
dg_exfatip_sata_refdesign_intel_en

5-Jul-23

exFAT IP for SATA reference design manual
Rev1.2 5-Jul-23

1 Introduction ... 2
2 Hardware overview .. 4

2.1 TestGen .. 6
2.2 exFAT ... 9

2.2.1 exFAT IP for SATA .. 9
2.2.2 SATA HCTL IP .. 9
2.2.3 SATA IP .. 9

2.3 CPU and Peripherals .. 10
2.3.1 AsyncAvlReg .. 11
2.3.2 UserReg ... 13

3 CPU Firmware .. 16
3.1 Test firmware (exfatsatatest.c) .. 16

3.1.1 Format .. 16
3.1.2 Write file/Read file command ... 17

3.2 Function list in Test firmware ... 18
4 Example Test Result ... 21
5 Revision History .. 22

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 2

exFAT IP for SATA reference design manual
Rev1.2 5-Jul-23

1 Introduction

In the hardware system, data stream can be stored to the disk by using raw data or file system.
Using raw data, the data is allocated in the disk through physical address. When many data types
are stored in one disk, user needs to assign the different address for each data group. Without
standard, each system defines the different data structure to arrange data groups independently.
It is the problem for the Host to read data from the system which is recorded without standard.

As a result, file system is created to manage data in the disk by setting up the table to be an index
of data. The data is separated into many groups. Each group is called a “file”. For system flexibility,
one file has some information to represent itself such as file name, file type, file size, and physical
address of file data. File information helps user to know file structure and free space in the disk.

exFAT is standard file system which is common support in many platforms. Comparing to FAT32
file system, exFAT file system improves many features. First, exFAT supports more than 4 GB file
size and supports more than 2 TB disk capacity. Next, Name hash of file name is implemented to
improve search function. Otherwise, checksum is applied in system data area to increase data
reliability.

Generally, file system is implemented as standard library running on CPU. To write/read file by
using CPU software, it has overhead time to access file header to read file allocation before
writing or reading file data. So, write/read performance when running file system by using CPU
software is reduced, comparing to using raw data format which does not have the header.

exFAT IP is the hardware which designs file system data structure following exFAT standard.
exFAT IP reduces the overhead time to access file header. As a result, write/read performance
when using exFAT IP is almost same as raw data format which is run by SATA HCTL IP. From the
reference design, the performance of Write file command is about 520 MB/s while the
performance of Read file command is about 560 MB/s.

The hardware design of exFAT IP for SATA demo is different from the hardware design of SATA
HCTL IP design (raw data), as shown in Figure 1-1.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 3

Figure 1-1 Hardware system for raw data and file system

Comparing to raw data system in the left side of Figure 1-1, exFAT system includes exFAT IP for
SATA to connect between User Logic and SATA HCTL IP. The parameter of user interface
changes from physical parameters (address and length) to be file parameters (file name and the
number of files). However, the data interface of raw data and exFAT system are similar by using
general FIFO interface. More details of exFAT IP for SATA reference design are described in the
next topic.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 4

2 Hardware overview

The reference design of exFAT IP for SATA is modified from SATA HCTL IP reference design.
exFAT IP is included and the control interface is updated from physical parameters to be file
parameters instead. The updated part is displayed as the blue color in Figure 2-1.

More details of SATA HCTL IP reference design are described in following document.
https://dgway.com/products/IP/SATA-IP/Altera/dg_satahostip_refdesign_intel_en.pdf
https://dgway.com/products/IP/SATA-IP/Altera/dg_satahostip_instruction_intel_en.pdf

Figure 2-1 exFAT IP for SATA demo system

https://dgway.com/products/IP/SATA-IP/Altera/dg_satahostip_refdesign_intel_en.pdf
https://dgway.com/products/IP/SATA-IP/Altera/dg_satahostip_instruction_intel_en.pdf

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 5

File parameters for control interface of exFAT IP are received from TestGen module. The registers
inside Avl2Reg are updated following the control signals of the test system. CPU firmware is
updated to receive file parameters from the user and then converts to be the control signals of the
hardware through Avalon-MM bus. The example parameters from user are file name, file size, the
number of files, created date, and created time.

