
dg_nvmeswip_refdesign_en.doc

2023/08/17

NVMeSW IP Core reference design manual
Rev1.1 17-Aug-23

1 NVMe .. 2
2 Hardware overview .. 4

2.1 TestGen .. 6
2.2 NVMe .. 9

2.2.1 NVMeSW-IP ... 9
2.2.2 Integrated Block for PCIe ... 9
2.2.3 Dual port RAM .. 10

2.3 CPU and Peripherals .. 11
2.3.1 AsyncAxiReg .. 12
2.3.2 UserReg ... 14

3 CPU Firmware .. 17
3.1 Identify Command ... 17
3.2 Write/Read Command .. 18
3.3 SMART Command .. 19
3.4 Flush Command ... 19
3.5 Shutdown Command .. 20

4 Example Test Result ... 21
5 Revision History .. 22

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 2

NVMeSW IP Core reference design manual
Rev1.1 17-Aug-23

1 NVMe

NVM Express (NVMe) defines the interface for the host controller to access solid state drive
(SSD) by PCI Express. NVM Express optimizes the process to issue command and completion by
using only two registers (Command issue and Command completion). Also, NVMe supports
parallel operation by supporting up to 64K commands within single queue. 64K command entries
improve transfer performance for both sequential and random access.

In PCIe SSD market, two standards are used, i.e. AHCI and NVMe. AHCI is the old standard to
provide the interface for SATA hard disk drive while NVMe is optimized for non-volatile memory,
like SSD. The comparison between both AHCI and NVMe protocol in more details is described in
“A Comparison of NVMe and AHCI” document.
https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

The example of NVMe storage device is shown in http://www.nvmexpress.org/products/.

Figure 1-1 NVMe protocol layer

To access NVMe SSD, the general system implements NVMe driver running on the processor, as
shown in the left side of Figure 1-1. The physical connection of NVMe standard is PCIe connector
which is one-to-one type, so one PCIe host can connect to one PCIe device. When many SSDs
must be connected to the one host, PCIe switch must be applied to extend the number of SSDs.
When PCIe switch is applied, the driver on the processor must support to scan the NVMe SSD
operating under PCIe switch.

NVMeSW-IP implements NVMe driver to access NVMe SSD and the function to scan NVMe SSD
through one PCIe switch by using pure-hardware logic. So, user can access NVMe SSD without
including any processor and driver by using NVMeSW-IP in FPGA board.

https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf
http://www.nvmexpress.org/products/

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 3

Figure 1-2 Direct connection and PCIe switch connection

Figure 1-2 shows two hardware connections for connecting NVMeSW-IP to NVMe SSD. The left
side is the direct connection when one PCIe SSD is applied. PCIe connector of FPGA connects to
an NVMe SSD without the intermediate hardware.

The right side shows the connection through PCIe switch when multiple SSDs must be controlled
by one NVMeSW-IP. Though the number of connected SSDs is increased, transfer speed is same.
NVMeSW-IP can operate with one SSD at a time. Also, the latency to transfer packet between
NVMeSW-IP and the NVMe SSD is increased when connecting the SSD through PCIe switch.
Write performance of some SSDs may be little dropped because of more latency time.

According to PCIe specification, one PCIe switch supports up to 32 NVMe SSDs, but
NVMeSW-IP is designed to support up to 4 NVMe SSDs. Supporting more devices is as optional.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 4

2 Hardware overview

Figure 2-1 NVMeSW-IP demo hardware

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 5

The hardware system can be split into three groups, i.e. TestGen, NVMe, and CPU. TestGen is
the test logic to generate test data stream for NVMeSW-IP through U2IPFIFO. Also, TestGen
reads data stream output from NVMeSW-IP through IP2UFIFO, and then verify it. NVMe includes
the NVMeSW-IP and the PCIe hard IP (Integrated Block for PCI Express). NVMe supports to
access NVMe SSD directly or through PCIe switch. CPU and LAxi2Reg are designed to interface
with user through Serial interface. User can set command and the test parameters through Serial
console. Also, the current status of the test hardware is monitored by user through Serial console.
The CPU firmware must be implemented to control the sequence for operating each command.

