
TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 1

TLS10GS-IP Reference Design

Rev1.00 5-Mar-2024

1 Introduction

This document describes the details of TLS 1.3 Server 10Gbps IP Core (TLS10GS-IP)
reference design. In this reference design, TLS10GS-IP is used to establish a secure connection
using the Transport Layer Security protocol version 1.3 over TCP by handling TLS1.3 handshake,
encrypting and decrypting data transferred between the client and the server. Users can set
network parameters for TOE10GLL-IP, transmit and receive payloads corresponding to supported
request from the client. Further details of the hardware design and CPU firmware are provided
below.

2 Hardware Overview

Figure 2-1 TLS10GS-IP reference design block diagram

In this test environment, CPU system is designed to interface with FPGA logic through AXI4
Lite bus and interface with user through serial console in test PC. CPU system communicates
with hardware via memory mapping. Axi4Mux is designed to separate the memory mapping for
hardware communication into two areas, offset 0x00000-0x000FF for TOE10GLL-IP and
0x00100-0x3FFFF for TLS10GS-IP. To connect the hardware with each memory area of CPU
system, AXI4-Lite bus must be implemented by LAxi2TLS for TLS10GS-IP and LAxi2TOE for
TOE10GLL-IP, as shown in Figure 2-1.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 2

There are four clock system in this reference design, i.e., CPUClk, TLSClk, TCPTxClk and
TCPRxClk. CpuClk is used to interface with CPU through AXI4-Lite bus. TLSClk is the clock
domain on which TLS10GS-IP operates and interface with user. TCPTxClk is the clock domain
which is synchronous to Tx EMAC interface and Tx user data interface. TCPRxClk is the clock
domain which is synchronous to Rx EMAC interface and Rx user data interface.

The details of each module are described as follows.

2.1 AsyncAxiReg

This module is designed to convert the signal interface of AXI4-Lite to be register interface.
Also, it enables two clock domains to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register
address in 32-bit unit), RegWrData (write data of the register), and RegWrByteEn (the byte enable
of this access: bit[0] is write enable for RegWrData[7:0], bit[1] is used for RegWrData[15:8], …,
and bit[3] is used for RegWrData[31:24]).

To read register, AsyncAxiReg asserts RegRdReq=’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to
get the read data through RegRdData signal at the same clock.

2.2 LAxi2TLS

LAxi2TLS module is connected to CPU through AXI4-Lite bus. The hardware registers for
TLS10GS-IP are mapped to CPU memory address, as shown in Table 2-1. The control and status
registers for CPU access are designed in LAxi2TLS.

LAxi2TLS consists of AsyncAxiReg and UserRegTLS. AsyncAxiReg is designed to convert
the AXI4-Lite signals into a simple register interface with 32-bit data bus size (similar to AXI4-Lite
data bus size).

UserRegTLS is connected to TLS10GS-IP to control, monitor and prepare data for
TLS10GS-IP operation. UserRegTLS consists of register file, two dual port rams for storing
certificate and RSA key information (CertRam and RSAKeyRam), a data pattern generator
(UserDataGen) and a data pattern verification (UserDataVer), as shown in Figure 2-2.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 3

Figure 2-2 UserRegTLS block diagram

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 4

Register file

For register file, UserRegTLS is designed to write/read registers, control and check alert of
TLS10GS-IP corresponding with write register access or read register request from AsyncAvlReg
module. The memory map inside UserRegTLS module is shown in Table 2-1. The timing diagram
of register interface is shown in Figure 2-3.

Table 2-1 Register map Definition of TLS10GS-IP

Address
offset

Register Name
Rd/
Wr

Description

0x00100 TLS_RSTB_REG Wr [0]: Reset signal active low (TLSRstB).

0x00104 TLS_BUSY_REG Rd [1]: Busy status for handshake operation
(TLSHandshakeBusy).
[0]: Busy status for data transfer operation (TLSTrnsBusy)

0x00108 TLS_ALERT_REG Rd [15:0]: Alert code from TLS10GS-IP (TLSAlertCode[15:0])

0x0010C TLS_TIMEOUT_REG Wr [15:0]: Timeout value for waiting returned packet
(TLSTimeOut[15:0])

0x00110 TLS_TX_RDPTR_REG Rd [13:0]: Read pointer to indicate the first byte position of TxData
that IP will process (TLSTxUserRdPtr).

