## SATA IP Transport & Link Layer Core

June 17, 2021

Product Specification

Rev2.4



### **Design Gateway Co., Ltd**

E-mail: ip-sales@design-gateway.com URL: design-gateway.com

### **Features**

- Compliant with the Serial ATA specification revision 3.0
- Support both of SATA Host and SATA Device
- Simple user interface and 32-bit data bus
- Include two 4KB FIFOs to be data buffer
- Support SATA III/II Speed and NCQ command
- Require low user clock frequency (at least 150 MHz for SATA-III or 75 MHz for SATA-II)

| Provided with Core      |                             |  |  |  |  |  |  |
|-------------------------|-----------------------------|--|--|--|--|--|--|
| Documentation           | Reference design manual     |  |  |  |  |  |  |
|                         | Demo instruction manua      |  |  |  |  |  |  |
| Design File Formats     | Encrypted Netlist File      |  |  |  |  |  |  |
| Instantiation Templates | VHI                         |  |  |  |  |  |  |
| Reference Designs &     | Vivado Project              |  |  |  |  |  |  |
| Application Notes       | See Reference Design Manua  |  |  |  |  |  |  |
| Additional Items        | Demo on AC701/KC705/        |  |  |  |  |  |  |
|                         | ZC706/VC707/VC709/KCU105/   |  |  |  |  |  |  |
|                         | Zynq Mini-ITX/ZCU102/VCU118 |  |  |  |  |  |  |
|                         | Support                     |  |  |  |  |  |  |

Support Provided by Design Gateway Co., Ltd.

- CONT primitive support for continue primitive suppression to reduce EMI
- Provide SATA PHY including Xilinx transceiver as HDL code in reference design
- Many IP options for SATA application HCTL IP, AHCI IP, FAT32 IP, and exFAT IP
- Many reference designs on FPGA evaluation board (Most boards require AB09-FMCRAID adapter)
  - 1-ch SATA host design
  - 4-ch SATA RAID0 design
  - 1-ch SATA host design with exFAT support by firmware
  - SATA device design
  - SATA bridge design
  - SATA AHCI IP design
  - PCIe SATA AHCI IP design
  - 1-ch HCTL IP design
  - 4-ch HCTL IP design
  - 8-ch HCTL IP with/without DDR design
  - SATA FAT32 IP design
  - SATA exFAT design

#### SATA IP Transport & Link Layer Core

| Family                     | Example Device              | Fmax<br>(MHz) |     | Slice<br>LUTs | Slices <sup>1</sup> | ЮВ | BUFG | BRAMTile | PLL | GTP/GTX | Design<br>Tools |
|----------------------------|-----------------------------|---------------|-----|---------------|---------------------|----|------|----------|-----|---------|-----------------|
| Artix-7                    | XC7A200TFBG676-2            | 222           | 912 | 963           | 328                 | -  | 3    | 1        | 1   | 1       | Vivado2019.1    |
| Kintex-7                   | XC7K325TFFG900-2            | 285           | 912 | 963           | 341                 | -  | 3    | 1        | 1   | 1       | Vivado2019.1    |
| Zynq-7000                  | XC7Z045FFG900-2             | 285           | 912 | 963           | 346                 | -  | 3    | 1        | 1   | 1       | Vivado2019.1    |
| Virtex-7                   | Virtex-7 XC7VX485TFFG1761-2 |               | 912 | 963           | 341                 | -  | 3    | 1        | 1   | 1       | Vivado2019.1    |
| Virtex-7 XC7VX690TFFG1761- |                             | 333           | 912 | 963           | 339                 | -  | 3    | 1        | 1   | 1       | Vivado2019.1    |

#### Table 1: Example Implementation Statistics for 7-Series device

#### Table 2: Example Implementation Statistics for Ultrascale device

| Family             | Example Device       | Fmax<br>(MHz) |     |     |     | ЮВ | BUFG | BRAMTile | PLL | GTH/GTY | Design<br>Tools |
|--------------------|----------------------|---------------|-----|-----|-----|----|------|----------|-----|---------|-----------------|
| Kintex-Ultrascale  | XCKU040FFVA1156-2E   | 433           | 912 | 960 | 183 | 1  | -    | 1        | -   | 1       | Vivado2019.1    |
| Zynq-Ultrascale+   | XCZU9EG-FFVB1156-2-I | >500          | 912 | 973 | 205 | 1  | -    | 1        | -   | 1       | Vivado2019.1    |
| Virtex-Ultrascale+ | XCVU9P-FLGA2104-2L-E | >500          | 912 | 958 | 197 | -  | -    | 1        | -   | 1       | Vivado2019.1    |

Notes:

1) Actual slice count dependent on percentage of unrelated logic. The example is the report from utilization\_placed.rpt file 2) BUFG, PLL, and GTP/GTX/GTH resource is not used in SATA IP, but they are used in SATA PHY design.

