
dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 1 

 

TOE100GADV-IP reference design 
Rev1.00 9-Feb-24 

 
1 Introduction .......................................................................................................................2 

2 Hardware overview ...........................................................................................................5 
2.1 100G Ethernet (MAC) Subsystem (100G BASE-SR) ....................................................7 

2.1.1 MACTxAsync512IF ..................................................................................................8 

2.1.2 MACRxAsync512IF ................................................................................................ 11 
2.1.3 MAC100GTxIF .......................................................................................................13 

2.1.4 MAC100GRxIF .......................................................................................................15 
2.2 AxiSSw2to1 ..............................................................................................................18 

2.3 TOE100GADV-IP ......................................................................................................20 

2.4 User2MAC ................................................................................................................21 
2.4.1 UserTxMAC ...........................................................................................................22 

2.4.2 UserRxMAC ...........................................................................................................24 
2.5 CPU and Peripherals .................................................................................................26 

2.5.1 AsyncAxiReg ..........................................................................................................27 

2.5.2 UserReg ................................................................................................................29 
3 CPU firmware and Test software .....................................................................................42 

3.1 Display parameters ...................................................................................................43 
3.2 Reset parameters......................................................................................................43 

3.3 Half Duplex Test ........................................................................................................44 

3.4 Full duplex test ..........................................................................................................46 
3.5 Ping reply test ...........................................................................................................48 

3.6 Function list in CPU firmware .....................................................................................50 
3.6.1 Functions for High-Speed Connection .....................................................................50 

3.6.2 Functions for Low-Speed Connection......................................................................55 

4 Test Software on PC .......................................................................................................56 
4.1 ‘tcpdatatest’ application .............................................................................................56 

4.2 ‘tcp_client_txrx_single’ application .............................................................................58 
5 Revision History ..............................................................................................................60 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 2 

 

1 Introduction 
Design Gateway has been proposing various networking solutions for a decade, particularly 
focusing on Gigabit Ethernet communication. One such solution is TOE100G-IP core which 
implements the Transport and Internet layers of the TCP/IP Protocol using complete hardwired 
logic. This IP Core showcases a fundamental reference design demonstrating TCP/IP offloading 
engine functionality for a single TCP/IP communication session, utilizing a single TOE100G-IP 
core.  
 
However, the performance results of this design often show limitations, when the test environment 
involves an FPGA and a PC for a single TCP/IP session. In such scenarios, the achieved test 
performance cannot reach even half of the maximum line speed. However, when using two 
TOE100G-IPs transferring data between each other, the maximum line speed becomes 
achievable.  

 
Figure 1-1 System examples between Single-session and Multiple-session solutions 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 3 

 
To overcome this constraint, a new IP Core model, the TOE100GADV-IP, has been introduced, 
featuring a native multi-session architecture. This advanced IP Core is capable of 
accommodating up to four simultaneous sessions, utilizing the same 100G Ethernet channel and 
sharing its bandwidth. Leveraging this multiple-session transferring capability notably enhances 
the overall performance between the FPGA and PC, approaching the theoretical line rate of 100G 
Ethernet speed. Additionally, this multiple-session IP Core adds versatility and complexity to the 
system, enabling multi-rate adoption within the application system, as illustrated on the right side 
of Figure 1-1. 
 
Furthermore, the user interface of the TOE100GADV-IP is compatible with standard Stream I/F 
such as AXI4-ST I/F, facilitating seamless integration of the IP with other modules through 
standard interfaces. While the TOE100G-IP employs a 512-bit FIFO interface, the most 
straightforward interface for user data transfer, it necessitates the size of each transmitted packet 
to align with 512 bits. 
 

 
Figure 1-2 Mixed-speed and versatile Ethernet processing unit 

 
The TOE100GADV-IP is specifically designed for the rapid transmission of TCP payload data, 
making it well-suited for applications demanding ultra high-speed connectivity across all four TCP 
sessions. However, specific applications necessitate a designated port for the transfer of control 
information using alternative protocols like ICMP or DHCP, where high-speed transfer is not 
required. In response to this demand for lower-speed transfer, dedicated logic for CPU interface 
has been incorporated to optimize resource utilization and provide flexibility in handling varied 
processing requirements. 
 
The system illustrated in Figure 1-2 serves this purpose effectively. One TOE100GADV-IP 
module is deployed to manage four high-speed TCP ports, while the CPU takes charge of 
handling the remaining ports and other protocols that requires lower-speed processing. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 4 

 
This document outlines the reference design corresponding to the concept depicted in Figure 1-2. 
In this design, the CPU takes charge of handling the Ping command, using ICMP protocol, while 
the TOE100GADV-IP is integrated to process four high-speed TCP payload data. Although the 
reference design activates all four sessions of TOE100GADV-IP, users have the flexibility to 
enable each session independently. This feature facilitates performance evaluation and 
operational testing with fewer than four sessions. Additionally, the transfer direction of each 
session can be individual configured to meet specific requirements. User can also customize the 
multi-session reference design by adjusting the number of sessions as needed. 
 
