
dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 1 

 

SATA-IP exFAT reference design manual 
Rev1.1  5-Sep-13 

1 Introduction 
 The exFAT file system is the successor to FAT32 in the FAT family of file systems. It incorporates 
several improvements over FAT32 such as supporting more than 4 GB file size.  
 

 
Figure 1-1 Example of File System Layout 

 
 Based on one partition table, File system layout can be displayed as shown in Figure 1-1. Disk 
area can be split into three zones, i.e. Partition Area, System Area, and User Area. Size of 
Partition and System Area is equal to Boundary Unit. The recommended value of Boundary Unit 
is shown in Table 1-1. The smallest unit to store data in file or directory is called cluster unit which 
will also depend on disk capacity. From Table 1-1, the boundary unit is equal to 128 times of 
cluster size. 
 

Disk Capacity Sectors per Cluster (sectors) Boundary Unit (sectors) 
32 ~ 128 GB 256 32768 

~ 512 GB 512 65536 
~ 2 TB 1024 131072 

Table 1-1 Recommended Boundary Unit and Cluster Size 
 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 2 

 
 Partition Area 
 The first sector of Partition Area is Master Boot Record which includes executable codes and 
Partition Table that includes the information to identify the partition. Master Boot Record size is 
446 byte size, while one partition table size is 16 byte. 2-byte Signature word of FAT is AA55h. 
The details of 16-byte data in Partition Table are shown in Figure 1-2. The other sectors in 
Partition Area are reserved to make area alignment with Boundary Unit size. 
 

 
Figure 1-2 Partition Table 

 
 System Area 
 System Area contains two Boot Regions and File Allocation Table (FAT). There are 12 sectors in 
each Boot Region which more details are shown in Figure 1-3. The first sector contains the 
parameters for the partition such as cluster size, partition size. The twelfth sector contains a 
repeating pattern of the 4-byte checksum which is calculated from the contents of all other sectors 
in Boot Region. The Backup Boot Region is a backup of the Main Boot Region for Main Boot 
Region content recovery. Similar to Partition Area, the free space area in Boot Region is reserved 
for Boundary Unit alignment. 
 
 In exFAT, FAT is only used for keeping chains of clusters of fragmented files. FAT table does not 
need to be updated for non-fragmented files. The example of FAT after format is shown in Figure 
1-4. 4-byte FAT Entry is referred to next cluster number in chain following this cluster. The 1st and 
2nd FAT entries are reserved and the values are fixed to 0xFFFFFFF8h and FFFFFFFFh 
sequentially. Typically, the 3rd – 5th entries are equal to 0xFFFFFFFFh which means that 
Cluster#2 – 4 are already occupied to be Allocation Bitmap Table, Up-Case Table, and Root 
Directory consecutively. More details about entry value are shown in Table 1-2.  

Main Boot Sector

Main Extended Boot Sectors

Main OEM Parameters

Main Reserved

Main Boot Checksum

Backup Boot Region

#0

Sector Number

#1 - 8

#9

#10

#11

#12 - 23

Backup

 
Figure 1-3 Boot Region 

 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 3 

 
Figure 1-4 Example of File Allocation Table 

 
FAT Entry Value Contents 

00000000h Cluster is not in use. May be allocated to non-fragmented file or directory. 
00000002h to  
ClusterCount + 1 

Cluster is already allocated. The value is the cluster number of the next 
cluster following this cluster 

FFFFFFF7h Defective cluster 
FFFFFFFFh Already allocated and this is final cluster of the file. 
Others Reserved 

Table 1-2 FAT Entry Value 
 
 User Area 
 The first cluster number in User Area is Cluster#2 for storing Allocation Bitmap Table. One bit in 
Allocation Bitmap Table is referred to 1 cluster data, so 1st byte shows Cluster#2 – 9 available 
status. If the cluster is free, the Bit in Allocation Bitmap Table is equal to ‘0’. ‘1’ in Allocation Bitmap 
Table means this cluster is already allocated. 
 
 Cluster#3 stores Up-case table to define the conversion from lower-case to upper-case 
characters which is important due to the File Name directory entry using Unicode characters and 
the exFAT file system being case insensitive and case preserving. 
 
 Cluster#4 is Root directory. Each directory includes root directory consists of a series of directory 
entries. One entry size is equal to 32 bytes. The example of Root Directory containing one 
directory is shown in Figure 1-5. The 1st byte of each entry is entry type, and six entry types are 
displayed in this example. The description of each entry type is described in Table 1-3 
 

 
Figure 1-5 Example of Root Directory 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 4 

 
Entry 
Type 

Definition Description 

81h Allocation Bitmap Define start cluster number and valid length of Allocation Bitmap 
Table. 

