder

Register Set

(Write)

Data Multiplexer

(Read)

UserReg

TestGen

Raid0x2

IdenRAM

x2

CpuClk

UserClk

Avl2Reg

Figure 2-9 CPU and peripherals hardware

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 12

2.3.1 AsyncAvlReg

This module is designed to convert the signal interface of Avalon-MM to be register interface.
Also, it supports to convert clock domain from CpuClk to be UserClk domain. Timing diagram
of register interface is shown in Figure 2-10.

To write register, timing diagram is same as RAM interface. RegWrEn is asserted to ‘1’ with
the valid signal of RegAddr (Register address in 32-bit unit), RegWrData (write data of the
register), and RegWrByteEn (the byte enable of this access: bit[0] is write enable for
RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3] is used for
RegWrData[31:24]).

To read register, AsyncAvlReg asserts RegRdReq to ’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the read data is valid on RegRdData bus with
asserting RegRdValid to ‘1’.

Figure 2-10 Register interface timing diagram

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 13

2.3.2 UserReg

As shown in Figure 2-9, after RegWrEn or RegRdReq is asserted to ‘1’ to request write or
read register, RegAddr is loaded to Address decoder to select the active register. For write
register, RegWrData signal is loaded to be the new value of active register. In this module,
RegWrByteEn is not used, so CPU firmware needs to access the hardware register by using
32-bit pointer only.

For read request, CPU monitors status signals of many modules such as TestGen, Raid0x2,
and IdenRAM. To avoid timing constraint problem, many status signals are selected by using
multiplexer with two-stage pipeline registers. So, RegRdValid is asserted to ‘1’ after
RegRdReq is asserted for two clock cycles. Two latency clock cycles is designed by adding
two D Flip-flops to generate RegRdValid from RegRdReq.

Memory map of control and status signals inside UserReg module is shown in Table 2-2.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 14

Table 2-2 Register Map

Address Register Name Description

Rd/Wr (Label in “nvmeipraid0x2test.c”)

BA+0x000 User Address (Low) Reg [31:0]: Input to be start sector address

(UserAddr[31:0] of dgIF typeS for RAID0) Wr (USRADRL_REG)

BA+0x004 User Address (High) Reg [15:0]: Input to be start sector address

(UserAddr[47:32] of dgIF typeS for RAID0) Wr (USRADRH_REG)

BA+0x008 User Length (Low) Reg [31:0]: Input to be transfer length in sector unit

(UserLen[31:0] of dgIF typeS for RAID0) Wr (USRLENL_REG)

BA+0x00C User Length (High) Reg [15:0]: Input to be transfer length in sector unit

(UserLen[47:32] of dgIF typeS for RAID0) Wr (USRLENH_REG)

BA+0x010 User Command Reg [1:0]: Input to be user command (UserCmd of dgIF typeS for RAID0)

“00”-Identify, “10”-Write SSD, “11”-Read SSD.

When this register is written, the design generates command request to

RAID0 to start new command operation.

Wr (USRCMD_REG)

BA+0x014 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR Wr (PATTSEL_REG)

BA+0x100 User Status Reg [0]: UserBusy of dgIF typeS for RAID0 (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS for RAID0 (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

Rd (USRSTS_REG)

BA+0x104 Total device size (Low) Reg [31:0]: Total capacity of RAID0 in sector unit

(LBASize[31:0] of dgIF typeS for RAID0) Rd (LBASIZEL_REG)

BA+0x108 Total device size (High) Reg [15:0]: Total capacity of RAID0 in sector unit

(LBASize[47:32] of dgIF typeS for RAID0) Rd (LBASIZEH_REG)

BA+0x110 PCIe Status CH#0 Reg Status signal from Avalon-ST PCIe Hard IP#0

[0]: PCIe linkup status (‘0’: No linkup, ’1’: linkup)

[3:2]: PCIe link speed

(“00”: No linkup, “01”: PCIe Gen1, “10”: PCIe Gen2, “11”: PCIe Gen3)

[7:4]: PCIe link width status

(“0001”: 1 lane, “0010”: 2 lane, ”0100”: 4 lane, ”1000”: 8 lane)

[12:8]: Current LTSSM State. Please see more details of LTSSM value in

Avalon-ST PCIe Hard IP datasheet

Rd (PCIESTS0_REG)