For enhanced demo flexibility, a UART interface is integrated with the CPU system to establish a 
user console. This console enables users to set test parameters, control demo operations, and 
monitor the current test status. The CPU firmware is developed using a simple bare-metal OS. 
Further details of the reference design are described in the subsequent sections. 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 5 

 

2 Hardware overview 
 

 
Figure 2-1 Demo block diagram 

 
In the test environment, two devices are utilized for the transfer of 100G Ethernet data When 
utilizing an FPGA and a PC, the FPGA is initialized in client mode, while the PC is initialized in 
server mode. Conversely, with two FPGAs, initialization can occur in one of the following modes: 
Client <–> Server, Client <–> Fixed-MAC, or Fixed-MAC <-> Fixed-MAC, as depicted in Figure 
2-1. Three test applications run on the PC, facilitating the transfer of TCP payload data 
(tcpdatatest and tcp_client_txrx_single) or the transfer of a Ping command. 
 
The reference design offers two connection types: a low-speed connection managed by the CPU 
and a high-speed connection facilitated by TOE100GADV-IP. For the low-speed connection, the 
CPU firmware implements an ICMP protocol for Ping command testing. The Ethernet packet for 
this connection is transferred through User2MAC, with parameters configured by the CPU to 
exclusively handle ICMP packets. User2MAC comprises TxRAM and RxRAM to store Ethernet 
packets transferring to/from the Ethernet MAC. UserReg serves as the interface for CPU access 
to TxRAM and RxRAM. 
 
For the high-speed connection, TOE100GADV-IP is integrated to process TCP payload data for 
four sessions. The CPU configures the parameters of TOE100GADV-IP through UserReg, the 
32-bit Reg I/F. The data interface of the four TCP sessions is managed by UserDataGen or 
UserDataVer, depending on the transfer direction. 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 6 

 
The system has the capability to concurrently process Ethernet packets from high-speed and 
low-speed connections. However, the main menu in the CPU firmware allows users to choose 
between executing high-speed or low-speed connection for basic operational testing. The 
AxiSSw2to1 module functions as the switch logic, selecting the source of transmitted packets to 
the Ethernet (MAC) subsystem, which can be User2MAC or TOE100GADV-IP. The receive 
interface of the Ethernet (MAC) subsystem is directly connected to both User2MAC and 
TOE100GADV-IP, each incorporating their packet filtering logics to selectively bypass specified 
packets. 
 
For the Ethernet MAC module, this reference design utilizes the 100G Ethernet MAC IP, a hard IP 
integrated into Xilinx FPGA. The Ethernet MAC IP core differs between UltraScale+ and Versal 
devices. On UltraScale+ devices, it is referred to ‘100G Ethernet Subsystem’, featuring a user 
interface that utilizes a 512-bit AXI4 stream. This interface matches the EMAC I/F of 
TOE100GADV-IP; however, the operational clock domain of TOE100GADV-IP and the 100G 
Ethernet Subsystem may typically differ.  
 
On Versal devices, the Ethernet MAC IP is named the ‘100G Ethernet MAC subsystem’, 
employing a user interface with a 384-bit AXI4 stream. This interface does not match the 512-bit 
width of TOE100GADV-IP. Consequently, adapter logics, including MACTxIF and MACRxIF, are 
integrated between TOE100GADV-IP and the specific 100G Ethernet (MAC) Subsystem to 
facilitate the conversion of interface. 
 
The reference design incorporates three distinct clock domains: CpuClk for the CPU system, 
MacClk for interfacing with the 100G Ethernet (MAC) Subsystem, and UserClk for the user logic 
of the TOE100GADV-IP. To facilitate asynchronous signal transfer between CpuClk and UserClk, 
AsyncAxiReg is specifically designed. Further details about each module within the 
TOE100GADVTest are provided below. 
 
Note:  
1) UserClk can be reconfigured to utilize the same clock as CpuClk, offering a reduction in clock 

resource usage. 
2) It is recommended to set the UserClk frequency of TOE100G-IP at 220 MHz or higher. 
3) The MacClk frequency for the 100G Ethernet Subsystem (UltraScale+ devices) is 322.266 

MHz, while the MacClk frequency of the 100G Ethernet MAC Subsystem (Versal devices) is 
390.625 MHz. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 7 

 
2.1 100G Ethernet (MAC) Subsystem (100G BASE-SR) 

 
The 100G Ethernet (MAC) Subsystem comprises the MAC layer and lower-layer protocol for 
interfacing with external devices using 100G BASE-SR. This subsystem can be generated 
through the IP wizard in the Vivado tool, and we delve into two hardware solutions tailored 
for two different FPGA models. 
 