82h Up-case Table Define start cluster number and valid length of Up-case Table. 
83h Volume Label Define label as Unicode string for this volume. Entry type is set to 

0x03 if Volume Label is not defined. 
85h File Describe files and directories, store created/modified time, and 

define the following secondary entry count for this file/directory. 
C0h Stream Extension Store name length, start cluster number, and valid length of this 

file/directory. 
C1h File Name Store the name of this file or directory. One entry can store up to 

15 Unicode string, so the maximum number of File Name Entry 
for each file/directory is 17 to support 255-Character name 
length. 

Table 1-3 FAT Entry Value 
 
 The Allocation Bitmap, Up-case Table, and Volume Label Directory are only found in Root 
directory, while File, Stream Extension, and File Name are found in all directories. 
 

File Directory Entry#1

Stream Extension Directory Entry#1

File Name Directory Entry#1

File Directory Entry#2

Stream Extension Directory Entry#2

File Name Directory Entry#2

Entry data in Directory

File/Dir#1

File/Dir#2

32 Byte

32 Byte

Nx32 Byte

 
Figure 1-6 Example of Directory 

 
 As shown in Figure 1-6, when one file or directory is created, one File Directory Entry, one Stream 
Extension Directory Entry, and up to 17 File Name Directory Entry will be generated in parent 
directory. The descriptions of the entries are shown in Figure 1-7 to Figure 1-9. 

 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 5 

 
Figure 1-7 File Directory Entry 

 

 
Figure 1-8 Stream Extension Directory Entry 

 

 
Figure 1-9 File Name Directory Entry 

 
- SecondaryCount in File Directory Entry is the total count of Stream Extension and File Name 

Directory Entry. 
- DataLength in Stream Extension Directory Entry is file/directory size in byte unit. 
- FirstCluster in Stream Extension Directory Entry is the first cluster number of file/directory. 
 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 6 

 
2 Hardware description 
 exFAT demo uses same hardware system with 1-ch SATA host demo reference design. So, 
please see more details from reference design manual on each hardware platform, 
“dg_sata_ip_refdesign_host_xxx_en.doc”. The difference between exFAT demo and 1-ch SATA 
host demo is only CPU firmware. 
 
 
3 Software description 
 
 exFAT software operates with SATA Device by using low-level function from 1-ch SATA host 
demo reference design to interface with SATA-IP. In reference design, it consists of three codes, 
i.e. 
- “sata_host_ctl.c/.h”: stores low-level function to operate with SATA-IP, such as write, read 

command. 
- “sata_host.h”: stores parameter definition to support multi hardware platform. 
- “sata_exfat.c”: exFAT function and main console for the demo to format disk, delete 

file/directory, create file/directory, read file. 
 The details of exFAT design are follows. 
 
 In the demo, the maximum transfer size of each write/read transaction is equal to Boundary Unit 
which will be found during operating format command while File and Directory size will be access 
by Cluster unit. Following Table 1-1, write/read function in “sata_host_ctl” need to support the 
transfer size up to 64 MB (BU size). The demo can support 8 GB – 2 TB disk capacity. 
 
 Similar to 1-ch SATA host demo, DDR3 is used for data buffer transferring between CPU and 
SATA-IP. TX/RX_SATA_FIS area stores non-Data FIS packet while DATA_FIS area stores Data 
FIS packet, as shown in Figure 3-1. Two additional areas are designed, i.e. TMP_DATA to store 
temporary data and TEST_PATTERN to store test pattern data for creating and verifying file. 
 

TX_SATA_FIS

RX_SATA_FIS

TMP_DATA

DATA_FIS

TEST_PATTERN

DDR_BASE_ADDR

+0x0000_1000
4 kByte

4 kByte

64 MByte

64 MByte

64 MByte

+0x0400_0000

+0x0800_0000

+0x0C00_0000

 
Figure 3-1 DDR Memory Map 

 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 7 

 The demo is designed to support five commands, i.e. format, create file/directory, read 
file/directory, delete, and change current directory. The details of each command are follows. 
 
� Format 
 The sequence to format SATA device by exFAT file system is follows. 
(1) Get disk size and set Cluster and Boundary Unit size, following Table 1-1. 
(2) Prepare 1 sector of Master Boot Record data to TMP_DATA area and call function to write the 

data to SATA Device at sector#0. 
(3) Prepare 12 sector of Boot Region data to TMP_DATA area and call function 2 times to write 

the data to SATA Device at address = BU and BU + 12 for backup. 
(4) Prepare BU/2 size of FAT table data to TMP_DATA area and call function to write the data to 

SATA Device at address = 3*BU/2. 
(5) Prepare Allocation Bitmap table, Up-Case Table, and Root Directory to TMP_DATA area and 

call function to write 3 consecutive cluster to SATA Device, starting cluster address = 2.  
(6) Now File System Layout will be similar to Figure 1-1. 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 8 

  
� Create File/Directory 
 

 
Figure 3-2 Create Directory Sequence 

 
 The sequence to create directory is follows. 
(1) Search one free cluster available from Allocation Bitmap Table (Cluster address = 2). 
(2) Set that bit = ‘1’ to allocate cluster in Allocation Bitmap Table. 
(3) Read the entry in current directory to search available space to add File Directory Entry in 

current directory. 
(4) If available area in current cluster is not enough, search another free cluster and then create 

FAT chain in current directory by writing next free cluster to FAT table.  
(5) Add File, Stream Extension, and File Name Directory Entry to the available space and call 

function to update entry in current directory. 
 