Three commands are supported by exFAT IP, i.e. Format, Write file, and Read file. The transfer
performance is displayed on JTAG UART as a test result after finishing Write file or Read file
command. Otherwise, the user can plug-in the SATA device to the other hosts which support
exFAT system such as PC to read and verify test data file in the SATA device.

Three clock domains are applied in the system, i.e. CpuClk, UserClk, and CoreClk. CpuClk is the
clock domain of CPU and its peripherals. This clock must be stable clock which is independent
from the other hardware interface. CoreClk is the clock output from SATA physical layer which is
equal to 150 MHz for SATA Gen3. UserClk is the example user clock domain which is
independent from the other clock domains. So, UserClk is the main clock domain for running the
user interface of exFAT IP, SATA HCTL IP, FIFO, and TestGen. According to SATA IP datasheet,
clock frequency of UserClk must be more than or equal to CoreClk. In this reference design,
UserClk is equal to 200 MHz.

More details of the hardware in exFAT IP for SATA demo design are described as follows.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 6

2.1 TestGen

Figure 2-2 TestGen interface

TestGen module is the test logic to send test data to exFAT IP through U2IPFIFO when
operating Write file command. Also, the test data is fed to be the expected value to verify the
received data from exFAT IP through IP2UFIFO when operating Read file command. Control
logic asserts Write enable and Read enable to ‘1’ when the FIFOs are ready. Data bandwidth
of TestGen is matched to exFAT IP by running at the same clock and using same data bus
size, so exFAT IP can transfer data with U2IPFIFO and IP2UFIFO without waiting FIFO ready.
As a result, the test logic shows the best performance to write and read data with the SATA
device through exFAT IP.

Register file in the TestGen receives test parameters from user, i.e. file size, file name, the
number of files, the command, verification enable, and test pattern selector. The internal logic
includes the counter to control total transfer size of test data. The details of hardware logic of
TestGen are shown in Figure 2-3.

Figure 2-3 TestGen hardware

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 7

As shown in the right side of Figure 2-3, flow control signals of FIFO are WrFfAFull and
RdFfEmpty. When FIFO is almost full during write operation (WrFfAFull=’1’), WrFfWrEn is
de-asserted to ‘0’ to pause data sending to FIFO. For read operation, when FIFO has data
(RdFfEmpty=‘0’), RdFfRdEn is asserted to ‘1’ to read data from FIFO to compare with the
expected data.

The logic in the left side of Figure 2-3 is designed to count transfer size. When total data count
is equal to the end size (calculated by UserFLen x File size decoded from DiskFSize), write
enable or read enable of FIFO is de-asserted to ‘0’. So, the total data count to write FIFO or
read FIFO is controlled by user.

The lower side of Figure 2-3 shows the details to generate test data for writing to FIFO or
verifying with data from FIFO. There are five patterns to generate, i.e. all zero, all one, 32 bit
increment data, 32 bit decrement data, and LFSR counter. All zero and all one are fixed value
to select test data through Pattern Selector. 32 bit increment data is designed by using 55 bit
counter while the decrement data can be designed by connecting NOT logic to increment
data. The LFSR pattern is designed by using 32 bit LFSR counter. The equation of LFSR is
x^31 + x^21 + x + 1.

To create unique test data for every 512 byte data, test pattern is designed as shown in Figure
2-4.

Figure 2-4 Test pattern format in each 512 byte data

512 byte data consists of two parts, i.e. 64 bit header in Dword#0 and Dword#1 and test data
in Dword#2 – Dword#127. 64 bit header is created by using the address in 512 byte unit. So,
Address counter inside TestData Generator is designed to generate the current address for
64 bit header data. The initial value of the address counter is calculated by UserFName x File
size decoded from DiskFSize. After that, the address counter is increment when finishing
transferring 512 byte data.