 
Figure 2-2 Adapter logics of EMAC interface for Xilinx Devices 

 
a) 100G Ethernet Subsystem on UltraScale+ devices 
 
This IP integrates MAC, PCS, and PMA features, along with the Transceiver module. Its 
user interface is a 512-bit AXI4-stream at 322.266 MHz, necessitating adapter logics 
(MACTxAsync512IF and MACRxAsync512IF) for seamless connection to TOE100GADV-IP. 
These logics manage packet transfer across clock domains between UserClk and MacClk. 
For more detailed information, visit the Xilinx website and check out the “PG203: 
UltraScale+ Devices Integrated 100G Ethernet Subsystem Product Guide” 
https://www.xilinx.com/products/intellectual-property/cmac_usplus.html 
 
b) 100G Ethernet MAC Subsystem on Versal devices 
 
This IP includes MAC and PCS features but excludes the Transceiver module. A PMA 
module must be generated using the IP wizard in the Vivado tool to connect with the 100G 
Ethernet MAC Subsystem. The user interface of this EMAC can be configured to various 
modes. In this reference design, we use “Non-Segmented mode with independent clock”, 
featuring a 384-bit user interface. As this data width is incompatible with the 512-bit width of 
MACTxAsync512IF and MACRxAsync512IF, two additional adapter logics, MAC100GTxIF 
and MAC100GRxIF, have been devised to convert the asymmetric width of the interfaces. 
The 100G EMAC in this mode requires a minimum clock frequency of 390.625 MHz. For 
more information, visit the Xilinx website and check out the “PG314: Versal Devices 
Integrated 100G Multirate Ethernet MAC Subsystem Product Guide”. 
https://www.xilinx.com/products/intellectual-property/mrmac.html 

https://www.xilinx.com/products/intellectual-property/cmac_usplus.html
https://www.xilinx.com/products/intellectual-property/mrmac.html


dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 8 

 
2.1.1 MACTxAsync512IF 
 

 
Figure 2-3 MACTxAsync512IF logic diagram 

 
This module serves as an asynchronous adapter facilitating data transfer via a 512-bit AXI4 
stream interface from the TOE100GADV-IP (UserClk domain) to the 100G Ethernet (MAC) 
Subsystem (MacClk domain). Asynchronous crossing is handled through two First-Word 
Fall-Through (FWFT) FIFOs within the module – specifically, one FIFO buffers the input 
stream (TxFf), and the other (PacFf) signals the completion of storing all data of each packet 
in TxFf. Consequently, the adapter comprises two main logic groups – Write and Read 
operation to and from the FIFOs. 
 
On the Write side, the UserClk frequency typically exceeds the MacClk frequency. After 
transferring data for a specific duration, the FIFOs reach their capacity, leading to a pause in 
the write operation. The write data count of both TxFf and PacFf are checked to ensure 
sufficient space for the subsequent packet transfer. If not, U2MacReady is de-asserted to 0b, 
halting the incoming stream. To signify the completion of storing each packet in TxFf, a 
dummy data is written to PacFf when the last data of the packet is stored in TxFf, monitored 
by U2MacLast being set to 1b. 
 
On the Read side, the operation commences by setting wTxFfRdAck to 1b, initiating the 
reading of the first data of each packet from TxFf when at least all data of one packet is 
available in TxFf, monitored by PacFfRdEmpty and TxFfRdEmpty. Additionally, there is no 
remaining data from the previous packet being transferred. This condition is confirmed by 
MacTxValid not being set to 1b with MacTxReady is set to 0b. Once the first data has been 
successfully transferred, the subsequent data within the packet is transmitted until the 
completion of transferring the last data of the packet. 
 
The status of the next read data, ‘r1stRead’, is set to 1b if the next read data is the first data 
of each packet and 0b otherwise. This signal determines the condition for asserting 
wTxFfRdAck to 1b. Upon the complete transfer of all data for each packet, with the last data 
read from TxFf, ‘wPacFfRdAck’ is set to 1b for a single clock cycle to clear the dummy data 
in PacFf. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 9 

 
‘MacTxValid’ is generated by S-R FF to maintain a value if 1b during each packet transfer. 
Consequently, it is asserted when transferring the first data and de-asserted after 
transferring the last data. For more illustration, the timing diagram of Read operation is 
depicted in Figure 2-4. 

 

 
Figure 2-4 Timing diagram of Read operation in MACTxAsync512IF 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 10 

 
1) A new packet transfer is initiated by three conditions: r1stRead=1b, PacFfRdEmpty=0b, 

and TxFfRdEmpty=0b, ensuring that the subsequent packet’s data is ready for retrieval 
from TxFf. ‘wTxFfRdAck’ is set to 1b for the first data read, followed by the setting of 
MacTxValid to 1b in the subsequent clock cycle, thereby initiating the packet transfer. 
‘MacTxValid’ remains at 1b to continuously transfer all data within the packet until the last 
data is transmitted. 