There are three clock domains displayed in Figure 2-1, i.e. CpuClk, UserClk, and PCIeClk.
CpuClk is the clock domain of CPU and its peripherals. This clock must be stable clock which is
independent from the other hardware interface. PCIeClk is the clock output from PCIe hard IP to
synchronous with data stream of 128 bit AXI4 stream bus. When the PCIe hard IP is set to 4 lane
PCIe Gen3, PCIeClk frequency is equal to 250 MHz. UserClk is the example user clock domain
which is independent from the other clock domains. So, UserClk is the main clock domain for
running the user interface of NVMeSW-IP, RAM, FIFO, and TestGen. According to NVMeSW-IP
datasheet, clock frequency of UserClk must be more than or equal to PCIeClk. In this reference
design, UserClk is equal to 275 MHz.

To test data interface of NVMeSW-IP, four memory blocks are implemented, i.e. CtmRAM,
IdenRAM, U2IPFIFO, and IP2UFIFO. CtmRAM stores returned data from SMART command
while IdenRAM stores returned data from Identify command. U2IPFIFO stores data for Write
command while IP2UFIFO stores data for Read command. TestGen is designed to monitor flow
control signal of U2IPFIFO and IP2UFIFO to be always read and write data when the FIFO is
ready. So, the FIFO depth is not large by setting to 512 x 128 bit and implemented by BlockRAM.
When running SMART command or Identify command, the returned data from the command is
processed on CPU. So, another side of CtmRAM and IdenRAM is connected to LAxi2Reg to allow
CPU accessing through AXI4-Lite bus.

More details of the hardware are described as follows.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 6

2.1 TestGen

Figure 2-2 TestGen interface

TestGen module is the test logic to send test data to NVMeSW-IP through U2IPFIFO when
operating Write command. Also, the test data is fed to be the expected value to verify the read
data from NVMeSW-IP through IP2UFIFO when operating Read command. Control logic
asserts Write enable and Read enable to ‘1’ when the FIFOs are ready. Data bandwidth of
TestGen is matched to NVMeSW-IP by running at the same clock and using same data bus
size, so NVMeSW-IP can transfer data with U2IPFIFO and IP2UFIFO without waiting data
ready. As a result, the test logic shows the best performance to write and read data with the
SSD through NVMeSW-IP.

Register file in the TestGen receives test parameters from user, i.e. total transfer size, transfer
direction, verification enable, and test pattern selector. So, the internal logic includes the
counter to control total transfer size of test data. The details of hardware logic of TestGen are
shown in Figure 2-3.

Figure 2-3 TestGen hardware

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 7

As shown in the right side of Figure 2-3, flow control signals of FIFO are WrFfAFull and
RdFfEmpty. When FIFO is almost full during write operation (WrFfAFull=’1’), WrFfWrEn is
de-asserted to ‘0’ to pause data sending to FIFO. For read operation, when FIFO has data
(RdFfEmpty=‘0’), the logic reads data from FIFO to compare with the expected data by
asserting RdFfRdEn to ‘1’.

The logic in the left side of Figure 2-3 is designed to count transfer size. When total data count
is equal to the end size (set by user), write enable or read enable of FIFO is de-asserted to ‘0’.
So, the total data count to write FIFO or read FIFO is controlled by user.

The lower side of Figure 2-3 shows the details to generate test data for writing to FIFO or
verifying data from FIFO. There are five patterns to generate, i.e. all zero, all one, 32-bit
incremental data, 32-bit decremental data, and LFSR counter. All zero and all one are fixed
value to select test data through Pattern Selector. While 32-bit incremental data is designed
by using 53-bit counter. The decremental data can be designed by connecting NOT logic to
increment data. The LFSR pattern is designed by using LFSR counter. The equation of LFSR
is x^31 + x^21 + x + 1. Data bus size of TestGen is 128-bit, so four 32-bit LFSR data must be
generated within one clock. The logic to design LFSR must use look-ahead style to generate
four LFSR data in the same clock.