0x00114 TLS_TX_WRPTR_REG Wr [13:0]: Write pointer to indicate the position after the last
TxData written (TLSTxUserWrPtr).

0x00118 TLS_RX_RDPTR_REG Wr [13:0]: Read pointer to indicate the first byte of RxData that
user already to process (TLSRxUserRdPtr).

0x0011C TLS_RX_WRPTR_REG Rd [13:0]: Write pointer to indicate the position after the last
RxData written (TLSTxUserWrPtr).

0x00120 USER_TX_PATT_TYPE
_REG

Wr [1:0]: Data Pattern Mode (rPattGenMode) “00”, “01”, “10” and
“11” for decreasing binary, increasing binary, decreasing text,
and increasing text, respectively.

0x00124 USER_TX_PATT_LEN_
REG

Rd [31:0]: Remaining data pattern length (wPattRemainLen[31:0])

Wr [31:0]: Data pattern length (rPattGenLen[31:0])

0x00128 USER_RX_VERIFY_TY
PE_REG

Rd [1]: Status of Data pattern verification (wVerifyBusy)
[0]: Validity status (wVerifyInvalid) ‘0’ for indicating that
received data is matched with data pattern, ‘1’ for indicating
that received data is matched with data pattern

Wr [1]: Verify Pattern Mode (rVerifyMode) “00”, “01”, “10” and “11”
for decreasing binary, increasing binary, decreasing text, and
increasing text, respectively.

0x0012C USER_RX_VERIFY_LE
N_REG

Rd [31:0]: Remaining verify length (wDataRemainLen[31:0])

Wr [31:0]: Verify pattern length (rVerifyDataLen[31:0])

0x00130 HTTPHEADER_LEN_R
EG

Wr [13:0]: Number of bytes for skipping HTTP header before
verification. (rHttpHeaderLen)

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 5

0x00134 HTTPTRAILER_LEN_R
EG

Wr [13:0]: Number of bytes for skipping HTTP trailer before
verification. (rHttpTrailerLen)

0x00140-
0x0014C

USER_RX_ACTUAL_D
ATA

Rd [31:0]: Actual RxData (wActualData[127:0])

0x00150-
0x0015C

USER_RX_EXP_DATA Rd [31:0]: Expected RxData (wExpData[127:0])

0x00200-
0x0022C

CTS_REG Rd [31:0]: Client Traffic Secret (CTS)

0x00230-
0x0025C

STS_REG Rd [31:0]: Server Traffic Secret (STS)

0x00260 TLS_KEYVALID_REG Rd [0]: Validity status for key material, key and iv (TLSKeyValid)

0x00270-
0x0028C

CH_RANDOM_REG Rd [31:0]: Random number in ClientHello message.
(Random[255:0])

0x003FC TLS_VER_REG Rd [31:0]: Mapped to IP version of TLS10GS-IP (version)

0x14000-
0x15FFF

CERTRAM_BASE_ADD
R

Rd/
Wr

[31:0]: Certificate data in CertRam (wRamCertRdData)

0x16000-
0x167FF

RSAKeyRAM_BASE_A
DDR

Rd/
Wr

[31:0] RSA key data in RSAKeyRam (wRamRSAKeyRdData)

0x20000-
0x23FFF

RXRAM_BASE_ADDR Rd [31:0]: Rx data in UserRxBuffer (wRxRdData32)

0x30000-
0x33FFF

TXRAM_BASE_ADDR Wr [31:0]: Tx data in UserTxBuffer

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 6

Figure 2-3 Register interface timing diagram

To read register, the multiplexer is designed to select the read data within each address area.
UserRegAddr[13:2] is applied in each register area to select the data. Next, the address decoder
uses UserRegAddr[17:16] to select the read data from each area for returning to CPU. As shown
in Figure 2-3, read data is valid in next two clock cycles. When UserRegRdReq is active,
rUserRegRdReq is asserted to ‘1’. Then rUserRdValid is active with the valid read value of
UserRegAddr.