2) Assuming the first packet comprises five data (D00 – D04), TxFfRdData[576], 
representing the last flag, is set to 0b during the first data read cycle. Subsequently, 
r1stRead is loaded with the value from TxFfRdData[576], causing it to be set to 0b in the 
subsequent clock cycle. For reading data other than the first data, indicated by 
r1stRead=0b, wTxFfRdAck is controlled by two conditions: TxFfRdEmpty=0b and 
MacTxReady=1b. 

3) TxFf is the FWFT type, making the read data (TxFfRdData) valid in the same clock cycle 
in which wTxFfRdAck is set to 1b. Upon the assertion of wTxFfRdAck, 512-bit 
MacTxData and MacTxLast load their value from bits[511:0] and bit[576] of TxFfRdData, 
respectively. 

4) During packet transfer, if MacTxReady is de-asserted to 0b, wTxFfRdAck is immediately 
set to 0b, pausing the data read operation and preserving the value of MacTxData and 
MacTxLast. 

5) Upon reading the last data from TxFf, indicated by both wTxFfRdAck and 
TxFfRdData[576] being set to 1b, wPacFfRdAck is set to 1b for a single clock cycle, 
flushing one dummy data from PacFf. This reduces the total packet count stored in TxFf 
and re-asserts r1stRead to 1b, preparing for the first data of the subsequent packet. 

6) After that, the same sequence, starting from step 1, is iterated to forward the new packet. 
Assuming this packet contains only one data, the last flag is asserted during the first data 
read cycle. In this condition, r1stRead is not de-asserted after completing the first data 
read. 

7) If TxFf stores a portion of the packet, not all the data in the packet, as indicated by 
PacFfRdEmpty=1b but TxFfRdEmpty=0b, the read operation is temporarily paused until 
the last data of packet is received. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 11 

 
2.1.2 MACRxAsync512IF 
 
MacRxAsync512IF serves as an AXI4-Stream data adapter to cross asynchronous interface 
from 100G Ethernet (MAC) Subsystem (MacClk) to TOE100GADV-IP (UserClk). It performs 
asynchronous handling by using one First-Word Fall-Through FIFO. The module consists of 
a few logic components both in write and read side of the FIFO, including Write Controller, 
Error Detection, and Read Controller as shown in Figure 2-5. 
 

 
Figure 2-5 MACRxAsync512IF logic diagram 

 
The Write Controller is responsible for synchronizing the input stream with the result of Error 
Detection module, pack the stream interface to be FIFO write data, and directly write the 
FIFO in the next step. While Error Detection is incorporated to cancel the write operation 
when the buffer free space drops below the threshold (less than 8 data). When an error is 
detected, Error Detection forcedly asserts rFfWrEn, rFfWrData[576], and rFfWrData[577] to 
1b, thereby marking the completion of the current packet transmission with an error status. 
After that, the module waits until the end of this error packet (by detecting assertion of 
MacRxLast) without writing additional packet data to the FIFO. 
 
The AsyncFWFT512x578 module functions as an asynchronous FWFT FIFO, storing the 
input stream in the MacClk domain and facilitating the transition to the UserClk domain. It 
can store 578-bit data which is the whole stream interface, comprising of 512-bit data, a 
64-bit keep signal, a 1-bit error flag, and a 1-bit last flag. 
 
The Read Controller reads data from the AsyncFWFT32x578 and forwards it as 
AXI4-Stream data to the user. The Data is read out and merely forwarded immediately 
whenever the FIFO contains read data without any flow control because the AXI4-ST 
interface in the user side excludes the ‘Ready’ signal. 
 
For more comprehension about Write side of the module, the timing diagram of Write 
operation is depicted in Figure 2-6. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 12 

 

 
Figure 2-6 Timing diagram of Write operation in MACRxAsync512IF 

 
1) During Write side operation, the available space in the FIFO is always monitored using 

FfWrCnt. The FIFO full condition, indicated by rFfAFull, triggers the assertion of 
rDiscardEn[0], leading to the dropping of packet. In normal scenario, upon receiving the 
input stream, the entire stream is loaded to DFFs for synchronization with rDiscardEn[0], 
such as MacRxData being loaded into rMacRxData. When rDiscardEn[0] is set to 0b, 
each data stream from the DFFs is written to the FIFO by setting rFfWrEn to 1b. 

2) Under normal conditions, the value of rFfWrEn is analogous to MacRxValid, accounting 
for a latency time of two clock cycles for transitioning to 1b or 0b. 

3) If the FIFO space falls below the threshold value (less than 8), resulting in both rFfFull and 
rDiscardEn[0] being asserted to 1b, the rising edge of rDiscardEn triggers the termination 
of current stream being written to the FIFO. This is achieved by setting rFfWrEn to 1b as 
the last clock cycle, marking the last cycle of this stream. Simultaneously, both the last 
flag and error flag (Last - rFfWrData[576] and Error - rFfWrData[577]) are set to 1b. After 
that, the incoming data of the current packet (Dn2 and Dn3) are not written to the FIFO. 