When creating all zero or all one pattern, every bit of data is fixed zero or one respectively.
While other patterns are designed by separating the data as two parts to create unique test
data in every 512-byte data. As shown in Figure 2-4, 512-byte data consists of 64 bit header
in Dword#0 and Dword#1 and the test data in remaining words of 512-byte data (Dword#2 –
Dword#127).

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

64-bit header is created by using the address in 512-byte unit. Therefore, Address counter
inside TestData Generator generates the current address to be 64-bit header data. The initial
value of the address counter is set by user. After that, the address counter is incremented
when finishing to transfer 512-byte data.

Test data is fed to be write data to the FIFO or the expected data comparing with the read data
from FIFO. Fail flag is asserted to ‘1’ when data verification is failed. The example of timing
diagram to write data to FIFO is shown as follows.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 8

WrPattStart

rWrTrans

rDataCnt 0 1

1. rWrTrans is asserted to

‘1’ after WrPattStart=’1'

1

2

2. rWrFfWrEn=‘1’ when

rWrTrans=’1' and WrFfAFull=’0'.

WrFfAFull

rWrFfWrEn[0]

2 3 4 rEndSize rEndSize+1

4

4. rWrFfWrEn is deasserted to ‘0’

when WrFfAFull=’1'.

3

3. rDataCnt is increment

when rWrFfWrEn=’1'

5

5. rWrTrans and rWrFfWrEn are deasserted to

‘0’ when rDataCnt=rEndSize and rWrFfWrEn=’1'.

Figure 2-5 Timing diagram of Write operation in TestGen

1) WrPattStart is asserted to ‘1’ for one clock cycle when user sets the register to start write

operation. In the next clock, rWrTrans is asserted to ‘1’ to enable the control logic for
generating write enable to FIFO.

2) Write enable to FIFO (rWrFfWrEn) is asserted to ‘1’ when two conditions are met. First,
rWrTrans must be asserted to ‘1’ during the write operation being active. Second, the
FIFO must not be full by monitoring WrFfAFull=’0’.

3) The write enable is fed back to be counter enable to count total data in the write operation.
4) If FIFO is almost full (WrFfAFull=’1’), the write process is paused by de-asserting

rWrFfWrEn to ‘0’.
5) When total data count is equal to the set value, rWrTrans is de-asserted to ‘0’. At the same

time, rWrFfWrEn is also de-asserted to ‘0’ to stop data generating.

For read timing diagram, read enable of FIFO is controlled by empty flag of FIFO. Comparing
to write enable, the read enable signal is not stopped by total count and not started by start
flag. When the read enable is asserted to ‘1’, the data counter and address counter are also
increment for counting total data and generating the header of expect value.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 9

2.2 NVMe

Figure 2-6 NVMe hardware

Figure 2-6 shows the example to interface NVMeSW-IP in the reference design. The user
interface of NVMeSW-IP is split into control interface and data interface. The control interface
receives the parameters of the command through custom command interface or dgIF typeS,
depending on the command. Custom command interface is used when operating SMART
command or Flush command.

The data interface of NVMeSW-IP has four signal groups, i.e. custom command RAM
interface, Identify interface, FIFO input interface (dgIF types), and FIFO output interface (dgIF
types). Data bus width of all signal groups is 128-bit. The custom command RAM interface is
bi-directional interface while the other interfaces are one directional interface. In the reference
design, the custom command RAM interface is used to transfer data of SMART command
from NVMeSW-IP to LAxi2Reg only.

2.2.1 NVMeSW-IP

The NVMeSW-IP implements NVMe protocol of the host side to access one NVMe SSD
directly or multiple SSDs through PCIe switch. The NVMeSW-IP supports six commands, i.e.
Write, Read, Identify, Shutdown, SMART, and Flush. NVMeSW-IP can connect to the PCIe
hard IP directly. More details of NVMeSW-IP are described in datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_nvmeswip_data_sheet_en.pdf

2.2.2 Integrated Block for PCIe

This block is the hard IP in Xilinx device which implements Physical, Data Link, and
Transaction Layers of PCIe specification. More details are described in Xilinx document.
PG156: UltraScale Devices Gen3 Integrated Block for PCI Express
PG213: UltraScale+ Devices Integrated Block for PCI Express

https://dgway.com/products/IP/NVMe-IP/dg_nvmeswip_data_sheet_en.pdf

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 10

2.2.3 Dual port RAM

Two dual port RAM are implemented in the reference design to store data from Identify
command and SMART command. The data size of Identify command is 8Kbyte, so IdenRAM
size is 8Kbyte. NVMeSW-IP and LAxi2Reg have different data bus size, so IdenRAM sets the
different bus size for two interfaces. The data interface of NVMeSW-IP (write port) is 128-bit
while the interface of LAxi2Reg (read port) is 32-bit.