Test data uses Ad512B (the address in 512 byte unit) to be the start value of test pattern in
each block. Test data is fed to be the data input to the FIFO or the expected data for
comparing with the data output from FIFO. Fail flag is asserted to ‘1’ when data verification is
failed. The example of timing diagram to write data to FIFO is shown as follows.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 8

WrPattStart

rWrTrans

rDataCnt 0 1

1. rWrTrans is asserted to

‘1’ after WrPattStart=’1'

1

2

2. rWrFfWrEn=‘1’ when

rWrTrans=’1' and WrFfAFull=’0'.

WrFfAFull

rWrFfWrEn[0]

2 3 4 rEndSize rEndSize+1

4

4. rWrFfWrEn is deasserted to ‘0’

when WrFfAFull=’1'.

3

3. rDataCnt is increment

when rWrFfWrEn=’1'

5

5. rWrTrans and rWrFfWrEn are deasserted to

‘0’ when rDataCnt=rEndSize and rWrFfWrEn=’1'.

Figure 2-5 Timing diagram of Write operation in TestGen

1) WrPattStart is asserted to ‘1’ for one clock cycle when user sets the register to start Write

file operation. In the next clock, rWrTrans is asserted to ‘1’ to enable the control logic for
generating write enable to FIFO.

2) Write enable to FIFO (rWrFfWrEn) is asserted to ‘1’ when two conditions are met. First,
rWrTrans must be asserted to ‘1’ during running the write operation. Second, the FIFO
must not be full by monitoring WrFfAFull=’0’.

3) The write enable is fed back to be counter enable to count total data in the write operation.
4) If FIFO is almost full (WrFfAFull=’1’), the write process will be paused by de-asserting

rWrFfWrEn to ‘0’.
5) When total data count is equal to the set value, rWrTrans is de-asserted to ‘0’. At the same

time, rWrFfWrEn is also de-asserted to ‘0’ to stop data generating.

For read timing diagram, read enable of FIFO is controlled by empty flag of FIFO. Comparing
to write enable, the read enable signal is not stopped by total count and not started by start
flag. When the read enable is asserted to ‘1’, the data counter and address counter are also
increment for counting total data and generating the header of expect value.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 9

2.2 exFAT

Figure 2-6 exFAT hardware

As shown in Figure 2-6, the user interface of exFAT IP is split into two groups, i.e. the control
interface and the data interface. The control interface is connected to Avl2Reg to receive file
parameters from user through JTAG UART. The data interface is 32 bit data bus and connects
with U2IPFIFO and IP2UFIFO. Another side of exFAT IP is connected to SATA HCTL IP.

2.2.1 exFAT IP for SATA
exFAT IP implements the logic to handle data in SATA device following exFAT file system.
exFAT IP must be integrated with SATA HCTL IP. Data bus size is 32 bit. More details of
exFAT IP for SATA are described in datasheet.
https://dgway.com/products/IP/SATA-IP/Altera/dg_exfatip_sata_data_sheet_intel_en.pdf

2.2.2 SATA HCTL IP
SATA HCTL IP implements the application layer of SATA protocol to create/decode SATA FIS
interface. It must be integrated with SATA IP to access SATA Device. More details of SATA
HCTL IP are described in datasheet.
https://dgway.com/products/IP/SATA-IP/Altera/dg_sata_host_ip_datasheet_alt_en.pdf

2.2.3 SATA IP

SATA IP implements some parts of transport layer and link layer of SATA protocol. It must be
integrated with SATA PHY which includes Altera Transceiver PHY. More details of SATA IP
are described in datasheet.
https://dgway.com/products/IP/SATA-IP/Altera/dg_sata_ip_datasheet_altera5_en.pdf

https://dgway.com/products/IP/SATA-IP/Altera/dg_exfatip_sata_data_sheet_intel_en.pdf
https://dgway.com/products/IP/SATA-IP/Altera/dg_exfatip_sata_data_sheet_intel_en.pdf
https://dgway.com/products/IP/SATA-IP/Altera/dg_sata_host_ip_datasheet_alt_en.pdf
https://dgway.com/products/IP/SATA-IP/Altera/dg_sata_ip_datasheet_altera5_en.pdf