4) Upon receiving the end of the current packet (MacRxLast is asserted to 1b), the dropped 
packet function is disabled by de-asserting rDiscardEn[0] to 0b. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 13 

 
2.1.3 MAC100GTxIF 
 
This module serves as an AXI4-Stream converter, transitioning data from 512-bit to 384-bit 
format for data transfer from the user (TOE100GADV-IP) to the 100G Ethernet MAC 
Subsystem. In order to facilitate this transfer, a 384-bit register is used to store 128-bit user 
data for each cycle, which cannot be transmitted to the EMAC. The control signal, rTempCnt, 
indicates the quantity of unsent data in 128-bit units, stored in 384-bit internal register 
(rTempData). Four distinct values are assigned to signify the data amount: 000b (No data), 
001b (one 128-bit data), 011b (two 128-bit data), and 111b (three 128-bit data or full). The 
output data sent to EMAC is a mixed signal which combines user data (U2MACData) with 
the 384-bit rTempData, controlled by rTempCnt. Timing diagram to show more details of 
MAC100GTxIF is are shown in Figure 2-7. 
 

 
Figure 2-7 MAC100GTx timing diagram 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 14 

 
1) Upon receiving the first data from the user (U2MACValid=1b and U2MACReady=1b while 

rTempCnt=000b), the module transfers 384-bit user data (U2MACData) to EMAC. 
‘tx_axis_tvalid’ is asserted to 1b, and tx_axis_tdata loads the 384-bit data from 
U2MACData. If this data is not the last, the upper 128-bit unsent data is stored in the 
internal register (rTempData), and rTempCnt increments according to the sequence: 
000b -> 001b -> 011b -> 111b. Additionally, tx_axis_tkeep is asserted to all ones to 
transfer the 384-bit data to EMAC. 

2) When EMAC is not ready, tx_axis_tready is de-asserted to 0b. U2MACReady is also 
de-asserted to 0b, pausing the transmission of user data. 

3) If tx_axis_tready and U2MACReady are de-asserted to 0b, the output signals to EMAC 
(tx_axis_tvalid, tx_axis_tlast, tx_axis_tdata, and tx_axis_tkeep) and the input signals 
from the user (U2MACValid, U2MACData, U2MACKeep, and U2MACLast) must retain 
the same values until the ready signals are re-asserted to 1b to accept the current data. 

4) When the 384-bit register (rTempData) stores three 128-bit data, and rTempCnt equals 
111b (indicating a full condition), U2MACReady is de-asserted to 0b to pause user data 
transmission. Subsequently, the 384-bit data from rTempData is flushed to EMAC. 

5) ‘tx_axis_tdata’ loads 384-bit data from rTempData, and rTempCnt is reset to 000b, 
signifying no remaining unsent data stored in rTempData. 

6) The last user data is transmitted by asserting U2MACLast to 1b. U2MACKeep is read to 
determine the number of valid bytes in the last data. Additionally, rTempCnt is read to 
check the amount of unsent data. In the provided example, one 128-bit data is stored in 
rTempCnt, and 512-bit user data is received, requiring the storage of two 128-bit data in 
rTempCnt. In such cases, rTempLast is asserted to 1b to store the unsent last data. 
Note: Step 9) provides an example when the last user data is received, but all data can be 
transferred to EMAC without storing any data in rTempData. 

7) rTempLast is asserted to 1b when the last user data is stored in rTempData. 
Simultaneously, U2MACReady is de-asserted to 0b, pausing user data transmission. 

8) This step illustrates a scenario when two 128-bit data are stored in rTempData, and 
128-bit last data is transmitted by user. Consequently, the total data, which comprises 
three 128-bit data, can be transferred to tx_axis_tdata by asserting tx_axis_tlast to 1b. In 
this case, no data is remained in rTempData, and rTempLast is not asserted to 1b. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 15 

 
2.1.4 MAC100GRxIF 
 
This module functions as an AXI4-Stream converter, converting data from 384-bit to 512-bit 
for transmission from the 100G Ethernet MAC Subsystem to the user (TOE100GADV-IP). 
The design incorporates a Latch register to store unsent data that has not been transmitted 
to the user. Three counters facilitate data realignment: ‘wRx128bDataCnt’ indicates the 
received data amount from EMAC (1, 2, or 3), ‘rLatDataCnt’ shows the unsent data amount 
received from EMAC (0-3), and ‘wRxTotalDataCnt’ indicates the sum of received and unsent 
data (wRx128bDataCnt + rLatDataCnt), ranging from 1 to 6. 
 
When wRxTotalDataCnt is 4 or greater (5 or 6), 512-bit data is packed and transmitted to the 
user. However, the last transmitted data may be less than 512 bits, controlled by the byte 
enable value (MAC2UKeep).  
 