Furthermore, NVMeSW-IP has double word enable to write only 32-bit data in some cases.
The RAM setting on Xilinx IP tool supports the write byte enable. The small logic to convert
double word enable to be write byte enable is designed as shown in Figure 2-7.

Figure 2-7 Byte write enable conversion logic

Bit[0] of WrDWEn with WrEn signal are the inputs to AND logic. The output of AND logic is fed
to bit[3:0] of IdenRAM byte write enable. Bit[1] of WrDWEn is applied to generate bit[7:4] of
IdenRAM write byte enable, and so on.

Similar to IdenRAM, CtmRAM is implemented by true dual-port RAM with byte write enable.
The small logic to convert double word enable of custom interface to be byte write enable is
applied as shown in Figure 2-7. But CtmRAM uses true dual-port RAM, not simple dual port
RAM. This implementation is designed to support the additional custom command by using
custom interface (supported as optional). For SMART command, the simple dual port RAM
like IdenRAM could be used because data is transferred from NVMeSW-IP to LAxi2Reg only.
The data size of SMART command is 512-byte.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 11

2.3 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. To control and monitor the test logic of NVMeSW-IP, the test logic is
connected to CPU as a peripheral on 32-bit AXI4-Lite bus. CPU assigns the different base
address and the address range for each peripheral.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. So, the hardware logic must be designed to support AXI4-lite bus standard for writing
and reading the register. LAxi2Reg module is designed to connect the CPU system as shown
in Figure 2-8.

Figure 2-8 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32 bit data bus size (same as
AXI4-Lite data bus size). Otherwise, AsyncAxiReg includes asynchronous logic to support
clock crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals to control the other
modules, i.e. CtmRAM, IdenRAM, NVMeSW-IP, and TestGen. More details of AsyncAxiReg
and UserReg are described as follows.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 12

2.3.1 AsyncAxiReg

Figure 2-9 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e. LAxiAw* (Write address
channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* (Read
address channel), and LAxir* (Read data channel). More details to build custom logic for
AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run parallel. So, the
logic inside AsyncAxiReg to interface with AXI4-lite bus is split into four groups, i.e. Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-9. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with the shared register address. Otherwise, Read
control I/F and Read data I/F of AXI4-Lite bus are latched and transferred to be Read register
interface with the shared register address.

The simple register interface is designed to compatible to general RAM interface for write
transaction. The read transaction of the register interface is little modified from RAM interface
by adding RdReq signal. The address of register interface is shared for write and read
transaction. So, user cannot write and read the register at the same time. The timing diagram
of the register interface is shown in Figure 2-10.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 13

Clk

RegAddr[13:0]

RegWrData[31:0]

RegWrByteEn[3:0]

RegWrEn

RegRdReq

RegRdValid

RegRdData[31:0]

A0

WD0

BE0

A1

RD0

1

2

3

1. RegWrEn is asserted to ‘1’ ,

synchronous with RegAddr, RegWrData,

and RegWrByteEn for writing register

2. RegRdReq is asserted to ‘1’,

synchronous with RegAddr to

send read register request

3. RegRdValid is asserted to ‘1’

synchronous with RegRdData

to return valid register data

Blue: Output signal

Red: Input signal

Figure 2-10 Register interface timing diagram

1) To write register, the timing diagram is same as general RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bit to be the byte data valid, i.e. bit[0] for RegWrData[7:0], bit[1] for
RegWrData[15:8], and so on.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 14

