
QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 1 - Copyright © 2024 Design Gateway Co., Ltd.

QUIC10GC-IP Reference Design

Table of Contents

1 Introduction ... 2

2 Hardware Overview ... 2

2.1 AsyncAxiReg ... 3

2.2 UserReg .. 4

2.3 LL10GEMAC .. 12

2.4 Xilinx Transceiver (PMA for 10GBASE-R) ... 12

2.5 PMARstCtrl .. 12

3 CPU Firmware ... 13

3.1 Set Gateway IP Address .. 13

3.2 Set FPGA’s IP Address .. 13

3.3 Set FPGA’s MAC address .. 14

3.4 Load network parameters .. 14

3.5 Set FPGA’s Port Number ... 15

3.6 Show key materials .. 15

3.7 Show certificate information ... 15

3.8 Download data pattern with HTTP GET command .. 16

3.9 Upload data pattern with HTTP POST command .. 17

3.10 Upload and Download data pattern like secnetperf ... 18

4 Revision History .. 19

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 2 - Copyright © 2024 Design Gateway Co., Ltd.

QUIC10GC-IP Reference Design
Rev1.00 3-Jul-2024

1 Introduction

This document describes the details of the QUIC Client 10Gbps IP core (QUIC10GC-IP)
reference design. In this reference design, the QUIC10GC-IP is used as a medium to transfer
data within a secure connection following the QUIC transport protocol version 1 standard
(RFC9000). This process involves handling the TLS 1.3 handshake and dealing with data
encryption/decryption and flow control. Users can set network parameters, download and upload
payloads to the server by inputting supported command via the serial console. Further details
regarding the hardware design and CPU firmware are provided below.

2 Hardware Overview

Figure 2-1 QUIC10GC-IP reference design block diagram

In this test environment, two devices are used to transfer data over a 10G Ethernet connection.
The FPGA acts as the QUIC Client, while the target device, which can be either a PC or another
FPGA, acts as the QUIC Server. As shown in Figure 2-1, the QUIC10GC-IP is integrated within
UserReg. UserReg connects to the CPU through AsyncAXIReg using a register interface, and
the CPU connects to AsyncAXIReg via an AXI4-Lite interface.

The user interface of the QUIC10GC-IP connects to AXIBridge via an AXI4 interface for reading
data from the Transmit Buffer and writing data to the Receive Buffer. The user logic is responsible
for generating the sending data, verifying the receiving data, and other user control operations
for the QUIC10GC-IP.

There are four system clocks in this reference design, i.e., CPUClk, QUICClk, MacTxClk and
MacRxClk. CpuClk is used to interface with CPU through AXI4-Lite bus. QUICClk is the clock
domain on which the QUIC10GC-IP operates and interfaces with users. MacTxClk is the clock
domain which is synchronous to Tx EMAC interface. MacRxClk is the clock domain which is
synchronous to Rx EMAC interface.

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 3 - Copyright © 2024 Design Gateway Co., Ltd.

The details of each module are described as follows.

2.1 AsyncAxiReg

This module is designed to convert the signal interface of AXI4-Lite to be register interface. Also,
it enables two clock domains to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register address
in 32-bit unit), RegWrData (write data of the register), and RegWrByteEn (the byte enable of this
access: bit[0] is write enable for RegWrData[7:0], bit[1] is used for RegWrData[15:8], …, and bit[3]
is used for RegWrData[31:24]).

To read register, AsyncAxiReg asserts RegRdReq=’1’ with the valid value of RegAddr (the register
address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to get the
read data through RegRdData signal at the same clock.

The address of Register interface is shared for both write and read transactions, so user cannot
write and read the register at the same time. The timing diagram of the Register interface is shown
Figure 2-2.

Figure 2-2 Register interface timing diagram

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 4 - Copyright © 2024 Design Gateway Co., Ltd.

2.2 UserReg

For register file, UserReg is designed to write/read registers, control and check alert of the
QUIC10GC-IP corresponding with write register access or read register request from
AsyncAvlReg module. The memory map inside UserReg module is shown in Table 2-1.