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 10

2.3 CPU and Peripherals

32 bit Avalon-MM is applied to be the bus interface for CPU accessing the peripherals such as
Timer and JTAG UART. To control and monitor the test logic of exFAT IP, the test logic is
connected to CPU as a peripheral on 32 bit Avalon-MM bus. CPU assigns the different base
address and the address range for each peripheral.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. So, the hardware logic must be designed to support Avalon-MM bus standard for
writing and reading the register. Avl2Reg module is designed to connect the CPU system as
shown in Figure 2-7.

Figure 2-7 CPU and peripherals hardware

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg is designed to convert the
Avalon-MM signals to be the simple register interface which has 32 bit data bus size (same as
Avalon-MM data bus size). Otherwise, AsyncAvlReg includes asynchronous logic to support
clock crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals to control the other
modules, i.e. exFAT IP and TestGen. More details of AsyncAvlReg and UserReg are
described as follows.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 11

2.3.1 AsyncAvlReg

Figure 2-8 AsyncAvlReg Interface

The signal on Avalon-MM bus interface can be split into three groups, i.e. Write channel (blue
color), Read channel (red color) and Shared control channel (black color). More details of
Avalon-MM interface specification is described in following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_av
alon_spec.pdf

According to Avalon-MM specification, one command (write or read) can be operated at a
time. The logic inside AsyncAvlReg is split into three groups, i.e. Write control logic, Read
control logic and Flow control logic. Flow control logic to control SAvlWaitReq is designed to
hold the next request from Avalon-MM interface while the current request is operating. Write
control I/F and Write data I/F of Avalon-MM bus are latched and transferred as Write register.
Otherwise, Read control I/F and Read data I/F of Avalon-MM bus are latched and transferred
as Read register. Address I/F of Avalon-MM is latched and transferred to Address register
interface as well.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 12

The simple register interface is designed to compatible to general RAM interface for write
transaction. The read transaction of the register interface is little modified from RAM interface
by adding RdReq signal. The address of register interface is shared for write and read
transaction. So, user cannot write and read the register at the same time. The timing diagram
of the register interface is shown in Figure 2-9.

Figure 2-9 Register interface timing diagram

1) To write register, the timing diagram is same as general RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32 bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bit to be the byte data valid, i.e. bit[0] for RegWrData[7:0], bit[1] for
RegWrData[15:8], and so on.

2) To read register, AsyncAvlReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32 bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAvlReg forwards the read value to SAvlRead interface.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 13

2.3.2 UserReg

Figure 2-10 UserReg Interface

The address range to map to UserReg is split into three areas, as shown in Figure 2-10.
1) 0x0000 – 0x00FF: mapped to set the test parameters of exFAT IP and TestGen. This area

is write access only.
2) 0x0100 – 0x01FF: mapped to read the status of exFAT IP. This area is read access only.
3) 0x0200 – 0x02FF: mapped to read the status of TestGen. This area is read access only.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32 bit size, so write byte enable (RegWrByteEn) is not used. To
set the parameters in the hardware, the CPU must use 32 bit pointer to force 32 bit valid value
of the write data.

To read register, two step multiplexers are designed. Register Mux is the data multiplexer to
select the read data within each address area. The lower bit of RegAddr is applied in the
Register Mux. Next, the address decoder uses the upper bit to select the read data from each
area for returning to CPU. Totally, the latency of read data is equal to two clock cycles, so
RegRdValid is created by RegRdValid with asserting two D Flip-flips.

More details of the address mapping within UserReg module is shown in Table 2-1.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 14

Table 2-1 Register Map

Address Register Name Description

Rd/Wr (Label in the “exfatsatatest.c”)

0x0000 – 0x00FF: Control signals of exFAT IP and TestGen (Write access only)

BA+0x000 User File Name Reg [26:0]: Input to be UserFName of exFAT IP for SATA

(USRFNAME_REG)

BA+0x004 User File Length Reg [26:0]: Input to be UserFLen of exFAT IP for SATA

(USRFLEN_REG)

BA+0x008 User File Size Reg [2:0]: Input to be FSize of exFAT IP for SATA. Comparing to DFSIZE_REG,

this input is used to set File size to exFAT IP for SATA during running Format

command.