2.3.2 UserReg

Figure 2-11 UserReg Interface

The address range to map to UserReg is split into six areas, as shown in Figure 2-11.
1) 0x0000 – 0x00FF: mapped to set the test parameters of NVMeSW-IP and TestGen. This

area is write access only.
2) 0x0200 – 0x02FF: mapped to set the test parameters of custom command interface

(NVMeSW-IP). This area is write access only.
3) 0x0100 – 0x01FF: mapped to read the status of NVMeSW-IP and TestGen. This area is

read access only.
4) 0x0300 – 0x03FF: mapped to read the status of custom command interface

(NVMeSW-IP). This area is read access only.
5) 0x2000 – 0x3FFF: mapped to read data from IdenRAM. This area is read access only.
6) 0x4000 – 0x5FFF: mapped to custom command RAM interface (NVMeSW-IP). This area

supports write access and read access. The demo shows only read access by running
SMART command.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit size, so write byte enable (RegWrByteEn) is not used. To
set the parameters in the hardware, the CPU must use 32-bit pointer to force 32-bit valid
value of the write data.

To read register, two step multiplexers are designed. Register Mux is the data multiplexer to
select the read data within each address area. The lower bit of RegAddr is applied in the
Register Mux. Next, the address decoder uses the upper bit to select the read data from each
area for returning to CPU. Totally, the latency of read data is equal to two clock cycles, so
RegRdValid is created by RegRdReq with asserting two D Flip-flips.

More details of the address mapping within UserReg module is shown in Table 2-1.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 15

Table 2-1 Register Map

Address Register Name Description

Wr/Rd (Label in the “nvmeswiptest.c”)

0x0000 – 0x00FF: Control signals of NVMeSW-IP and TestGen (Write access only)

BA+0x0000 User Address (Low) Reg [31:0]: Input to be start address as 512-byte unit

(UserAddr[31:0] of dgIF typeS) (USRADRL_REG)

BA+0x0004 User Address (High) Reg [15:0]: Input to be start address as 512-byte unit

(UserAddr[47:32] of dgIF typeS) (USRADRH_REG)

BA+0x0008 User Length (Low) Reg [31:0]: Input to be transfer length as 512-byte unit

(UserLen[31:0] of dgIF typeS) (USRLENL_REG)

BA+0x000C User Length (High) Reg [15:0]: Input to be transfer length as 512-byte unit

(UserLen[47:32] of dgIF typeS) (USRLENH_REG)

BA+0x0010 User Command Reg [2:0]: Input to be user command (UserCmd of dgIF typeS for NVMeSW-IP)

“000”: Identify, “001”: Shutdown, “010”: Write SSD, “011”: Read SSD,

“100”: SMART, “110”: Flush, “101”/”111”: Reserved

[9:8]: Input to select SSD number (UserDevSel[1:0] of NVMeSW-IP)

When this register is written, the command request is sent to NVMeSW-IP to

start the operation.

(USRCMD_REG)

BA+0x0014 Test Pattern Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR (PATTSEL_REG)

BA+0x0020 NVMe Timeout Reg [31:0]: Timeout value of NVMeSW-IP

(TimeOutSet[31:0] of NVMeSW-IP) (NVMTIMEOUT_REG)

0x0100 – 0x01FF: Status signals of NVMeSW-IP and TestGen (Read access only)

BA+0x0100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy)

[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

[19:16]: DevDetect[3:0] output from NVMeSW-IP

[25:24]: UserErrorDev[1:0] output from NVMeSW-IP

(USRSTS_REG)

BA+0x010C User Error Type Reg [31:0]: User error status

(UserErrorType[31:0] of dgIF typeS) (USRERRTYPE_REG)

BA+0x0110 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup)

[3:2]: PCIe link speed from PCIe hard IP

(“00”: Not linkup, “01”: PCIe Gen1, “10”: PCIe Gen2, “11”: PCIe Gen3)

[7:4]: PCIe link width status from PCIe hard IP

(“0001”: 1 lane, “0010”: 2 lane, ”0100”: 4 lane, ”1000”: 8 lane)

[13:8]: Current LTSSM State of PCIe hard IP. Please see more details of

LTSSM value in Integrated Block for PCIe datasheet

(PCISTS_REG)