Table 2-1 Register map Definition of QUIC10GC-IP

Address Register Name Description

Ethernet MAC register

0x0060 EMAC_VER_INTREG Rd[31:0]: LL10GEMAC-IP Version (MacIPVersion).

0x0064 EMAC_STS_INTREG Rd[0]: Linkup status of LL10GEMAC-IP (MacLinkup).

QUIC10GC Control register

0x0100 QUIC_RSTB_REG Wr/Rd[0]: Reset signal active low (rQUICRstBOut).

0x0104 QUIC_CONN_REG Wr/Rd[0]: User’s Connection status. (rQUICConnOn).

0x0108 QUIC_BUSY_REG Rd[3]: Data receive operation busy status
(QUICRxTrnsBusy).
Rd[2]: Data transmit operation busy status
(QUICTxTrnsBusy)
Rd[1]: Handshake operation busy status
(QUICHandshakeBusy)
Rd[0]: Connection operation busy status
(QUICConnOnBusy).

0x010C QUIC_ALERT_REG Rd[15:0]: Normal and alert conditions of the
QUIC10GC-IP (QUICAlertCode[15:0]).

QUIC User Data

0x0120 QUIC_TX_BASE_ADDR_LOW_REG Wr[31:0]: Lower 32 bits of the base address for the
transmit buffer (AppTxBaseAddr[31:0])

0x0124 QUIC_TX_BASE_ADDR_HIGH_REG Wr[31:0]: Upper 32 bits of the base address for the
transmit buffer (AppTxBaseAddr[63:32])

0x0128 QUIC_RX_BASE_ADDR_LOW_REG Wr[31:0]: Lower 32 bits of the base address for the
receive buffer (AppRxBaseAddr[31:0])

0x012C QUIC_RX_BASE_ADDR_HIGH_REG Wr[31:0]: Upper 32 bits of the base address for the
receive buffer (AppRxBaseAddr[63:32])

0x0140-
0x014C

QUIC_TX_USER_PTR_REG Rd[17:0]: Read pointer of streamID ‘X’ to indicate the
first byte position of TxData that IP will process
(AppTxRdAddrX[17:0]).
Wr[17:0]: Write pointer of streamID ‘X’ to indicate the
position after the last TxData written
(rAppTxWrAddrX[17:0]).

0x0150-
0x015C

QUIC_TX_USER_FINAL_REG Wr[0]: Set the end stream flag of the current Tx write
pointer for StreamID ‘X’ (rAppTxWrFinX)

0x0180-
0x018C

QUIC_RX_USER_PTR_REG Rd[17:0]: Write pointer of streamID ‘X’ to indicate the
position after the last RxData written
(AppRxWrAddrX[17:0]).
Wr[17:0]: Read pointer of streamID ‘X’ to indicate the
first byte of RxData that user will process
(rAppRxRdAddrX[17:0]).

0x0190-
0x019C

QUIC_RX_USER_FINAL_REG Rd[0]: Indicating the end of stream has been received
for streamID ‘X’ (AppRxWrFinX)

0x01C0 QUIC_RX_USER_INFO_READ_REG Rd[0]: Empty status of QUICRxInfo FIFO, storing QUIC
Rx user information (UsrRxInfoFfEmpty).
Wr[0]: Set read enable to QUICRxInfo FIFO
(UsrRxInfoFfEmpty).

0x01C4 QUIC_RX_USER_COMMON_REG Rd[7:0]: QUIC Rx user information type
(QUICRxInfoType[7:0]).
Rd[15:8]: QUIC Rx user information streamID
(QUICRxInfoID[7:0]).

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 5 - Copyright © 2024 Design Gateway Co., Ltd.