(USRFSIZE_REG)

BA+0x00C Created Date and Time Reg [4:0]: Input to be FTimeS of exFAT IP for SATA

[10:5]: Input to be FTimeM of exFAT IP for SATA

[15:11]: Input to be FTimeH of exFAT IP for SATA

[20:16]: Input to be FDateD of exFAT IP for SATA

[24:21]: Input to be FDateM of exFAT IP for SATA

[31:25]: Input to be FDateY of exFAT IP for SATA

(DATETIME_REG)

BA+0x010 User Command Reg [1:0]: Input to be UserCmd of exFAT IP for SATA

When this register is written, the design asserts UserReq=’1’ (command

request) to exFAT IP for SATA to start new command operation.

(USRCMD_REG)

BA+0x014 Pattern Select Reg [2:0]: Test pattern select

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR (PATTSEL_REG)

0x0100 – 0x01FF: Status signals of exFAT IP (Read access only)

BA+0x100 User Status Reg [0]: Mapped to UserBusy of exFAT IP for SATA

[1]: Mapped to UserError of exFAT IP for SATA

[2]: Data verification fail (‘0’: Normal, ‘1’: Error)

(USRSTS_REG)

BA+0x104 Total file capacity Reg [26:0]: Mapped to TotalFCap of exFAT IP for SATA

(TOTALFCAP_REG)

BA+0x108 User Error Type Reg [31:0]: Mapped to UserErrorType of exFAT IP for SATA

(USRERRTYPE_REG)

BA+0x10C exFAT IP Test pin (Low) Reg [31:0]: Mapped to TestPin[31:0] of exFAT IP for SATA

(TESTPINL_REG)

BA+0x110 exFAT IP Test pin (High) Reg [31:0]: Mapped to TestPin[63:32] of exFAT IP for SATA

(TESTPINH_REG)

BA+0x114 Directory capacity Reg [19:0] Mapped to DirCap[19:0] of exFAT IP for SATA

(DIRCAP_REG)

BA+0x118 File Size in the disk Reg [2:0] Mapped to DiskFsize of exFAT IP for SATA. Comparing to

USRFSIZE_REG, this is the current file size which exFAT IP reads from the

disk.

(DFSIZE_REG)

BA+0x11C Total file in the disk Reg [26:0] Mapped to DiskFnum of exFAT IP for SATA

(DFNUM_REG)

BA+0x120 Disk Capacity (Low) Reg [31:0] Mapped to LBASize(bit[31:0]) of HCTL IP to check total capacity of the

disk. (DCAPL_REG)

BA+0x124 Disk Capacity (High) reg [15:0] Mapped to LBASize(bit[47:32]) of HCTL IP to check total capacity of

the disk. (DCAPH_REG)

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 15

Address Register Name Description

 Rd/Wr (Label in the “exfatsatatest.c”)

0x0200 – 0x02FF: Status signals of TestGen (Read access only)

BA+0x200 Expected value Reg [31:0]: Bit[31:0] of the expected data at the 1st failure data.

(EXPPATW_REG)

BA+0x204 Read value Reg [31:0]: Bit[31:0] of the read data at the 1st failure data.

(RDPATW_REG)

BA+0x208 Failure Byte Address (Low) Reg [31:0]: Bit[31:0] of the byte address in the file at the 1st failure data

(FAILADDRL_REG)

BA+0x20C Failure Byte Address (High) Reg [6:0]: Bit[38:32] of the byte address in the file at the 1st failure data

(FAILADDRH_REG)

BA+0x210 Failure File Name Reg [26:0]: Filename of the 1st failure data

(FAILFNAME_REG)

BA+0x214 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen module

(CURTESTSIZEL_REG)

BA+0x218 Current test byte (High) Reg [23:0]: Bit[55:32] of the current test data size in TestGen module