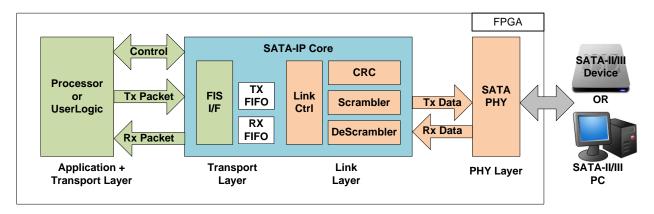



Figure 1: SATA IP Block Diagram

# Applications

SATA IP is ideal for use in a variety of storage application such as embedded storage system and High speed with large capacity data acquisition system. System performance, device capacity, and data reliability are increased by using multiple SATA IPs as RAID0 operation. SATA IP is the solution which achieves high speed performance, scalability, and features extensibility.

The IP supports both Host and Device mode. so it supports the applications such as Secure storage.

## **General Description**

SATA IP implements link layer and a part of transport layer for communication between the upper layer managed by Processor/UserLogic and PHY layer implemented by Xilinx Transceiver. For upper layer interface, the IP provides a simple TX and RX transaction interface to transfer 32-bit data between transport layer and processor at low frequency (at least 150 MHz for SATA-III). The interface is easy to connect with an embedded processor on FPGA (ARM/Microblaze) or connect with pure-hardware logic. For PHY interface, the IP supports 32-bit PHY interface with 150MHz reference clock for SATA-III 6.0Gbps and 75MHZ for SATA-II 3.0Gbps operation.

Free demo bit file to evaluate SATA IP on Xilinx evaluation boards are provided on the website. Besides, many reference designs are provided for various SATA applications such as 1-ch Host design, 4-ch RAID0 design, and exFAT support design. RAID0 is the solution to increase transfer performance and device capacity by connecting multiple SATA devices to one Host.

Furthermore, four optional IPs are provided to complete the design of all SATA protocol layers, i.e., HCTL IP, AHCI IP, FAT32 IP, and exFAT IP.

### **Functional Description**

SATA IP converts SATA FIS packet of Processor/UserLogic interface to be data stream for SATA PHY layer. SATA IP has the logic implementing Link layer and Transport layer. Two asychronous FIFOs are the data buffer for transferring data packet between Transport layer logic and Link layer logic which run in different clock domain. Also, FIFO is applied to control data flow in SATA IP.

#### Link Layer

Link layer transmits primitives based on control signals from Transport layer. Also, it receives primitives from SATA PHY which are converted to control signals for Transport layer.

#### • CRC

CRC of a frame is a Dword (32-bit) field that shall follow the last Dword of the contents of a FIS and precede EOF primitive.

#### Scramble

The content of a frame is scrambled before forwarding to SATA PHY. Scrambling is performed on Dword quantities by XORing the data to be transmitted with output of a linear feedback shift register (LFSR) by SATA IP.

#### Descramble

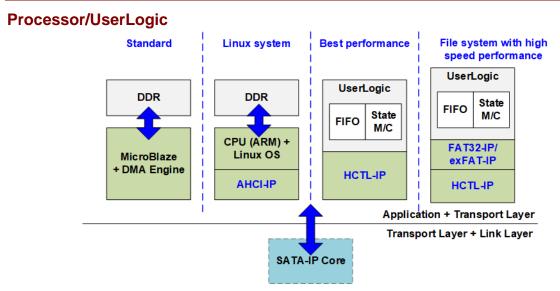
The content of a frame from SATA PHY is descrambled before sending to Transport layer. Descrambling is performed the same ways as scrambling to get FIS.

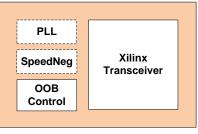
#### **Transport Layer**

Transport layer constructs frame information structure (FIS) for transmission. On the other hand, it decomposes received frame information structures. It also notifies Link layer of the required data flow control and generates status signals for upper layer.