0x01D0-
0x01D4

QUIC_RX_USER_INFO0_REG Rd[31:0]: QUIC Rx user information field 0
(QUICRxInfoD0[63:0])

0x01D8-
0x01DC

QUIC_RX_USER_INFO1_REG Rd[31:0]: QUIC Rx user information field 1
(QUICRxInfoD1[63:0])

0x0200 USER_TX_PATT_ADDR_REG Rd[19:0]: Current write address for writing Tx data
pattern to transmit buffer (rTxUserWrPtr[19:0]).
Wr[19:0]: Start Address for writing Tx data pattern.

0x0204 USER_TX_PATT_TYPE_REG Wr[0]: Data pattern mode (rPattGenMode) “0” for
incremental and “1” for decremental 8-bit counter.

0x0208 USER_TX_PATT_LEN_REG Rd[17:0]: Remaining data pattern length
(rPattGenLen[17:0]).
Wr[17:0]: Length of data pattern (rPattGenLen[17:0]).

0x0210 USER_RX_VERIFY_ADDR_REG Rd[19:0]: Read address of the first Rx data that failed
verification (rVerifyRxUserRdPtr[19:0]).
Wr[19:0]: Start Address for reading Rx data pattern
(rRxUserRdPtr[19:0]).

0x0214 USER_RX_VERIFY_TYPE_REG Rd[1]: Validity status (wVerifyInvalid) ‘0’ for indicating
that received data is matched with data pattern, ‘1’ for
indicating that received data is NOT matched with data
pattern.
Rd[0]: Data verification busy status (rVerifyBusy(0)).
Wr[0]: Data verification mode (rVerifyMode) “0” for
incremental and “1” for decremental 8-bit counter
When the data verification mode is set, verification
status is reset.

0x0218 USER_RX_VERIFY_LEN_REG Rd[17:0]: Remaining data verify length
(rVerifyLen[17:0]).
Wr[17:0]: Length of verification pattern
(rVerifyLen[17:0])

0x0220-
0x022C

USER_RX_ACTUAL_DATA Rd[31:0]: Actual RxData (rVerifyActualData[127:0])

0x0240-
0x024C

USER_RX_EXP_DATA Rd[31:0]: Expected RxData (rVerifyExpectData[127:0])

0x0280-
0x028C

USER_TX_PATT_DATA_REG Rd[31:0]: Current data pattern (rPattGenData)
Wr[31:0]: Initial data for the data pattern.

0x02A0-
0x02AC

USER_RX_PATT_DATA_REG Rd[31:0]: Current verification pattern (rVerifyExpData).
Wr[31:0]: Initial data for the data verification.

0x02E0-
0x02EC

QUIC_ALPN_DATA_REG0-3 Wr[31:0]: ALPN string value (QUICALPNStr[127:0]).

0x02F0 QUIC_ALPN_LEN_REG Wr[4:0]: ALPN string length (QUICALPNLen[4:0]).

0x0300-
0x031C

QUIC_CTS_REG Rd[31:0]: Client Traffic Secret (CTS[255:0])

0x0340-
0x035C

QUIC_STS_REG Rd[31:0]: Server Traffic Secret (STS[255:0])

0x0380-
0x039C

QUIC_RANDOM_REG Rd[31:0]: Random number in ClientHello message.
(Random[255:0])

0x03C0 QUIC_KEY_VALID_REG Rd[0]: Validity status for key material, key and iv
(QUICKeyValid)

0x0400 QUIC_UDP_SRCMAC_LOW_REG Wr[31:0]: Lower 32 bits of source MAC address
(rSrcMacAddr[31:0]).

0x0404 QUIC_UDP_SRCMAC_HIGH_REG Wr[15:0]: Upper 16 bits of source MAC address
(rSrcMacAddr[47:32]).

0x0408 QUIC_UDP_SRCIP_REG Wr[31:0]: Source IP address (rSrcIPAddr[31:0])

0x040C QUIC_UDP_DSTIP_REG Wr[31:0]: Destination IP address (rDstIPAddr[31:0])

0x0410 QUIC_UDP_SRCPORT_REG Wr[15:0]: Source port number (rSrcPort[15:0]).
0x0414 QUIC_UDP_DSTPORT_REG Wr[15:0]: Destination port number (rDstPort[15:0]).