(CURTESTSIZEH_REG)

Other interfaces

BA+0x800 IP Version Reg [31:0]: IP version number, mapped to IPVersion [31:0] of exFAT IP for SATA

(IPVERSION_REG)

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 16

3 CPU Firmware

3.1 Test firmware (exfatsatatest.c)

After system boot-up, CPU starts the initialization sequence as follows.
1) CPU initializes its peripherals such as JTAG UART and Timer.
2) CPU waits until exFAT IP completes initialization process (USRSTS_REG[0]=’0’).
3) CPU reads the disk information.
4) Receive the input from user to run format the disk or not.

In case of start up without format,
a) CPU loads the default parameter to set to exFAT IP.
b) The current system information is displayed on the console. Three parameters which

are outputs of exFAT IP are read by CPU to show on the console, i.e. current file size
(DFSIZE_REG), total file in the disk (DFNUM_REG), and maximum file to store in the
disk (TOTALFCAP_REG).

In case of start up with format, the next step is same as running Format command menu.

5) After all parameters are set completely, main menu is displayed on the console. There are
three commands for the test, i.e. Format command (USRCMD_REG=”00”), Write file
command (USRCMD_REG=”10”), and Read file command (USRCMD_REG=”11”).

More details of the operation sequence for each command are described as follows.

3.1.1 Format

The sequence of the firmware when user selects Format menu is below.
1) Ask user to set created date and created time of directory or use default value. Then, set

the value to DATETIME_REG.
2) Read disk capacity from DCAPH/L_REG and calculate supported file size to display on the

console.
3) Ask user to set file size and then set the value to USRFSIZE_REG.
4) Set USRCMD_REG=”00” to run Format command. After that, exFAT IP changes to busy

status (USRSTS_REG[0] changes from ‘0’ to ‘1’).
5) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_REG[1:0].

Bit[0] is de-asserted to ‘0’ when command is completed.
Bit[1] is asserted to ‘1’ when some errors are detected. In case of error condition, error
message is displayed on the console.

6) If the command is completed, the disk information will be displayed, i.e. maximum file in

the disk (TOTALFCAP_REG), maximum file per directory (DIRCAP_REG), current file size
(DFSIZE_REG), and total file in the disk (DFNUM_REG).

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 17

3.1.2 Write file/Read file command

The sequence of the firmware when user selects Write file/Read file command is below.
1) Skip to the next step for Read file command. For Write file command, ask user to set

created date and created time of directory or use default value. Then, set the value to
DATETIME_REG.

2) In case of Write command,
a) Ask user to use default Start file No. which continues from previous Write file command

or change to other value.
b) If the input is valid, the new value will be set to USRFNAME_REG.

In case of Read command,
a) Receive Start file No. from user.
b) If the input is valid, the new value will be set to USRFNAME_REG.

3) Receive total files and test pattern through JTAG UART. If some inputs are invalid, the

operation will be cancelled.
4) Set the inputs to USRFLEN_REG and PATTSEL_REG.
5) Send Write file or Read file command by setting USRCMD_REG (“10” for Write file

command or “11” for Read file command).
6) CPU waits until the operation is completed or some errors (except verification error) are

found by monitoring USRSTS_REG[2:0].

Bit[0] is de-asserted to ‘0’ when command is completed.
Bit[1] is asserted when error is detected. After that, error message is displayed on the
console to show the error details. Finally, the process will be cancelled.
Bit[2] is asserted when data verification is failed. Then, the verification error message is
displayed. CPU is still running until the operation is done or user inputs any key to cancel
operation.

During running command, current transfer size reading from CURTESTSIZE_REG is
displayed every second.

7) After busy flag (USRSTS_REG[0]) is de-asserted to ‘0’, CPU displays the test result on the

console, i.e. total time usage, total transfer size, and transfer speed.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 18

3.2 Function list in Test firmware

void change_ftime(void)

Parameters None

Return value None

Description Print current create time and date by calling show_ftime function. After
that, ask user to change the value. If input is valid, the created time and
date will be updated to DATETIME_REG and global parameter
(DateTime).

int format_fat(void)

Parameters None

Return value 0: User cancels command or command is finished.
-1: Receive invalid input or error is found.