The second counter (rLatDataCnt) is updated under various conditions. 
1) Upon receiving the first data with no unsent data stored in rDataLat (rLatDataCnt=0), all 

bits of the first data are loaded into rDataLat. Therefore, rLatDataCnt must equal the 
received data amount from EMAC (wRx128bDataCnt or wRxTotalDataCnt, which is the 
same value when rLatDataCnt=0). 

2) When the total data amount (wRxTotalDataCnt) equals or exceeds 4, indicating the 
transmission of a 512-bit data to TOE100GADV-IP, the unsent data amount (rLatDataCnt) 
is reduced by 4 (wRxTotalDataCnt – 4). 

3) Upon the transmission of the last data with no new packet received, the Latch register is 
now in an empty state. Consequently, rLatDataCnt is reset to 0. 

4) A special case arises when the last data is transmitted while the first data of a new packet 
is received. This scenario is a combination of condition 1) and 3). Therefore, the unsent 
data amount is equal to the received data amount in the new packet (wRx128bDataCnt). 

 
The 384-bit latch register (rDataLat) utilizes rLatDataCnt to determine the maximum amount 
of received data from EMAC that must be retained in the next cycle. 
1) When rLatDataCnt = 0, the requirement is to retain three 128-bit new data 

(rx_axis_tdata[384:0]). 
2) When rLatDataCnt = 3, it packs one 128-bit new data with three 128-bit previous data 

(rDataLat[383:0]). Therefore, two 128-bit new data (rx_axis_tdata[384:128]) must be 
retained in rDataLat. 

3) When rLatDataCnt = 2, two 128-bit new data are packed with two 128-bit previous data 
(rDataLat[255:0]). Therefore, one 128-bit data (rx_axis_tdata[384:256]) must be retained 
in rDataLat. 

4) When rLatDataCnt = 1, all new data can be packed with one 128-bit previous data 
(rDataLat[127:0]). In this case, no data is retained in rDataLat. 

 
To facilitate the transfer of the last data from EMAC to the user, two behaviors are 
considered. 
1) If all the last data from EMAC can be packed with rDataLat (wRxTotalDataCnt ≤ 4), the 

last data will be transmitted to the user in the next cycle. 
2) In cases where wRxTotalDataCnt for the last data exceeds 4, two cycles are required to 

transmit all data – 512-bit data during the 1st cycle and the remaining data during the 2nd 
cycle. To support this feature, rExLast is designed to latch the last flag of EMAC for 
transmitting the last data during the 2nd cycle. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 16 

 
Timing diagram to show MAC100GRxIF operation is shown in Figure 2-8. 

 

 
Figure 2-8 MAC100GRxIF Timing diagram 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 17 

 
1) Upon receiving new 384-bit data from EMAC, wRx128bDataCnt equals 3. If the previous 

clock cycle is Idle (rLatDataCnt=0), wRxTotalDataCnt is equal to 3 (0+3). When 
rLatDataCnt is 0, the entire 384-bit data is loaded into rDataLat. Since wRxTotalDataCnt 
is less than 4, no data is transmitted to the MAC2U I/F. 

2) Subsequently, when another 384-bit data arrives from EMAC with rLatDataCnt equal to 3 
(the amount of data stored in rDataLat in the previous clock cycle), wRxTotalDataCnt 
becomes 6 (3 + 3), sufficient to transmit data to MAC2U I/F. MAC2UValid is asserted to 1b, 
facilitating the transmission of 512-bit M2UData. M2UData loads three 128-bit data (D0A, 
D0B, and D0C) from rDataLat and one 128-bit data from rx_axis_tdata (D1A). 
Consequently, two 128-bit data (D1B and D1C) remain unsent and are stored in rDataLat. 
rLatDataCnt is updated to 2. 

3) If EMAC de-asserts rx_axis_tvalid to 0b because it is not ready to transmit new data, the 
three counters (rLatDataCnt, wRx128bDataCnt, and wRxTotalDataCnt), along with 
rDataLat, maintain the same values, awaiting more data from EMAC. 

4) In the event that EMAC pauses data transmission by de-asserting rx_axis_tvalid to 0b, 
MAC2UValid is de-asserted to 0b in the subsequent clock. 

5) During the first cycle of every four cycles to receive 384-bit data from EMAC, when 
rLatDataCnt is equal to 0 and wRxTotalDataCnt is less than 4, MAC2UValid is 
de-asserted to 0b, pausing data transmission to the user. 

6) Upon receiving the last data from EMAC (rx_axis_tlast=1b and rx_axis_tvalid=1b) and 
when wRxTotalDataCnt in that cycle is more than 4 (5 or 6), the latch flag to store the last 
signal (rExLast) is asserted to 1b. Simultaneously, 512-bit data is transferred to the user, 
while the remaining last data is transferred in the subsequent cycle. 

7) After rExLast is asserted to 1b, MAC2ULast is also asserted to 1b to transmit the 
remaining last data stored in rDataLat. If the first data of the new packet is promptly 
transferred from EMAC, it is loaded into rDataLat, and rLatDataCnt is set to the amount of 
128-bit data in the first cycle. 