To write register, UserRegWrEn is asserted to ‘1’ with the valid of UserRegAddr.
UserRegAddr[17:16] is used to decode whether CPU accesses UserTxBuffer of TLS10GS-IP or
the internal register area. The CPU can access UserTxBuffer when UserDataGen is not busy
(rPattGenBusy=’0’). When the CPU accesses UserTxBuffer (UserRegAddr[17:16]=“11”),
UserRegAddr[15:4] is set to TLSTxUserAddr[15:4]. For example, when UserRegAddr[17:0]=
0x1C004 and UserRegWrEn=’1’, UserTxBuffer in TLS10GS-IP will be filled with UserRegWrData
at Address 0x01. Otherwise, UserRegWrData is loaded into the internal register that matches
UserRegAddr[13:2]. For example, rTLSRstBOut is loaded with UserRegWrData when
UserRegAddr=0x0000.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 7

Certificate and RSA key information

TLS10GS-IP is designed to read certificate and RSA key information from the user via Ram
interface. In this reference design, dual port ram (CertRam) is used to store the certificate
information. As shown in Figure 2-4, TLSCertRdEn and TLSCertRdAddr[12:1] are used as read
enable and read address for CertRam, respectively. When TLSCertRdEn is asserted to ‘1’,
TLSCertRdData[15:0] must be valid in the next clock cycle.

In the same way, TLSRSAKeyRdEn and TLSRSAKeyRdAddr[10:1] are used as read
enable and read address for RSAKeyRam, respectively. When TLSRSAKeyRdEn is asserted to
‘1’, TLSRSAKeyRdData[15:0] must be valid in the next clock cycle, as shown in Figure 2-5.

Figure 2-4 Example timing diagram of reading certificate information

Figure 2-5 Example timing diagram of reading RSA key information

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 8

User Data Generator

UserDataGen is designed to generate a data pattern and write it to UserTxBuffer. There
are four types of data patterns: increasing/decreasing binary pattern, increasing/decreasing text
pattern. Users can set the type of data by writing to USER_TX_PATT_TYPE_REG, which is
mapped to rPattGenMode signal. UserDataGen supports generating unaligned data. After the
user sets the data size in byte units to rPattGenLen by writing to USER_TX_PATT_LEN_REG,
the data pattern (TLSTxUserDataIn[127:0]) and TLSTxUserByteEn[15:0] are prepared
corresponding to the start address.

For example, if the start address is 0x1F and user sets UserDataGen to generate 451-byte
increasing text pattern, TLSTxUserDataIn[127:120] is set to 0x00 and TLSTxUserByteEn[15:0] is
set to 0x8000 at the first clock cycle to write data only the highest byte at TLSTxUserAddr[13:0]=
0x10. TLSTxUserWrPtr is set to the next start address to indicate to TLS10GS-IP that there is
available Tx data to transmit. At the second clock cycle, every byte of the data pattern is written.
At the last clock cycle, only the last 2 bytes of the data pattern are written, TLSTxUserDataIn[15:0]
is set to 0xC2C1 and TLSTxUserByteEn[15:0] is set to 0x0003, as shown in Figure 2-6.

Figure 2-6 Example timing diagram of user data generation process

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 9

User Data Verification

UserDataVer reads data via the User Rx interface of TLS10GS-IP when there is available
data in UserRxBuffer and verifies the value after starting verification (rVerifyStart is set to ‘1’).
There are four types of expected data patterns: increasing/decreasing binary pattern, increasing
/decreasing text pattern. Users can set the length of the HTTP header and trailer to skip before
starting verification. When there is available data in UserRxBuffer, UserDataVer starts to read
received data. UserDataVer supports verifying unaligned data. rExpData[127:0] and rMask[127:0]
are prepared corresponding to the start address.

For example, if the start address is 0x1F, and user sets UserDataVer to verify 451-byte
increasing text pattern, rExpData[127:120] is set to 0x00 and rMask[127:0] is set to
0xFF000000000000000000000000000000 at the first clock cycle to verify only the highest byte
at TLSRxUserAddr[13:0]=0x10. TLSRxUserRdPtr is set to the next start address to indicate to
TLS10GS-IP that UserDataVer has already processed RxData. At the second clock cycle, every
byte of Rx data is verified. At the last clock cycle, only the last 2 bytes of the data pattern are
verified, rMask[127:0] is set to 0x0000000000000000000000000000FFFF and rExpData[15:0] is
set to 0xC2C1, as shown in Figure 2-7.