BA+0x0114 Completion Status Reg [15:0]: Status from Admin completion

(AdmCompStatus[15:0] of NVMeSW-IP)

[31:16]: Status from I/O completion (IOCompStatus[15:0] of NVMeSW-IP)

(COMPSTS_REG)

BA+0x0118 NVMe CAP Reg [31:0]: NVMeCAPReg[31:0] output from NVMeSW-IP

(NVMCAP_REG)

BA+0x0120 NVMeSW IP Test pin (Low) Reg [31:0]: TestPin[31:0] output from NVMeSW-IP

(NVMTESTPIN_REG)

BA+0x0124 NVMeSW IP Test pin (High) Reg [31:0]: TestPin[63:32] output from NVMeSW-IP

(NVMTESTPIN_REG)

BA+0x0130 Expected value Word0 Reg [31:0]: Bit[31:0] of the expected data at the 1st failure data in Read command

(EXPPATW0_REG)

BA+0x0134 Expected value Word1 Reg [31:0]: Bit[63:32] of the expected data at the 1st failure data in Read

command (EXPPATW1_REG)

BA+0x0138 Expected value Word2 Reg [31:0]: Bit[95:64] of the expected data at the 1st failure data in Read

command (EXPPATW2_REG)

BA+0x013C Expected value Word3 Reg [31:0]: Bit[127:96] of the expected data at the 1st failure data in Read

command (EXPPATW3_REG)

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 16

Address Register Name Description

Wr/Rd (Label in the “nvmeswiptest.c”)

0x0100 – 0x01FF: Status signals of NVMeSW-IP and TestGen (Read access only)

BA+0x0140 Read value Word0 Reg [31:0]: Bit[31:0] of the read data at the 1st failure data in Read command

Rd (RDPATW0_REG)

BA+0x0144 Read value Word1 Reg [31:0]: Bit[63:32] of the read data at the 1st failure data in Read command

Rd (RDPATW1_REG)

BA+0x0148 Read value Word2 Reg [31:0]: Bit[95:64] of the read data at the 1st failure data in Read command

Rd (RDPATW2_REG)

BA+0x014C Read value Word3 Reg [31:0]: Bit[127:96] of the read data at the 1st failure data in Read command

Rd (RDPATW3_REG)

BA+0x0150 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure data in Read

command Rd (RDFAILNOL_REG)

BA+0x0154 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure data in Read

command Rd (RDFAILNOH_REG)

BA+0x0158 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module

Rd (CURTESTSIZEL_REG)

BA+0x015C Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size of TestGen module

Rd (CURTESTSIZEH_REG)

BA+0x0180 Total device0 size (Low) Reg [31:0]: LBASize0[31:0] output from NVMeSW-IP

Rd (LBASIZE0L_REG)

BA+0x0184 Total device0 size (High) Reg [15:0]: LBASize0[47:32] output from NVMeSW-IP

[31]: LBAMode[0] output from NVMeSW-IP Rd (LBASIZE0H_REG)

BA+0x0188 Total device1 size (Low) Reg [31:0]: LBASize1[31:0] output from NVMeSW-IP

Rd (LBASIZE1L_REG)

BA+0x018C Total device1 size (High) Reg [15:0]: LBASize1[47:32] output from NVMeSW-IP

[31]: LBAMode[1] output from NVMeSW-IP Rd (LBASIZE1H_REG)

BA+0x0190 Total device2 size (Low) Reg [31:0]: LBASize2[31:0] output from NVMeSW-IP

Rd (LBASIZE2L_REG)

BA+0x0194 Total device2 size (High) Reg [15:0]: LBASize2[47:32] output from NVMeSW-IP

[31]: LBAMode[2] output from NVMeSW-IP Rd (LBASIZE2H_REG)

BA+0x0198 Total device3 size (Low) Reg [31:0]: LBASize3[31:0] output from NVMeSW-IP

Rd (LBASIZE3L_REG)

BA+0x019C Total device3 size (High) Reg [15:0]: LBASize3[47:32] output from NVMeSW-IP

[31]: LBAMode[3] output from NVMeSW-IP Rd (LBASIZE3H_REG)

Other interfaces (Custom command of NVMeSW-IP, IdenRAM, and Custom RAM)

BA+0x0200 –

BA+0x023F

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of NVMeSW-IP.