8) This step illustrates an example of sending the last data without asserting rExLast. When 
rx_axis_tlast is asserted to 1b and wRxTotalDataCnt is less than or equal to 4, the last 
data can be packed and transferred to the user in the subsequent cycle. Therefore, 
rExLast is not asserted to 1b, and rLatDataCnt is reset to 0. 

 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 18 

 
2.2 AxiSSw2to1 
 

 
Figure 2-9 AxiSSw2to1 interface 

 
This module serves as a 2-to-1 switch logic for AXI4-ST interface, facilitating the transfer of 
transmitted data from User2MAC or TOE100GADV-IP to the Ethernet (MAC) subsystem. 
AxiSSw2to1 incorporates configurable parameters allowing the selection of data and user 
signal widths. In this reference design, the data width for User2MAC and TOE100GADV-IP 
is set at 512 bits, while the data width for the user signal is 1 bit. 
 
Conceptually, AxiSSw2to1 operates by transferring data from two Masters (Ch#0 and Ch#1) 
to one Slave. In cases where both channels request data transfer simultaneously, 
AxiSSw2to1 employs a priority mechanism, selecting the higher priority channel to initiate 
the data stream transfer until the end of the packet. Subsequently, the priority switches to 
the other channel, and the data stream of the second channel is transferred until the end of 
the packet. 
 
The control signal ‘rChSel’ is employed by the AXISSw2to1 logic to select the active AxiSSl 
I/F, which is the interface connecting to the external Master. When two channels request 
data transfer while in an Idle condition, ‘rChSel’ changes its value to the new channel after 
completing the current channel’s data transfer. Further details are illustrated in Figure 2-10. 
 
 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 19 

 

 
Figure 2-10 AxiSSw2to1 timing diagram 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 20 

 
1) When two users simultaneously initiate the transmission of a new packet by asserting 

AxiSSlValid to 1b, and the module is currently in an Idle state, the value of rChSel (the 
signal indicating the active channel) remains unchanged to facilitate the forwarding of 
data from the same channel to the Slave. In Figure 2-10, Ch#0 is selected, prompting the 
assertion of AxiSSlReady for the selected channel (Ch#0) to 1b, enabling the acceptance 
of the first data. 

2) The input signals from the selected channel (Ch#0), including AxiSSlLast[0] (indicating 
the end-of-packet) and AxiSSlData[511:0] (512-bit data), are loaded as output signals to 
the external Slave via the Master I/F (AxiSMtLast and AxiSMtData, respectively). 
Additionally, AxiSMtValid is asserted to 1b, initiating the transmission of the new packet to 
the Slave. 

3) When the Slave is not ready to receive data, indicated by the de-assertion of 
AxiSMtReady to 0b, all output signals of the Master I/F maintain the same values. Also, 
AxiSSlReady for the active channel is de-asserted to 0b, preserving the input signals 
from the Master. 

4) Upon the Slave re-asserting AxiSMtReady to accept data, the output signals to the Slave 
load the next values from the internal latch register (rMtDataLat). The internal latch 
register stores data from the active source when AxiSSlReady is asserted to 1b, ensuring 
the unsent data is stored and transmitted to the Slave when the Slave pauses data 
transmission. 

5) After the final data of a packet from the active channel is accepted, the module scans for 
the next active channel. If AxiSSlValid for another channel is asserted, rChSel switches 
its value. In Figure 2-10, the next active channel becomes Ch#1 (rChSel=1b), facilitating 
the acceptance of data from Ch#1. 

6) The input signals (AxiSSlLast and AxiSSlData) from the active channel (Ch#1) are 
forwarded to become the output signals of the Slave (AxiSMtLast and AxiSMtData) until 
the final data of packet is completely transferred. 

 
2.3 TOE100GADV-IP 

 
The TOE100GADV-IP implements TCP/IP offloading engine for handling four TCP sessions 
with the same target. The user data interface utilizes a 512-bit AXI4 stream interface. The 
control interface is used to configure the network parameters, send the command request, 
and monitors the operation status. The Ethernet MAC interface utilizes a 512-bit AXI4 
stream interface. Further information of the IP can be found on our website. 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 21 

 
2.4 User2MAC 
 

 
 

Figure 2-11 User2MAC block diagram 
 

User2MAC is designed for transferring Ethernet packets for low-speed connection. The 
reference design incorporates the Ping command, using the ICMP protocol, to measure 
round-trip time, with an ICMP echo reply packet generated upon receiving an ICMP echo 
request packet. The CPU utilizes LAxi2Reg to create and decode the Ethernet packet, with 
a data bus width of 32 bits on the LAxi2Reg side and 512 bits on the MAC I/F side. 
 