Figure 2-7 Example timing diagram of user data verification process

2.3 TLS10GS-IP

TLS10GS-IP is the IP core provided by Design Gateway to handle TLS1.3 handshake,
encrypt and decrypt data as a server. TLS10GS-IP interface is divided into two parts, i.e., User
Interface signals and TOE10GLL interface signals. The user interface is connected to LAxi2TLS,
allowing user to control, monitor and transfer data with TLS10GS-IP. TOE10GLL interface is
connected to TOE10GLLIP to monitor connection status, send TCPTxData or receive TCPRxData.
More details are described in datasheet.

https://dgway.com/products/IP/TLS-IP/TLS10GSIP_datasheet_xilinx_en/

https://dgway.com/products/IP/TLS-IP/TLS10GSIP_datasheet_xilinx_en/

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 10

2.4 LAxi2TOE

LAxi2TOE module is connected to CPU through AXI4-Lite bus. LAxi2TOE consists of
AsyncAxiReg and UserRegTOE. UserRegTOE is designed to write/read registers, control and
check status of TOE10GLLIP corresponding with write register access or read register request
from AsyncAvlReg module. Memory map inside UserRegTOE module is shown in Table 2-2.

Table 2-2 Register map Definition of TOE10GLLIP

Address
offset

Register Name
Rd/
Wr

Description

0x00000 TOE_RST_INTREG Wr [0]: Mapped to RstB of TOE10GLL-IP

0x00004 TOE_OPM_INTREG Wr [16]: Mapped to ARPICMPEn of TOE10GLL-IP
[1:0]: Mapped to DstMacMode of TOE10GLL-IP

0x00008 TOE_SML_INTREG Wr [31:0]: Mapped to SrcMacAddr[31:0] of TOE10GLL-IP

0x0000C TOE_SMH_INTREG Wr [15:0]: Mapped to SrcMacAddr[47:32] of TOE10GLL-IP

0x00010 TOE_DMIL_INTREG Wr [31:0]: Mapped to DstMacAddr[31:0] of TOE10GLL-IP

0x00014 TOE_DMIH_INTREG Wr [15:0]: Mapped to DstMacAddr[47:32] of TOE10GLL-IP

0x00018 TOE_SIP_INTREG Wr [31:0]: Mapped to SrcIPAddr of TOE10GLL-IP

0x0001C TOE_DIP_INTREG Wr [31:0]: Mapped to DstIPAddr of TOE10GLL-IP

0x00020 TOE_TMO_INTREG Wr [31:0]: Mapped to TimeOutSet of TOE10GLL-IP

0x00024 TOE_TIC_INTREG Wr [0]: Set ‘1’ to clear read value of TOE_STS_INTREG[2]

0x00030 TOE_CMD_INTREG Wr [1:0]: Mapped to TCPCmd of TOE10GLL-IP.

0x00034 TOE_SPN_INTREG Wr [15:0]: Mapped to TCPSrcPort[15:0] of TOE10GLL-IP

0x00038 TOE_DPN_INTREG Wr [15:0]: Mapped to TCPDstPort[15:0] of TOE10GLL-IP

0x00040 TOE_VER_INTREG Rd [31:0]: Mapped to IP version of TOE10GLL-IP

0x00044 TOE_STS_INTREG Rd [20:16]: Mapped to IPState of TOE10GLL-IP
[2]: TOE10GLL-IP Interrupt. Asserted to ‘1’ when IPInt is
asserted to ‘1’. This flag is cleared by TOE_TIC_INTREG.
[1]: Mapped to TCPConnOn of TOE10GLL-IP
[0]: Mapped to InitFinish of TOE10GLL-IP

0x00048 TOE_INT_INTREG Rd [31:0]: Mapped to IntStatus of TOE10GLL-IP

0x0004C TOE_DMOL_INTREG Rd [31:0]: Mapped to DstMacAddrOut[31:0]

0x00050 TOE_DMOH_INTREG Rd [15:0]: Mapped to DstMacAddrOut[47:32]

0x00060 EMAC_VER_INTREG Rd [31:0]: Mapped to IP version of DG LL10GEMAC-IP

0x00064 EMAC_STS_INTREG Rd [0]: Mapped to Linkup of LL10GEMAC-IP

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 11

2.5 TOE10GLL

TOE10GLL-IP is the IP core provided by Design Gateway to implement the TCP/IP stack
and offload engine for the low latency solution. User interface has two signal groups, i.e., control
signals and data signals. The IP can be configured to run in two modes, i.e., Cut-through mode
for low-latency application and Simple mode for simple user interface. This reference design
shows the usage in Simple mode. More details are described in datasheet.

https://dgway.com/products/IP/Lowlatency-IP/dg_toe10gllip_data_sheet_xilinx_en/

2.6 LL10GEMAC

The IP core by Design Gateway implements low-latency EMAC and PCS logic for 10Gb
Ethernet (BASE-R) standard. The user interface is 32-bit AXI4-stream bus. Please see more
details from LL10GEMAC datasheet on our website.

https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en/

2.7 Xilinx Transceiver (PMA for 10GBASE-R)

PMA IP core for 10Gb Ethernet (BASE-R) can be generated by using Vivado IP catalog. In
FPGA Transceivers Wizard, the user uses the following settings.