0x200: DW0, 0x204: DW1, …, 0x23C: DW15 Wr (CTMSUBMQ_REG)

BA+0x0300 –

BA+0x030F

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from NVMeSW-IP.

0x300: DW0, 0x304: DW1, …, 0x30C: DW3

Rd (CTMCOMPQ_REG)

BA+0x0800 IP Version Reg [31:0]: IP version number

(IPVersion[31:0] of NVMeSW-IP) Rd (IPVERSION_REG)

BA+0x2000 –

BA+0x2FFF

Identify Controller Data

4Kbyte Identify controller data structure

Rd (IDENCTRL_REG)

BA+0x3000 –

BA+0x3FFF

Identify Namespace Data

4Kbyte Identify Namespace Data Structure

Rd (IDENNAME_REG)

BA+0x4000 –

BA+0x5FFF

Custom command Ram Connect to 8K byte CtmRAM interface.

Used to store 512-byte data output from SMART command.

Wr/Rd (CTMRAM_REG)

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 17

3 CPU Firmware

After system boot-up, CPU starts the initialization sequence as follows.

1) CPU initializes UART and Timer parameters.
2) CPU waits until PCIe connection links up (PCISTS_REG[0]=’1’).
3) CPU waits until NVMeSW-IP completes initialization process (USRSTS_REG[0]=’0’). If

some errors are found, the process stops and displays the error message.
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading

PCISTS_REG[7:2]. Also, CPU displays total number of detected SSDs by reading
USRSTS_REG[19:16].

5) CPU displays the main menu. There are six menus for running six commands of
NVMeSW-IP, i.e. Identify, Write, Read, SMART, Flush, and Shutdown.

More details of the sequence in each command are described as follows.

3.1 Identify Command

The sequence of the firmware when user selects Identify command is below.
1) Receive device number through Serial console. If the input is invalid, the operation is

cancelled.
Note: User can select to run all devices. In this mode, the firmware repeats step 2) - 4) of
Identify command many times until total devices are operated completely.

2) Set USRCMD_REG[2:0]=”000” and USRCMD_REG[9:8]=device number. When
USRCMD_REG is set, NVMeSW-IP receives the new command request. So, busy flag
(USRSTS_REG[0]) changes from ‘0’ to ‘1’.

3) CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. If the command is completed, the
data from Identify command of NVMeSW-IP is stored in IdenRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error device number (read from USRSTS_REG[25:24]) and the
error details (read from USRERRTYPE_REG[31:0]). Finally, the process is stopped.

4) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays some information
from IdenRAM (IDENCTRL_REG) such as SSD model name and the information from
NVMeSW-IP output, i.e. SSD capacity and LBA unit size (LBASIZE_REG) of the active
device.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 18

3.2 Write/Read Command

The sequence of the firmware when user selects Write/Read command is below.
1) Receive start address, transfer length, test pattern, and device number through Serial

console. If some inputs are invalid, the operation is cancelled.
Note: If LBA unit size = 4 Kbyte, start address and transfer length must be aligned to 8.

2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, and
PATTSEL_REG.

3) Set USRCMD_REG[2:0]=”010” for Write command or “011” for Read command, and
USRCMD_REG[9:8]=device number. When USRCMD_REG is set, NVMeSW-IP receives
the new command request. So, busy flag (USRSTS_REG[0]) changes from ‘0’ to ‘1’.

4) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring USRSTS_REG[2:0].

Bit[0] is de-asserted to ‘0’ when command is completed.
Bit[1] is asserted when error is detected. After that, error message is displayed on the
console to show the error details. Finally, the process is hanged up.
Bit[2] is asserted when data verification is fail. Then, the verification error message is
displayed. CPU is still running until the operation is done or user inputs any key to cancel
operation.

During running command, current transfer size reading from CURTESTSIZE_REG is
displayed every second.

5) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays the test result on the
console, i.e. total time usage, total transfer size, and transfer speed.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 19

3.3 SMART Command

The sequence of the firmware when user selects SMART command is below.
1) Receive device number through Serial console. If the input is invalid, the operation is

cancelled.
Note: User can select to run all devices. In this mode, the firmware repeats step 2) - 5) of
SMART command many times until total devices are operated completely.

2) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be SMART command
value.

3) Set USRCMD_REG[2:0]=”100” and USRCMD_REG[9:8]=device number. When
USRCMD_REG is set, NVMeSW-IP receives the new command request. So, busy flag
(USRSTS_REG[0]) changes from ‘0’ to ‘1’.

4) CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. If the command is completed, the
data from SMART command of NVMeSW-IP is stored in CtmRAM.
Bit[1] is asserted when error is detected. The error message is displayed on the console to
show the error device number (read from USRSTS_REG[25:24]) and the error details
(read from USRERRTYPE_REG[31:0]). Finally, the process is stopped.

5) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays some information
from CtmRAM (CTMRAM_REG), i.e. Temperature, Total Data Read, Total Data Written,
Power On Cycles, Power On Hours, and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

3.4 Flush Command

The sequence of the firmware when user selects Flush command is below.
1) Receive device number through Serial console. If the input is invalid, the operation is

cancelled.
Note: User can select to run all devices. In this mode, the firmware repeats step 2) - 4) of
Flush command many times until total devices are operated completely.

2) Set 16 Dwords of Submission queue entry (CTMSUBMQ_REG) to be Flush command
value.

3) Set USRCMD_REG[2:0]=”110” and USRCMD_REG[9:8]=device number. When
USRCMD_REG is set, NVMeSW-IP receives the new command request. So, busy flag
(USRSTS_REG[0]) changes from ‘0’ to ‘1’.

4) CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. If the command is completed,
CPU goes back to the main menu.
Bit[1] is asserted when error is detected. The error message is displayed on the console to
show the error device number (read from USRSTS_REG[25:24]) and the error details
(read from USRERRTYPE_REG[31:0]). Finally, the process is stopped.

https://nvmexpress.org/resources/specifications/

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 20

3.5 Shutdown Command

The sequence of the firmware when user selects Shutdown command is below.
1) Receive device number through Serial console. If the input is invalid, the operation is

cancelled.
Note: User can select to run all devices. In this mode, the firmware repeats step 2) - 4) of
Shutdown command many times until total devices are operated completely.

2) Set USRCMD_REG[2:0]=”001” and USRCMD_REG [9:8]=device number. When
USRCMD_REG is set, NVMeSW-IP receives the new command request. So, busy flag
(USRSTS_REG[0]) changes from ‘0’ to ‘1’.

3) CPU waits until the operation is completed or some errors are found by monitoring
USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed. After that, the CPU goes to the
next step.
Bit[1] is asserted when error is detected. The error message is displayed on the console to
show the error device number (read from USRSTS_REG[25:24]) and the error details
(read from USRERRTYPE_REG[31:0]). Finally, the process is stopped.

4) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, the selected SSD changes to
inactive status. CPU updates total numbers of device in the system by reading
USRSTS_REG[19:16], and then displays the updated information on the console.

If there is no active SSD in the system, NVMeSW-IP changes to inactive state. The CPU
cannot receive new command from user. The user must power off the test system.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 21

4 Example Test Result

The example test result when running the demo system by using 512 GB Samsung 970 Pro is
shown in Figure 4-1.

0 500 1000 1500 2000 2500 3000 3500

Read

Write

3380

2348

Test Speed (MByte/s)

Figure 4-1 Test Performance of NVMeSW-IP demo by using Samsung 970 Pro SSD

By using PCIe Gen3 on KCU105 board, write performance is 2345 Mbyte/sec and read
performance is 3380 Mbyte/sec.

dg_nvmeswip_refdesign_en.doc

2023/08/17 Page 22

5 Revision History

Revision Date Description

1.0 24-Apr-2019 Initial Release

1.1 13-Feb-2020 Update header data for All-0 and All-1 pattern

Copyright: 2019 Design Gateway Co,Ltd.