BA+0x114 PCIe Status CH#1 Reg Same as PCIESTS0_REG, but signals are fed from Avalon-ST PCIe Hard

IP #1 Rd (PCIESTS1_REG)

BA+0x180 User Error Type CH#0 Reg [31:0]: Mapped to UserErrorType of NVMe-IP#0

Rd (USRERRTYPE0_REG)

BA+0x184 User Error Type CH#1 Reg [31:0]: Mapped to UserErrorType of NVMe-IP#1

Rd (USRERRTYPE1_REG)

BA+0x190 Completion Status CH#0 Reg [15:0]: Mapped to AdmCompStatus[15:0] of NVMe-IP#0

[31:16]: Mapped to IOCompStatus[15:0] of NVMe-IP#0 Rd (COMPSTS0_REG)

BA+0x194 Completion Status CH#1 Reg Same as COMPSTS0_REG, but signals are fed from NVMe-IP#1

Rd (COMPSTS1_REG)

BA+0x1A0 NVMe CAP CH#0 Reg [31:0]: Mapped to NVMeCAPReg[31:0] output of NVMe-IP#0

Rd (NVMCAP0_REG)

BA+0x1A4 NVMe CAP CH#1 Reg [31:0]: Mapped to NVMeCAPReg[31:0] output of NVMe-IP#1

Rd (NVMCAP1_REG)

BA+0x1B0 Test pin of NVMe-IP#0 Reg [31:0]: Mapped to TestPin output of NVMe-IP#0

Rd (NVMTESTPIN0_REG)

BA+0x1B4 Test pin of NVMe-IP#1 Reg [31:0]: Mapped to TestPin output of NVMe-IP#1

Rd (NVMTESTPIN1_REG)

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 15

Address Register Name Description

Rd/Wr (Label in “nvmeipraid0x2test.c”)

BA+0x200 Expected value Word0 Reg [31:0]: Latch value of expected data [31:0] in TestGen when running Read

command Rd (EXPPATW0_REG)

BA+0x204 Expected value Word1 Reg [31:0]: Latch value of expected data [63:32] in TestGen when running Read

command Rd (EXPPATW1_REG)

BA+0x208 Expected value Word2 Reg [31:0]: Latch value of expected data [95:64] in TestGen when running Read

command Rd (EXPPATW2_REG)

BA+0x20C Expected value Word3 Reg [31:0]: Latch value of expected data [127:96] in TestGen when running

Read command Rd (EXPPATW3_REG)

BA+0x210 Expected value Word4 Reg [31:0]: Latch value of expected data [159:128] in TestGen when running

Read command Rd (EXPPATW4_REG)

BA+0x214 Expected value Word5 Reg [31:0]: Latch value of expected data [191:160] in TestGen when running

Read command Rd (EXPPATW5_REG)

BA+0x218 Expected value Word6 Reg [31:0]: Latch value of expected data [223:192] in TestGen when running

Read command Rd (EXPPATW6_REG)

BA+0x21C Expected value Word7 Reg [31:0]: Latch value of expected data [255:224] in TestGen when running

Read command Rd (EXPPATW7_REG)

BA+0x240 Read value Word0 Reg [31:0]: Latch value of read data [31:0] in TestGen when running Read

command Rd (RDPATW0_REG)

BA+0x244 Read value Word1 Reg [31:0]: Latch value of read data [63:32] in TestGen when running Read

command Rd (RDPATW1_REG)

BA+0x248 Read value Word2 Reg [31:0]: Latch value of read data [95:64] in TestGen when running Read

command Rd (RDPATW2_REG)

BA+0x24C Read value Word3 Reg [31:0]: Latch value of read data [127:96] in TestGen when running Read

command Rd (RDPATW3_REG)

BA+0x250 Read value Word4 Reg [31:0]: Latch value of read data [159:128] in TestGen when running Read

command Rd (RDPATW4_REG)

BA+0x254 Read value Word5 Reg [31:0]: Latch value of read data [191:160] in TestGen when running Read

command Rd (RDPATW5_REG)

BA+0x258 Read value Word6 Reg [31:0]: Latch value of read data [223:192] in TestGen when running Read

command Rd (RDPATW6_REG)