• Transceiver configuration preset : GT-10GBASE-R

• Encoding/Decoding : Raw

• Transmitter Buffer : Bypass

• Receiver Buffer : Bypass

• User/Internal data width : 32

The example of Transceiver wizard in Ultrascale model is described in the following link.

https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

2.8 PMARstCtrl

When the buffer inside Xilinx Transceiver is bypassed, the user logic must control reset
signal of Tx and Rx buffer. The module is designed by state machine to run following step.

(1) Assert Tx reset of the transceiver to ‘1’ for one cycle.

(2) Wait until Tx reset done, output from the transceiver, is asserted to ‘1’.

(3) Finish Tx reset sequence and de-assert Tx reset to allow the user logic beginning Tx
operation.

(4) Assert Rx reset to the transceiver.

(5) Wait until Rx reset done is asserted to ‘1’.

(6) Finish Rx reset sequence and de-assert Rx reset to allow the user logic beginning Rx
operation.

https://dgway.com/products/IP/Lowlatency-IP/dg_toe10gllip_data_sheet_xilinx_en/
https://dgway.com/products/IP/Lowlatency-IP/dg_ll10gemacip_data_sheet_xilinx_en/
https://www.xilinx.com/products/intellectual-property/ultrascale_transceivers_wizard.html

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 12

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer. Then the
supported command usage is displayed. The main function runs in an infinite loop to receive line
command input from the user. Users can set the IP address and MAC address of the FPGA board,
show key materials, input certificate and RSA key information, start a server to listen for specified
client’s IP address on specified server’s port and respond the supported request from a client.
More details of the sequence in each command are described as follows.

3.1 Set FPGA’s IP Address

command> setip ddd.ddd.ddd.ddd

All network parameters are set to TOE10GLL-IP. Users can set IP address to TOE10GLL-
IP by inputing setip followed by desired IP address in dotted-decimal format. The setip function is
called to change IP address value in src_ip_set array. This array will be written to the register
mapped to SrcIPAddr to set the FPGA’s IP address. Subsequently, TOE10GLL-IP is initialized
with the current network parameter setting. The default FPGA’s IP address is 192.168.7.25. The
setip function is described in Table 3-1.

Table 3-1 setip function

int setip(unsigned char * ipStr, unsigned char *ip_set)

Parameter ipStr: ip address as string input from user

ip_set: array stored IP address

Return value 0: Valid input, -1: Invalid input

Description This function receives IP Address as string input and set value of ip_set array.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 13

3.2 Set FPGA’s MAC address

command> setmac hh-hh-hh-hh-hh-hh

Users can set MAC address to TOE10GLLIP by inputing setmac followed by the FPGA’s
MAC address in hexadecimal format. The setmac function is called to change the MAC address
value in mac_set array. This array will be written to the register mapped to SrcMacAddr to set the
FPGA’s MAC address. The default FPGA’s MAC address is 00-11-22-33-44-55. The setmac
function is described in Table 3-2.

Table 3-2 setmac function

int setmac(unsigned char *macstr)

Parameter macstr: MAC address as string input from user

Return value 0: Valid input, -1: Invalid input

Description This function receives MAC Address as string input and set value of mac_set
array.

3.3 Show key materials

command> showkey <1: enable, 0: disable>

To change showkey mode, users can input showkey <1: enable, 0: disable> to modify a
global variable, showTrafficSecret. If showTrafficSecret is set to ‘1’, traffic tickets will be displayed
on the serial console after the handshake process is completed. Users can use the TLS traffic
ticket as a (Pre)-Master-Secret log file for Wireshark* to decrypt transferred data over the current
connection.