#### FIS Interface

Provide the interface and data flow control to transmit and receive a transferred transaction with Application layer.





Figure 2: Processor/UserLogic implementation

In standard system, SATA IP operates with the host processor that runs the firmware for handling the packet with SATA IP. The SATA IP and the host processor include DMA Engine to handle FIS packet through main memory (DDR). This system is flexible to support various ATA commands and easy to upgrade the system specification. However, the system consumes large FPGA resources for building processor system and DDR controller.

As optional, AHCI IP, HCTL IP, FAT32 IP, and exFAT IP are purposed to complete Application layer of SATA protocol for many applications. AHCI IP is the option to integrate SATA IP to the processor system which runs OS and needs to access SATA IP by using standard driver, AHCI driver. While remaining IP cores are designed to minimize FPGA resource with high transfer performance achievement. They completes SATA host solutions without using the processor and DDR. The user interface of the IPs is very simple, so the user logic can be designed by simple state machine with some registers. HCTL IP implements SATA application layer which can fit to data acquisition system. FAT32 IP and exFAT IP are the additional solutions of HCTL IP to transfer f data with SATA device by FAT32 and exFAT file system, not raw data format. Please see more details from our website.

http://www.dgway.com/SATA-IP\_X\_E.html

## SATA PHY



PHY Layer

Figure 3: Hardware in SATA PHY example

The example HDL code of SATA PHY is provided in SATA IP reference design after purchasing. SATA PHY consists of at least two parts - OOB Control and Xilinx transceiver. OOB Control includes state machine for SATA initialization from system boot to link up status. Transceiver is the hardware inside Xilinx FPGA and the characteristic is different for each FPGA model. The different parameters are assigned for different FPGA model.

SpeedNeg and PLL are included in the design which supports both SATA-II and SATA-III speed. In RAID0 and SATA device application, SpeedNeg is not included. The designs are run as fixed speed. Also, PHY in RAID0 design shares some clock resources from one channel (master channel) to other channels (slave channel) for reducing the resource.

## Core I/O Signals

Descriptions of all signal I/O are provided in Table 3.