0x0418 QUIC_UDP_GTWIP_REG Wr[31:0]: Gateway IP address (rGatewayIPAddr[31:0]).

0x041C QUIC_UDP_IPNETSET_REG Wr[0]: Set IP network parameters (rNetworkSet).

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 6 - Copyright © 2024 Design Gateway Co., Ltd.

0x04FC QUIC_VER_REG Rd[31:0]: QUIC10GC-IP version
(QUICIPVersion[31:0]).

0x4000-
0x4FFF

CERTRAM_BASE_ADDR Rd[31:0]: Certificate data in CertRam
(wRamCertRdData[31:0]).

0x5000 CERT_STARTADDR_REG Wr[11:1]: Start address for CertRam
(rUserRamCertAddr[11:1])

0x5004 CERT_READY_REG Rd[0] : Ready status for certificate information.
(rUserCertReady)
This signal is set to 1 when the last certificate data is
written to CertRam (QUICCertLast=’1’) and is cleared
to zero when CERT_STARTADDR_REG is written.

0x200000-
0x2FFFFF

USER_RXRAM_BASE_ADDR Rd[31:0]: Rx data read from the receive buffer
(UserRxRamRdData).

0x300000-
0x3FFFFF

USER_TXRAM_BASE_ADDR Wr[31:0]: Tx data written to the transmit buffer
(rUserTxRamWrData).

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 7 - Copyright © 2024 Design Gateway Co., Ltd.

Storing Certificate information

The QUIC10GC-IP is designed to provide certificates to the user for Certificate Validity Verification.
In this reference design, a dual-port RAM is used to store the certificate information. As shown in
Figure 2-3, the signals QUICCertValid, QUICCertByteEn[1:0] and QUICCertData[15:0] are used
to write certificate information to CertRam. Users can write to the CERT_STARTADDR_REG to
set rUserRamCertAddr[11:1] as the start address for storing certificate information. The
rUserRamCertAddr is an 11-bit counter that increments by 1 when QUICCertValid is asserted.
This address serves as the write address for writing QUICCertData to CertRam. When
QUICCertLast is asserted to ‘1’, rUserCertReady is set to ‘1’, indicating that the certificate data is
ready.

Figure 2-3 Example timing diagram of storing 959-byte certificate information

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 8 - Copyright © 2024 Design Gateway Co., Ltd.

AXI Bridge

In the reference design, an AXI bridge is used to convert AXI protocol transactions into memory
interface operations. The AXI bridge converts AXI write transactions from the QUIC10GC-IP to
write receive data into the receive buffer (RxRam) and converts AXI read transactions from the
QUIC10GC-IP to read transmit data from the transmit buffer (TxRam).

In the case of sending AXI write requests to the AXI bridge, AxiAwReady will be de-asserted to
‘0’, and AxiwReady will be asserted to ‘1’ in the next clock cycle. The AXI bridge will set
Ram0WrAddr[19:0] to AxiAwAddr[19:0], positioning the first address to write data to RxRam.
When AxiwReady is ‘1’ and the AXI master is ready to write data, the AXI master will assert
AxiwValid to ‘1’. When the AXI bridge receives AxiwValid as ‘1’ from the AXI master, the AXI bridge
will forward information in AxiwValid, AxiwStrb[15:0], and AxiwData[127:0] to Ram0WrEn,
Ram0WrByteEn[15:0], and Ram0WrData[127:0], respectively. Ram0WrAddr[19:0] will increment
by 16 for each AXI master write data word. To ensure data is written correctly, the AXI master
must write data for all bytes in a word except the first or last word. When the AXI master transfers
data to the last word, it must assert AxiwLast to ‘1’. When AxibReady is ‘1’ and AxibValid is ‘1’, it
signifies the completion of the write data operation, and the AXI bridge will set AxiAwReady to ‘1’
in the next clock cycle to accept new write requests.