*Wireshark, a network packet analyzer tool used for network troubleshooting, analysis, and
security purposes.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 14

3.4 Set certificate

Command> setcert

Server’s certificate is set by using setcert command. After entering setcert command, the
user can send an ASN.1 DER certificate file in binary format, up to 8kB, via the serial connection.
The fill_mem_with_wrapper function is called to fill the binary certificate into CertRam. Details
about the fill_mem_with_wrapper is described in Table 3-3. It is essential for users to set the
certificate before starting a server.

Table 3-3 fill_mem_with_wrapper function

int fill_mem_with_wrapper (unsigned int *base_addr, unsigned int mem_size8)

Parameter base_addr: base address of memory to be filled.

mem_size8: size of memory to be filled.

Return value 0: Valid input, -1: Invalid input

Description This function writes the binary data from serial console to memory starting at
base address. The binary data must not exceed mem_size8.

3.5 Set RSA key information

Command> setrsakey

RSA private key information is set by using setrsakey command. After entering setrsakey
command, the user can send an ASN.1 DER RSA private key file in binary format, up to 2kB, via
the serial connection. The fill_mem_with_wrapper function is called to fill the binary RSA key
information into RSAKeyRam. It is essential for users to set the RSA key before starting a server.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 15

3.6 Start a server

Command> listenFor ddd.ddd.ddd.ddd on ddddd

Server can be started to listen for a specified client’s IP address on a specified server’s port
by using listenFor command. Users can input listenFor with the desired client’s IP address in
dotted-decimal format and specify the server’s port (FPGA’s port) in decimal format. listenFor
function is called to extract the client’s IP address and the server’s port number, initialize network
parameters, process and respond to incoming data corresponding to supported request from the
client. The sequence of the listenFor function is as follows.

1) Initialize network parameters of TOE10GLL-IP and wait for a connection from a client.

2) Wait for finishing handshake process

3) Process the incoming data in UserRxRam. In case of the incoming data is supported
HTTP request, server will provide a response based on the parameters within the request.

In this reference design, a client can send a GET/POST request followed by
/direction/pattern/length to transfer a data pattern to the server. The supported data patterns
include increasing binary pattern (b1), decreasing binary pattern (b0), increasing text pattern (t1),
decreasing text pattern (t0). The length parameter in the request represents the data length in
byte units. The supported HTTP requests and their corresponding responses are as follows,

a) GET /download/pattern/length

This request is responded by calling resDownload function to transmit data pattern to
client. resDownload function is described in Table 3-4

b) POST /upload/pattern/length

This request is responded by calling resUpload function to receive data pattern from client.
resUpload function is described in Table 3-5.

c) POST /fullduplex/pattern/length

This request is responded by calling resFullduplex function to transmit and also receive
data pattern from client. resFullduplex function is described in Table 3-6.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 16

Table 3-4 resDownload function

int resDownload(unsigned char *pattern, unsigned char *lengthStr)

Parameter patternStr: data pattern parameter from HTTP request as string input

lengthStr: data length parameter from HTTP request as string input

Return value 0: Valid input, -1: Invalid input

Description This function responds to download request by setting the pattern type and
length to User Data Generator parameters. The HTTP header of the response
is constructed and sent before starting the data generator to transmit the data
pattern to the client. Monitor UserDataGen status and the number of
transmitted data to display transmitting results.

Table 3-5 resUpload function

int resUpload(unsigned char *patternStr, unsigned char *lengthStr)

Parameter patternStr: data pattern parameter from HTTP request as string input

lengthStr: data length parameter from HTTP request as string input

Return value 0: Valid input, -1: Invalid input

Description This function responds to upload request by setting the pattern type and length
to User Data Verification parameters. Monitor UserDataVer status and the
number of received data to display receiving results.

Table 3-6 resFullduplex function

int resFullduplex(unsigned char *patternStr, unsigned char *lengthStr)

Parameter patternStr: data pattern parameter from HTTP request as string input

lengthStr: data length parameter from HTTP request as string input

Return value 0: Valid input, -1: Invalid input

Description This function responds to fullduplex request by setting the pattern type and
length to User Data Generator/Verification parameters and construct an HTTP
200 OK success status response to send the same data pattern and length to
the client. Monitor Tx/Rx operation status and the number of transferred data
to display transfer results.

TLS10GSIP-refdesign-xilinx-en.docx

5-Mar-24 Page 17

4 Revision History

Revision Date Description

1.00 5-Mar-2024 Initial version release