## Table 3: Core I/O Signals

| Signal          | Dir | Clk     | Description                                                                                            |
|-----------------|-----|---------|--------------------------------------------------------------------------------------------------------|
|                 | 1   |         | Common Interface Signal                                                                                |
| IPVersion[31:0] | Out |         | IP version number.                                                                                     |
| trn_reset       | In  | trn_clk | Reset SATA IP which is synchronous reset and active high.                                              |
|                 |     |         | Assert at least 4 clock cycles of core_clk to reset SATA-IP.                                           |
| trn_link_up     | Out | trn_clk | Transaction link up. Asserted when the core establishes the communication with SATA PHY.               |
| trn_clk         | In  |         | Clock signal for interface with the user.                                                              |
|                 |     |         | This clock frequency must be higher than or equal to core_clk frequency.                               |
| core_clk        | In  |         | SATA IP operating frequency output (150MHz for SATA-III, 75MHz for SATA-II).                           |
|                 |     |         | This clock is generated by SATA PHY.                                                                   |
| dev_host_n      | In  | trn_clk | Device or Host mode assignment. '0': Host IP, '1': Device IP.                                          |
|                 |     |         | (Use '0' for the host reference design)                                                                |
|                 | T   | Ĩ       | Transmit Transaction Interface                                                                         |
| trn_tsof_n      | In  | trn_clk | Not used now.                                                                                          |
| trn_teof_n      | In  | trn_clk | Transmit End-Of-Frame (EOF): Indicate end of SATA FIS packet. Active low.                              |
| trn_td[31:0]    | In  | trn_clk | Transmit Data: SATA FIS packet data to be transmitted.                                                 |
| trn_tsrc_rdy_n  | In  | trn_clk | Transmit Source Ready: Indicates that trn_td[31:0] from the Host is valid. Active low.                 |
| trn_tdst_rdy_n  | Out | trn_clk | Transmit Destination Ready: Indicate that the core is ready to accept data on trn_td[31:0].            |
|                 |     |         | Active low. trn_tsrc_rdy_n must be de-asserted to '1' within 4 clock cycles of trn_clk after           |
|                 |     |         | trn_tdst_rdy_n is de-asserted to '1'. Therefore, the core can accept 4 DWORDs of trn_td[31:0]          |
|                 |     |         | after trn_tdst_rdy_n is de-asserted to '1'.                                                            |
| trn_tsrc_dsc_n  | In  | trn_clk | Transmit Source Abort: Assert for 1 clock cycle of trn_clk during operation (between tsof and          |
|                 |     |         | teof) for user cancelling current write operation. Active low. After asserting this signal to '0', the |
|                 |     |         | core sends SYNC primitive to SATA PHY to abort the current transfer. The user needs to wait            |
|                 |     |         | until trn_tdst_rdy_n ready again before sending next packet. See Figure 6 for more details.            |
| trn_tdst_dsc_n  | Out | trn_clk | Transmit Destination Abort: Asserted for 1 clock cycle of trn_clk by the core to cancel current        |
|                 |     |         | write operation when SYNC primitive is received. Active low. See Figure 8 for more details.            |
|                 |     |         | Receive Transaction Interface                                                                          |
| trn_rsof_n      | Out | trn_clk | Receive Start-Of-Frame (SOF): Indicate start of SATA FIS packet. Active low.                           |
| trn_reof_n      | Out | trn_clk | Receive End-Of-Frame (EOF): Indicate end of SATA FIS packet. Active low.                               |
| trn_rd[31:0]    | Out | trn_clk | Receive Data: SATA FIS packet data to be transmitted.                                                  |
| trn_rsrc_rdy_n  | Out | trn_clk | Receive Source Ready: Indicates that trn_rd[31:0] from the core is valid. Active low.                  |
| trn_rdst_rdy_n  | In  | trn_clk | Receive Destination Ready: Indicate that the user is ready to accept data on trn_rd[31:0].             |
|                 |     |         | Active low. trn_rsrc_rdy_n is de-asserted to '1' within 4 clock cycles of trn_clk after                |
|                 |     |         | trn_rdst_rdy_n is de-asserted to '1'. Therefore, the user logic should support to accept 4             |
|                 |     |         | DWORD of trn_rd[31:0] after trn_rdst_rdy_n is de-asserted to '1'.                                      |
| trn_rsrc_dsc_n  | Out | trn_clk | Receive Source Abort: Asserted for 1 clock cycle of trn_clk by the core to cancel current read         |
|                 |     |         | operation when SYNC primitive is received. Active low. See Figure 9 for more details.                  |
| trn_rdst_dsc_n  | In  | trn_clk | Receive Destination Abort: Assert 1 clock cycle of trn_clk during read operation (between rsof         |
|                 |     |         | and reof) when the user cancels current read operation. Active low. After asserting this signal        |
|                 |     |         | to '0', the core sends SYNC primitive to SATA-PHY to abort the current transfer. The user              |
|                 |     |         | needs to wait until trn_tdst_rdy_n ready again before sending the next packet. See Figure 7 for        |
|                 |     |         | more details.                                                                                          |

| Signal       | Dir | Clk      | Description                                                         |  |  |  |  |
|--------------|-----|----------|---------------------------------------------------------------------|--|--|--|--|
|              |     |          | SATA PHY Interface                                                  |  |  |  |  |
| LINKUP       | In  | core_clk | Indicates that SATA link communication is established. Active high. |  |  |  |  |
| PLLLOCK      | In  | core_clk | Indicates that PLL of SATA PHY is locked. Active high.              |  |  |  |  |
| TXDATA[31:0] | Out | core_clk | 32-bit transmit data from the core to the SATA PHY                  |  |  |  |  |
| TXDATAK[3:0] | Out | core_clk | 4-bit Data/Control for the symbols of transmitted data.             |  |  |  |  |
|              |     |          | ("0000": data byte, "0001": control byte, others: undefined).       |  |  |  |  |
| RXDATA[31:0] | In  | core_clk | 32-bit receive data from SATA PHY to the core.                      |  |  |  |  |
| RXDATAK[3:0] | In  | core_clk | 4-bit Data/Control for the symbols of received data.                |  |  |  |  |
|              |     |          | ("0000": data byte, "0001": control byte, others: undefined)        |  |  |  |  |

## **Timing Diagram**

As shown in Figure 4, data is transferred with asserting trn\_tsrc\_rdy\_n to '0' after the core is ready (monitored by trn\_tdst\_rdy\_n='0'). The core receives at most 4 data after trn\_tdst\_rdy\_n is de-asserted to '1'. trn\_td and trn\_tsrc\_rdy\_n are the write data and write data valid signals for storing to FIFO inside SATA IP. trn\_teof\_n and trn\_tsrc\_rdy\_n are asserted to '0' when transferring the last data of the packet. After the packet is completely transferred to the core, the user waits until error code packet, generated by SATA IP, is received to show transfer status of a packet transaction.