BA+0x25C Read value Word7 Reg [31:0]: Latch value of read data [255:224] in TestGen when running Read

command Rd (RDPATW7_REG)

BA+0x280 Data Failure Address (Low) Reg [31:0]: Latch value of failure address [31:0] in byte unit when running Read

command Rd (RDFAILNOL_REG)

BA+0x284 Data Failure Address (High) Reg [24:0]: Latch value of failure address [56:32] in byte unit when running

Read command Rd (RDFAILNOH_REG)

BA+0x288 Current test byte (Low) Reg [31:0]: Current test data size of TestGen module in byte unit (bit[31:0])

Rd (CURTESTSIZEL_REG)

BA+0x28C Current test byte (High) Reg [24:0]: Current test data size of TestGen module in byte unit (bit[56:32])

Rd (CURTESTSIZEH_REG)

BA+0x2000

– 0x2FFF

Identify Controller Data

(IDENCTRL0_REG)

4Kbyte Identify Controller Data Structure from NVMe CH#0

BA+0x3000

– 0x3FFF

Identify Namespace Data

(IDENNAME0_REG)

4Kbyte Identify Namespace Data Structure NVMe CH#0

BA+0x4000

– 0x4FFF

Identify Controller Data

(IDENCTRL1_REG)

4Kbyte Identify Controller Data Structure from NVMe CH#1

BA+0x5000

– 0x5FFF

Identify Namespace Data

(IDENNAME1_REG)

4Kbyte Identify Namespace Data Structure NVMe CH#1

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 16

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as JTAG UART and Timer. Next, CPU
waits until PCIe connection of two SSDs is link up (PCISTS0_REG[0]=’1’ and
PCISTS1_REG[0]=’1’) and RAID0 is not busy (USRSTS_REG[0]=’0’). Finally, Main menu is
displayed.

CPU firmware supports three commands following USRCMD_REG value, i.e. “00” for Identify
command, “10” for Write command, and “11” for Read command. More details of the sequence in
each command are described as follows.

3.1 Identify command

The sequence of the firmware when user selects Identify command is below.
1) Set USRCMD_REG=”00”. Next, RAID0 sends Identify command to all NVMe-IPs. RAID0

busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG value. Bit[0] is de-asserted to ‘0’ when command is completed. Bit[1] is
asserted to ‘1’ when some errors are detected. In case of error condition, there is error
message displayed on the console. If the command is completed, the data from Identify
command of all NVMe-IPs will be stored in IdenRAMs.

3) CPU reads Identify controller data from IdenRAMs which are mapped to
IDENCTRL0/1_REG address. Then, CPU displays the information such as SSD model
name on the console. Also, RAID0 device capacity (LBASIZEL/H_REG) is displayed in GB
unit on the console.

3.2 Write/Read command

The sequence of the firmware when user selects Write/Read command is below.
1) Receive start address, transfer length, test pattern through JTAG UART. If some inputs are

invalid, the operation will be cancelled.
2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, PATTSEL_REG,

and USRCMD_REG (USRCMD_REG=”10” for Write command, and “11” for Read
command).

3) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[2:0].
If USRSTS_REG[2] (verification error) is asserted to ‘1’, verification error message will be
displayed. After that, CPU still runs until end of operation or user inputs any key to cancel
operation.

4) During running command, current transfer size reading from CURTESTSIZE_REG is
displayed every second. Finally, test performance is displayed on the console when
command is completed.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 17

4 Example Test Result

The example test result when running RAID0 demo system by using two 512 GB Samsung 960
Pro SSDs is shown in Figure 4-1.

4,261

6,273

0 1000 2000 3000 4000 5000 6000 7000

Raid0x2@Gen3
Read

Write

Mbyte/s
Figure 4-1 Performance of 2-ch RAID0 demo by using Samsung 960 Pro SSD

When running 2-ch RAID0 with 2 SSDs@Gen3 speed, write performance is about 4200
Mbyte/sec and read performance is about 6200 Mbyte/sec.

dg_nvmeip_raid0x2_refdesign_intel_en.doc

5-Jun-18 Page 18

5 Revision History

Revision Date Description

1.0 2-Oct-17 Initial version release
1.1 5-Jun-18 Update register map and description

Copyright: 2017 Design Gateway Co,Ltd.