Description Run Format command, following in topic ผิดพลาด! ไม่พบแหล่งการอ้างอิง

unsigned long long get_cursize(void)

Parameters None

Return value Read value of CURTESTSIZEH/L_REG

Description Read CURTESTSIZEH/L_REG and return read value as function result.

int get_param(userin_struct* userin, unsigned int user_cmd)

Parameters userin: Three inputs from user, i.e. start file number, number of file, and
test pattern
user_cmd: 2-Write file command and 3-Read file command

Return value 0: Valid input, -1: Invalid input

Description Read user_cmd and then calculates input parameter range to display on
the console. After receiving user input, the value is verified. If input is
invalid, the function will be returned by -1. Otherwise, all inputs are
updated to userin parameter.

int wrrd_file(unsigned int user_cmd)

Parameters Command from user (2: Write file command, 3: Read file command)

Return value 0: Operation is successful.
-1: Receive invalid input or error is found.

Description Run Write file or Read file command, following in topic ผิดพลาด! ไม่พบแหล่งการ
อ้างอิง

void show_dir(userin_struct* userin, unsigned int user_cmd)

Parameters User input, i.e. file name and number of file and User command

Return value None

Description Print file name and directory of the 1st file and the last file which are
written/read in the current command.
Print file name and directory of the last file in the device.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 19

void show_diskinfo(void)

Parameters None

Return value None

Description Print the current disk information from global parameters, i.e. file size
(DFnumB), maximum file in the disk (TotalFCap), maximum file per
directory (DirCap), and total file in the disk (DFnum).

void show_error(void)

Parameters None

Return value None

Description Read USRERRTYPE_REG and decode the value. Print error type when
the flag is found. The example of error type is timeout error, SATA IP
error, or unsupported disk capacity.

void show_ftime(void)

Parameters None

Return value None

Description Print current created date and time from global parameter (DateTime)

void show_size(unsigned long long size_input)

Parameters Size in byte unit

Return value None

Description Print input value in MB, GB, or TB unit

void show_result(void)

Parameters None

Return value None

Description Print total size by calling get_cursize and show_size function. After that,
calculate total time usage from global parameters (timer_val and
timer_upper_val) and display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed on MB/s unit.

void show_vererr(void)

Parameters None

Return value None

Description Print information from hardware register to show verification error details,
i.e. the 1st error file name (FAILFNAME_REG), the 1st error address
(FAILADDRL/H_REG), expected value (EXPPATW_REG), and error
read value (RDPATW_REG).

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 20

void update_dfsize(void)

Parameters None

Return value None

Description Read total file (TOTALFCAP_REG) and current file size in the disk
(DFSIZE_REG) from hardware. File size is decoded and converted to be
byte unit. Finally, total file and file size are updated to global parameters
(TotalFCap and DFsizeB).

void update_dfnum(void)

Parameters None

Return value None

Description Read total file in the disk from DFNUM_REG, and then update read
value to global parameter (DFnum).

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 21

4 Example Test Result

The example test result when running demo system by using 256 GB Samsung 860 Pro is shown
in Figure 4-1.

527

567

0 100 200 300 400 500 600

Gen3
Read
Write

Mbyte/s
Figure 4-1 Test Performance of exFAT IP demo for SATA by using Samsung 860 Pro SSD

By using SATA Gen3 on Cyclone10GX development kit, write performance is about 527
Mbyte/sec and read performance is about 567 Mbyte/sec.

dg_exfatip_sata_refdesign_intel_en

5-Jul-23 Page 22

5 Revision History

Revision Date Description

1.0 28-Nov-18 Initial release

1.1 20-Mar-19 - Add DiskFsize, DiskFnum signal
- Add function list

1.2 14-May-19 Update Dircap size and the design details

Copyright: 2018 Design Gateway Co,Ltd.