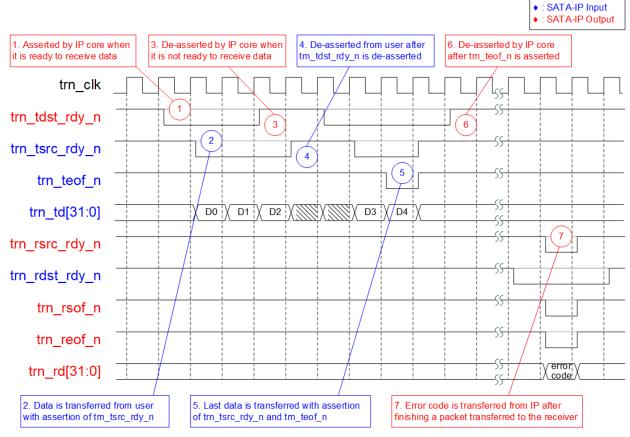



Figure 4: Transmit Transaction Interface Timing

Similar to Figure 4, the first data is transferred by the core after trn\_rdst\_rdy\_n signal is asserted to '0'. trn\_rdst\_rdy\_n signal must be deasserted to '1' when free space of data buffer inside the user is less than 5 (Up to four data are transferred after deasserting ready signal). After packet is transferred from the core to the user, the user waits until error code packet is returned from SATA IP.

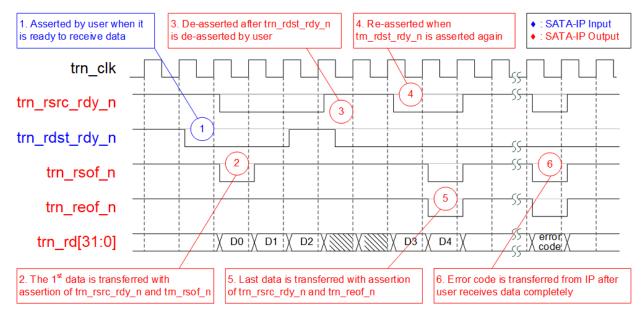



Figure 5: Receive Transaction Interface Timing

As shown in Figure 4 and Figure 5, Error code is designed for the user to check that SATA packet is transferred completely or some errors are found. Therefore, the user should check error code value after finishing transferring each packet. The details of error code is shown in Table 4.

| Bit     | Signal<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                   |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:27] | Reserved       | Always zero                                                                                                                                                                                                                                                                                                                                                                   |
| [26]    | Dir            | Current transfer direction flag. '0': From the user to SATA IP, '1': From SATA IP to the user                                                                                                                                                                                                                                                                                 |
| [25:24] | Error          | Error code flag.<br>"00": No error<br>"01": Bad/Unknown SATA FIS packet. WTRM primitive is received during read operation or R_ERR<br>primitive is received at the end of write operation. Please check data packet is correct format or not when<br>this error detected.<br>"10": CRC error. Please check SATA signal quality when this error is detected.<br>"11": Reserved |
| [23:8]  | Reserved       | Always zero                                                                                                                                                                                                                                                                                                                                                                   |
| [7:0]   | FIS Type       | This byte indicates the header of error code packet.<br>"0xEF" is defined to be different from other SATA FIS.                                                                                                                                                                                                                                                                |

#### SATA IP Transport & Link Layer Core

To cancel current transaction by user, two signals are designed to be SATA IP input - trn\_tsrc\_dsc\_n and trn\_rdst\_dsc\_n. trn\_tsrc\_dsc\_n is applied to cancel current write operation while trn\_rdst\_dsc\_n is applied to cancel current read operation.

After cancelling write operation, trn\_tdst\_rdy\_n status must be monitored to check IP acknowledge, as shown in Figure 6. trn\_tdst\_rdy\_n is de-asserted to '1' after operation is cancelled. The new packet could be transmitted when trn\_tdst\_rdy\_n changes to '0' again.