Figure 2-4 Example timing diagram of writing data to RxRam via AXI bridge

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 9 - Copyright © 2024 Design Gateway Co., Ltd.

In the case of reading AXI read requests to the AXI bridge, AxiArReady will be de-asserted to ‘0’
in the next clock cycle. The AXI bridge will set Ram1RdAddr[19:0] to AxiArAddr[19:0], positioning
the first address to read data from TxRam. The AXI bridge will read data and store it in an internal
buffer, and Ram1RdAddr[19:0] will increment by 16 until the read operation is finished. When the
AXI bridge is ready to transfer data to the AXI master and the AXI master is ready to receive data,
the AXI bridge will assert AxirValid to ‘1’. When the AXI bridge transfers data to the last word, it
will assert AxirLast to ‘1’ to specify the last cycle. When the AXI bridge sends AxirLast=‘1’ and the
AXI master sends AxiRReady=‘1’, it signifies the completion of the read data operation, and the
AXI bridge will set AxiArReady to ‘1’ in the next clock cycle to accept new read requests.

Figure 2-5 Example timing diagram of reading data to TxRam via AXI bridge

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 10 - Copyright © 2024 Design Gateway Co., Ltd.

User Data Generator

In the reference design, a data pattern is generated and written to TxRam. There are two types
of data patterns available: increasing and decreasing binary patterns. The user can set the type
of data by writing to USER_TX_PATT_TYPE_REG, which is mapped to the rPattGenMode
signal, supporting the generation of unaligned data. After setting the data pattern size in byte
units to rPattGenLen[17:0] by writing to USER_TX_PATT_LEN_REG, the data pattern
(rUserTxRamWrData[127:0]) and rUserTxRamWrByteEn[15:0] are prepared corresponding to
the start address.

For example, if the user want to generate a data pattern for transmitting data in streamID0, user
can set the start address to 0x1F and set rPattGenLen[17:0] to generate a 451-byte increasing
binary pattern. rUserTxRamWrData[127:120] is set to 0x00 and rUserTxRamWrByteEn[15:0] is
set to 0x8000 at the first clock cycle to write data only to the highest byte at
rUserTxRamWrAddr[19:4]=0x0001. At the second clock cycle, every byte of the data pattern is
written. At the last clock cycle, only the last 2 bytes of the data pattern are written:
rUserTxRamWrData[15:0] is set to 0xC2C1 and rUserTxRamWrByteEn[15:0] is set to 0x0003,
as shown in Figure 2-6.

The user can check if the data pattern write to TxRam is complete by verifying that
rPattGenLen[17:0]=0, which can be read from USER_TX_PATT_LEN_REG. Once the data
pattern generation is complete, the user can update the write pointer (rAppTxWrAddr0[17:0]) by
writing to QUIC_TX_USER_PTR_REG0, indicating to QUIC10GC-IP that there is available Tx
data to transmit. When the user wants to determine that the end of the data in the stream has
been reached, they can assert rAppTxWrFin0 to ‘1’ by writing to QUIC_TX_USER_FINAL_REG0.

Figure 2-6 Example timing diagram of user data generation process

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 11 - Copyright © 2024 Design Gateway Co., Ltd.

User Data Verification

In the reference design, a data verify pattern is used to verify data from RxRam. There are two
types of expected data patterns: increasing and decreasing binary patterns. The user can set
the type of data by writing to USER_RX_VERIFY_TYPE_REG, which is mapped to the
rVerifyMode signal. This supports verifying unaligned data by reading data from RxRam via the
UserRdIF. After setting the data verify size in byte units to rVerifyLen[17:0] by writing to
USER_RX_VERIFY_LEN_REG, UserRdIF will read data from RxRam into VerifyRdData[127:0].
wVerifyExpData[127:0] is the expected data used for comparison, and wVerifyByteEn[15:0] is
used to enable verification for each byte. wVerifyInvalid will be asserted to ‘1’ when the
verification is valid but not all bytes match.