 To create file, the sequence is follows. 
(1) Prepare test pattern data to TEST_PATTERN area. 
(2) Search free cluster available from Allocation Bitmap Table. Free cluster size must be equal to 

file size from user input. 
(3) a. If available space is not fragmented, data from TEST_PATTERN area will be burst transfer 

to SATA device until complete. Allocation Bitmap will be filled to ‘1’ to allocate the filled area.  
b. If available space is fragmented, one cluster data will be transferred for each transaction 
until complete. FAT chain is created by filling FAT table by next cluster number in chain. One 
bit of Allocation Bitmap will be filled to ‘1’ for each transaction to allocate one cluster.  

(4) File, Stream Extension, and File Name Directory Entry will be added to current directory. 
(5) Similar to create directory flow, if current cluster has not enough space to add entry, new FAT 

chain will be created. 
 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 9 

File Allocation Table

Allocation Bitmap Table

Current Cluster

0Search free cluster 

= File Size

Free Area

User Area

File Allocation Table

Allocation Bitmap Table

Current Cluster

1

Test Pattern

User Area

File/Stream/FileName Entry

Fill ‘1’

Write entry

Fill Test Pattern

Mapped bit to 

cluster number

Non-fragmented area -> Burst Mode

0 0... 1 1...

 
Figure 3-3 Create new File for Non-fragmented area 

 

 
Figure 3-4 Create new File for Fragmented area 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 10 

 
� Read File/Directory 
 The sequence to dump directory list within current directory is follows. 
(1) Dump all data in current cluster to DATA_FIS.  
(2) Scan all entries in current directory that which entry is valid and then print out only valid 

file/directory until end of cluster. 
(3) End operation if current cluster is end and no more FAT chain. If FAT chain is found, read next 

cluster address from FAT table and then go back to step (1). 
 
 The sequence to read file is follows. 
(1) Dump all data in current cluster to DATA_FIS. 
(2) Receive file name input from user and then search entry in current cluster which file name is 

matched. 
(3) End operation if file name not match while current cluster is end cluster and no more FAT 

chain. Continue to search in next cluster if FAT chain is found. 
(4) Read first cluster information from matching file directory entry and dump data from first 

cluster to DATA_FIS. 
(5) Start dumping data from DATA_FIS to user console until exit command detect or start 

reading/verifying data until end of file. 
 

� Change Current Directory 
 The sequence to change to sub-directory is follows. 
(1) Receive directory name from user and search until directory name matching, similar to Step 

(1) – Step (3) of read file sequence. 
(2) Change current cluster of system to the first cluster value of matching file directory entry. Now 

user can access all entries within new directory. 
Note: The demo can support up to 15 sub-directory levels from global parameter limitation. 
 
 To change directory to parent directory, it will read cluster address of parent directory from global 
parameter in firmware and then change to new cluster address value.  
 
� Delete 
 The sequence to delete file is follows. 
(1) Receive file name from user and search until file name matching, similar to Step (1) – Step (3) 

of read file sequence. 
(2) Delete file entry from parent directory by changing entry type from 85h, C0h, and C1h to 05h, 

40h, and 41h (Bit[7] is changed from ‘1’ to ‘0’).  
(3) Write modified entry from DDR buffer to SATA Device.  
 
 The sequence to delete directory is follows. 
(1) Receive directory name from user and search until directory name matching, similar to Step 

(1) – Step (3) of read file sequence. 
(2) Change current cluster of system to first cluster value of matching file directory entry, and 

delete each entry within that cluster until end of cluster and end of FAT chain. If entry of 
sub-directory is found, current directory will be changed to the sub-directory for deleting all 
internal entries. After that, go back to continue delete the entry of directory. 



dg_sata_ip_refdesign_exfat_en.doc  

2013/09/05 Page 11 

 
� Necessary consideration  
- exFAT software source code of this design is designed to be reference code and not include 

error check or recovery from illegal/unexpected behavior.  
- The demo can support up to 15 sub-directory levels. User needs to modify firmware for 

additional supported level. 
 
 Figure 3-5 shows reference design operation result on serial terminal screen. 
 

 
Figure 3-5 Operation result sample screen 

 
 
4 Revision History  
 
Revision Date Description 

1.0 14-Mar-13 Initial release 
1.1 5-Sep-13 Update to support multi h/w platform 
 

Copyright:  2013 Design Gateway Co,Ltd. 