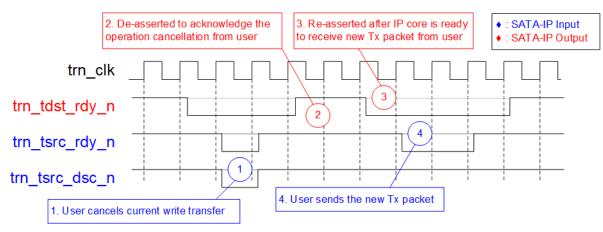



Figure 6: trn\_tsrc\_dsc\_n timing diagram

After cancelling read operation, trn\_rsrc\_rdy\_n is deasserted to '1', as shown in Figure 7.

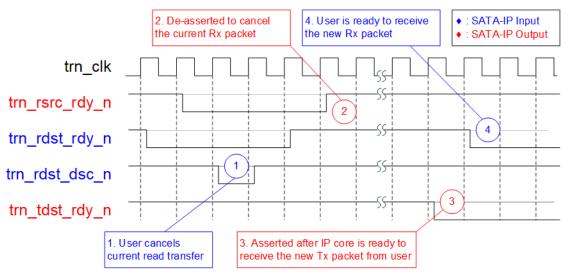



Figure 7: trn\_rdst\_dsc\_n timing diagram

If the target sends SYNC primitives to cancel transmit operation or data collision is detected, trn\_tdst\_dsc\_n will be asserted, as shown in Figure 8. In case of short packet, trn\_tdst\_dsc\_n may be asserted between end of packet and error code.

To re-send the packet after data collision, user needs to wait until trn\_tdst\_rdy\_n is asserted to '0' and the received packet is processed completely.

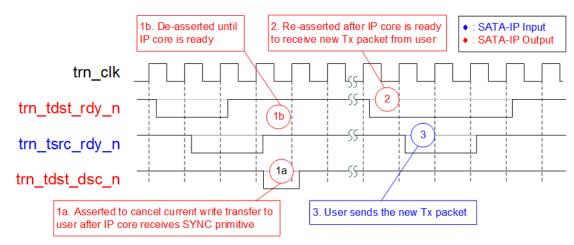



Figure 8: trn\_tdst\_dsc\_n timing diagram

If the target cancels to send the current packet, trn\_rsrc\_dsc\_n will be asserted to '0'. trn\_rsrc\_rdy\_n status changes to '1' to stop current transfer, as shown in Figure 9.

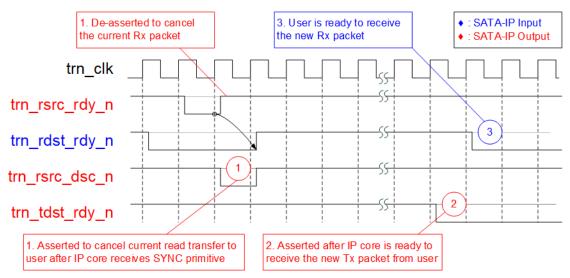



Figure 9: trn\_rsrc\_dsc\_n timing diagram

### **Verification Methods**

SATA IP functionality was verified by simulation and also proved on real board design by using AC701/KC705/ZC706/VC707/VC709/KCU105/ZCU102/Zynq Mini-ITX/VCU118 evaluation board.

## **Recommended Design Experience**

Experience design engineers with a knowledge of Transciever and Vivado Tools should easily integrate this IP into their design. For user board development, compliance with design guideline described in UG476 (7 Series FPGAs GTX/GTH Transceivers User Guide), UG482 (7 Series FPGAs GTP Transceivers User Guide), UG576 (Ultrascale GTH Transceivers User Guide), or UG578 (UltraScale GTY Transceivers User Guide) is strongly recommended.

## **Ordering Information**

This product is available directly from Design Gateway Co., Ltd. Please contact Design Gateway Co., Ltd. For pricing and additional information about this product using the contact information on the front page of this datasheet.

| Revision | Date                         | Description                                   |  |  |  |  |
|----------|------------------------------|-----------------------------------------------|--|--|--|--|
| 2.0      | 8-Oct-14 Support NCQ command |                                               |  |  |  |  |
| 2.1      | 21-Jan-16                    | Support KCU105 board                          |  |  |  |  |
| 2.2      | 18-Jan-18                    | Support ZCU102 board                          |  |  |  |  |
| 2.3      | 7-May-18                     | Support VCU118 board                          |  |  |  |  |
| 2.4      | 17-Jun-21                    | Update resource utilization and add IPVersion |  |  |  |  |

## **Revision History**