For example, if the user wants to verify a data pattern from received data in streamID0, the user
can set the start address to 0x1F and set rVerifyLen[17:0] to verify a 451-byte increasing binary
pattern. UserRdIF will read data from RxRam into VerifyRdData[127:0] and compare it with
wVerifyExpData[127:0] when wVerifyByteEn is active. At the last clock cycle, only the last 3 bytes
of the data pattern are verified, wVerifyByteEn[15:0] is set to 0x0007, and wVerifyExpData[23:0]
is set to 0xC2C1C0, as shown in Figure 2-7.

The user can check if the data pattern verification from RxRam is complete by verifying that
rVerifyLen[17:0]=0, which can be read from USER_RX_VERIFY_LEN_REG. Once the data
pattern verification is complete, the user can update the read pointer (rAppRxRdAddr0[17:0]) by
writing to QUIC_RX_USER_PTR_REG0, indicating to QUIC10GC-IP that the data has been
processed. If the other endpoint requests to close streamID0, the QUIC10GC-IP will set
AppRxWrFin0 to ‘1’, which can be read from QUIC_RX_USER_FINAL_REG0.

Figure 2-7 Example timing diagram of user data verification process

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 12 - Copyright © 2024 Design Gateway Co., Ltd.

2.3 LL10GEMAC

The IP core by Design Gateway implements low-latency EMAC and PCS logic for 10Gb Ethernet
(BASE-R) standard. The user interface is 32-bit AXI4-stream bus. Please see more details from
LL10GEMAC datasheet on our website.

https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en/

2.4 Xilinx Transceiver (PMA for 10GBASE-R)

PMA IP core for 10Gb Ethernet (BASE-R) can be generated by using Vivado IP catalog. In FPGA
Transceivers Wizard, the user uses the following settings.

• Transceiver configuration preset : GT-10GBASE-R

• Encoding/Decoding : Raw

• Transmitter Buffer : Bypass

• Receiver Buffer : Bypass

• User/Internal data width : 32

The example of Transceiver wizard in Ultrascale model is described in the following link.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

2.5 PMARstCtrl

When the buffer inside Xilinx Transceiver is bypassed, the user logic must control reset signal of
Tx and Rx buffer. The module is designed by state machine to run following step.

(1) Assert Tx reset of the transceiver to ‘1’ for one cycle.

(2) Wait until Tx reset done, output from the transceiver, is asserted to ‘1’.

(3) Finish Tx reset sequence and de-assert Tx reset to allow the user logic beginning Tx
operation.

(4) Assert Rx reset to the transceiver.

(5) Wait until Rx reset done is asserted to ‘1’.

(6) Finish Rx reset sequence and de-assert Rx reset to allow the user logic beginning Rx
operation.

https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en/
https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 13 - Copyright © 2024 Design Gateway Co., Ltd.

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer. Then the supported
command usage is displayed. The main function runs in an infinite loop to receive line command
input from the user. Users can set the network and connection parameter, display key materials
and certificate information, download/upload data and test performance using the supported
commands. More details of the sequence in each command are described as follows.

3.1 Set Gateway IP Address

command> setgatewayip ddd.ddd.ddd.ddd

Users can set a Gateway IP address for the QUIC10GC-IP by inputing setgatewayip followed by
the desired Gateway IP address in dotted-decimal format. The setip function is called to change
the Gateway IP address value in netparam variable. This variable will be written to the register
mapped to GatewayIPAddr to set the FPGA’s IP address. Subsequently, the QUIC10GC-IP is
initialized with the current network parameter setting. The default Gateway IP address is 0.0.0.0.
The setip function is described in Table 3-1.

3.2 Set FPGA’s IP Address

command> setip ddd.ddd.ddd.ddd

Users can set an IP address for the QUIC10GC-IP by inputing setip followed by the desired IP
address in dotted-decimal format. The setip function is called to change the IP address value in
netparam variable. This variable will be written to the register mapped to SrcIPAddr to set the
FPGA’s IP address. Subsequently, the QUIC10GC-IP is initialized with the current network
parameter setting. The default FPGA’s IP address is 192.168.7.42. The setip function is described
in Table 3-1.

Table 3-1 setip function

int setip(uint8_t *string, uint32_t *ip_set)

Parameter string: ip address as string input from user

ip_set: array stored IP address

Return value 0: Valid input, -1: Invalid input

Description This function receives IP Address as string input and set value of ip_set array.

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 14 - Copyright © 2024 Design Gateway Co., Ltd.

3.3 Set FPGA’s MAC address

command> setmac hh-hh-hh-hh-hh-hh

Users can set a MAC address to the QUIC10GC-IP by inputing setmac followed by the FPGA’s
MAC address in hexadecimal format. The setmac function is called to change the MAC address
value in netparam variable. This array will be written to the register mapped to SrcMacAddr to set
the FPGA’s MAC address. The default FPGA’s MAC address is 80-01-02-03-04-05. The setmac
function is described in Table 3-2.

Table 3-2 setmac function

int setmac(uint8_t *string, uint64_t *mac_set)

Parameter string: MAC address as string input from user

mac_set: array stored mac address

Return value 0: Valid input, -1: Invalid input

Description This function receives MAC Address as string input and set value of mac_set
array.

3.4 Load network parameters

command> loadnetworkparameters

This command configures network parameters and must be run before connecting to the network.
When executed, it sets the current Gateway IP address, FPGA’s IP address, and FPGA’s MAC
address to the QUIC10GC-IP while the NetworkSet signal is asserted to '1'.

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 15 - Copyright © 2024 Design Gateway Co., Ltd.

3.5 Set FPGA’s Port Number

command> setport ddddd

Users can set a port number to the QUIC10GC-IP by inputting setport followed by the static port
number of the FPGA in decimal format or “dynamic”, “d” or “-d” to set the port number to be
dynamic. The setport function is called to change the port number value in netparam variable.
This variable will be written to the register mapped to SrcPort to set the FPGA’s port number.
Dynamic ports are in the range 49152 to 65535. If the port number is set to be dynamic, the port
number will be automatically increased by 1 before establishing a new connection. If the port
number is set as a static port number and the user does not set the new port number value, the
FPGA’s port number will not be changed. The setport function is described in Table 3-3.

Table 3-3 setport function

int setport(uint8_t *string, uint16_t *port_set)

Parameter string: port number as string input from user

port_set: array stored port number

Return value 0: Valid input, -1: Invalid input

Description This function receives port number as string input and set value of port_set
array.

3.6 Show key materials

command> showkey <1: enable, 0: disable>

To change showkey mode, users can input showkey <1: enable, 0: disable> to modify a global
variable, bshowTrafficSecret. If bshowTrafficSecret is set to true, traffic tickets will be displayed
on the serial console after the handshake process is completed. Users can use the TLS traffic
ticket as a (Pre)-Master-Secret log file for Wireshark* to decrypt transferred data over the current
connection.

*Wireshark, a network packet analyzer tool used for network troubleshooting, analysis, and
security purposes.

3.7 Show certificate information

command> showcert <1: enable, 0: disable>

To change showcert mode, users can input showcert <1: enable, 0: disable> to modify a global
variable, bshowCertificate. If bshowCertificate is set to true, certificate information will be
displayed on the serial console after the certificate is ready during the handshake phase. Users
can use the certificate information for further certificate validity verification.

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 16 - Copyright © 2024 Design Gateway Co., Ltd.

3.8 Download data pattern with HTTP GET command

command> myGET https://ip:port/size

Where ip represents server’s ip address in dot-decimal notation

port represents server’s port number

size represents data length in byte

This command simulates the GET method of HTTP to download data from the server. The myGET
function extracts the server’s IP address and port number, sets the registers to open connections,
and monitors the status. The sequence of the myGET function is as follows.

1) Split the URL input and set network parameters corresponding to the URL.

2) Construct an HTTP GET command from the URL.

3) Open connection and wait for the handshake process to finish.

4) Write the GET HTTP command to TxRam and set rAppTxWrAddr0[17:0] by writing
QUIC_TX_USER_PTR_REG.

5) Monitor HTTP header response and validate HTTP data length.

6) Compute and display transfer speed on the serial console until the reception of data is
complete. If the received data length is less than 4 kB, the received data will also be
shown on the serial console.

Table 3-4 myGET function

int myGET(uint8_t *string)

Parameter string: URL as string input from user

Return value 0: Valid input, -1: Invalid input

Description This function receives URL as string input and validate URL. Monitor and
display receiving result.

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 17 - Copyright © 2024 Design Gateway Co., Ltd.

3.9 Upload data pattern with HTTP POST command

command> myECHO https://ip:port/echo size

Where ip represents server’s ip address in dot-decimal notation

port represents server’s port number

size represents data length in byte

This command simulates POST method of HTTP to upload data pattern to the server. myECHO
function is called to extract the server’s IP address and the server’s port number, set registers to
start data generator and verify data pattern, monitor status. The sequence of the myECHO
function is as follows.

1) Split the URL input and set network parameters corresponding to the URL.

2) Construct an HTTP POST command from the URL and request size.

3) Open connection and wait for the handshake process to finish.

4) Write the POST HTTP command to TxRam, enable the user data generator to write data
to TxRam and set rAppTxWrAddr0[17:0] by writing QUIC_TX_USER_PTR_REG, and
monitor upload status.

5) Monitor HTTP header response, validate HTTP data length and verification status.

6) Compute and display transfer speed on the serial console until the reception of data is
complete. If the received data length is less than 4 kB, the received data will also be
shown on the serial console.

Table 3-7 myPOST function

int myECHO(uint8_t *string, uint8_t *reqSize)

Parameter urlStr: URL as string input from user

reqSize: Upload length as string input from user

Return value 0: Valid input, -1: Invalid input

Description This function receives a URL string input from the user, validates it, constructs
an HTTP POST command, and sends it before transferring data to the server.
It monitors the number of transferred data bytes to show the transfer speed

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 18 - Copyright © 2024 Design Gateway Co., Ltd.

3.10 Upload and Download data pattern like secnetperf

command> myPREF ip:port uploadlength downloadlength

Where ip represents server’s ip address in dot-decimal notation

port represents server’s port number

uploadlength represents upload data length in byte

downloadlength represents download data length in byte

This command uses for performance testing using the unique application protocol with MsQuic.
myPREF function is called to extract the server’s IP address and the server’s port number, set
registers to start data generator and verify data pattern, monitor status. The sequence of the
myPREF function is as follows.

1) Split the URL input and set network parameters corresponding to the URL.

2) Open connection and wait for finishing handshake process.

3) Write the downloadlength to TxRam for request download data from MsQuic

4) If the uploadlength is greater than zero, this command will repeat to set
USER_TX_PATT_LEN_REG for generating pattern data to TxRam, and move
rAppTxWrAddr0[17:0] by writing QUIC_TX_USER_PTR_REG, until all pattern data is
filled in TxRam. Then monitor the upload status.

5) If downloadlength is greater than zero, monitor verification status and remaining verify
data length.

6) Compute and display transfer speed on the serial console until the reception of data is
complete. If the received data length is less than 4 kB, the received data will also be
shown on the serial console.

Table 3-7 myPERF function

int myPERF(uint8_t * netAddress, uint8_t * upSize, uint8_t * downSize)

Parameter netAddress: URL as string input from user

upSize: Upload length as string input from user

downSize: Download length as string input from user

Return value 0: Valid input, -1: Invalid input

Description This function receives parameter string input by the user, validates the
parameters before transferring data to the server, and monitors the number of
transferred data to show the transfer speed.

QUIC10GC IP Core

QUIC10GCIP-refdesign-xilinx-en.docx - 19 - Copyright © 2024 Design Gateway Co., Ltd.

4 Revision History

Revision Date Description

1.00 3-Jul-24 Initial version release