For operating in both transmission and reception, User2MAC comprises two modules: 
UserTxMAC and UserRxMAC. UserTxMAC includes TxRAM, where the CPU prepares and 
stores transmitted Ethernet packets. Meanwhile, UserRxMAC features RxRAM to store 
Ethernet packets received from EMAC. Prior to storing a packet in RxRAM, a filtering logic 
checks Ethernet header, ensuring only valid packets are stored, while invalid ones are 
rejected. Subsequently, the CPU reads from RxRAM to decode the stored packet. Further 
details about UserTxMAC and UserRxMAC are provided below. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 22 

 
2.4.1 UserTxMAC 
 
UserTxMAC includes 64 x 512-bit simple dual port RAM to store transmitted packets, written 
by CPU via the UserTxRam write I/F. The CPU sets the packet size (UserTxLen), and upon 
asserting the request (UserTxReq), the logic initiates forwarding the packet, read from 
TxRAM, to EMAC. The transmit interface of EMAC is a 512-bit AXI4 stream, which may 
de-assert ready (TxReady) to temporarily pause data transmission. Upon completion of the 
packet transmission to EMAC, the busy signal (UserTxBusy) is de-asserted to 0b. Additional 
details about the internal logic design of UserTxMAC are illustrated in Figure 2-12. 
 
Note: The UserTxRam Write I/F with the CPU utilizes a 32-bit data width, while the TxRAM 
data width is 512 bits. Therefore, a decoder is implemented to create a write byte enable, 
allowing the CPU to write only specific bytes of the 512-bit data bus of TxRAM. 
 

 
Figure 2-12 UserTxMAC Logic Diagram 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 23 

 
The steps involved in transmitting a packet from UserTxMAC are outlined below. 
1) The CPU verifies that UserTxBusy is 0b to ensure that UserTxMAC is in an idle state. 
2) The CPU prepares a transmitted packet and writes it to TxRAM. The first data is written at 

address#0 (UserTxRamWrAddr=0). The maximum size of the transmitted packet size is 4 
KB, matching the size of TxRAM.  
Note: TxRAM incorporates a byte enable to enable CPU to write data using a byte unit. 

3) The CPU sets UserTxLen to specify the transmit packet size in byte units. Additonally, 
UserTxReq is asserted to 1b to initiate data transmission. 

4) Subsequently, the request signal is loaded into several logics and a DFF chain. 
UserTxBusy is asserted to 1b to indicate to the user that the operation is in progress. The 
total transfer size (UserTxLen) is loaded into internal logic, split into two parts. The first 
part is the amount of 512-bit data calculated using UserTxLen[11:6]. The value is rounded 
up if the size is not aligned to 512-bit. The second part is bit[5:0], which is latched to 
create the byte enable of the final data of a packet (rLastByteEn and TxKeep) using a 
decoder. 

5) When the start flag is asserted (rRdStart), the first data is read from TxRAM, and the data 
valid (TxValid) is asserted to 1b. The read address (wRamRdAddr) is up-counted to 
transfer the next data from TxRAM after completing each data transfer (TxValid=1b and 
TxReady=1b). Additionally, the Length counter (rLenCnt) is down-counted upon finishing 
the transfer of each data to check the last data position. 

6) When rLenCnt=1 or the next data is the final data of a packet, the last flag (TxLast) is 
asserted to 1b. Also, the byte enable (TxKeep) loads the last value from rLastByteEn. 
TxKeep is set to all ones to send 512-bit data when the data is not the final data of the 
packet. 

7) After the final data is transferred, the busy flag is de-asserted to 0b to complete the 
current transfer. 
 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 24 

 
2.4.2 UserRxMAC 
 
UserRxMAC performs three distinct operations to validate received packets and store valid 
packets in RxRAM, which is a 64 x 512-bit simple dual port RAM. As a result, the logic within 
UserRxMAC can be categorized into three groups.  
 
Firstly, there is logic dedicated to verifying the 38-byte header (byte#0 – byte#37) of each 
received packet. The user can set the expected value and mask bit to enable data 
comparison. Only packets with the correct header are accepted.  
 
Secondly, there is logic to check the enable flag from the user and the free space in 
RxMacFf. The packet will be rejected if the user disables this module or if the FIFO does not 
have sufficient space. RxMacFf is used to store the end address of RxRAM after completing 
storing the received packet. Consequently, the CPU determines the received packet size 
based on the end address.  
 
Thirdly, there is logic dedicated to storing the received packet in RxRAM. Additional details 
about the internal logic design of UserRxMAC are illustrated in Figure 2-13. 
 
Note: The UserRxRam Read I/F with the CPU employs a 32-bit data width, while RxRAM 
has a data width of 512 bits. Therefore, a 16-to-1 Mux is integrated to select 32-bit data from 
the 512-bit data. 

 

 
Figure 2-13 UserRxMAC Logic Diagram  



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 25 

 
As shown in Figure 2-13, Block (1) comprises the logic responsible for verifying the 38-byte 
header of each packet. Block (2) is dedicated to storing the end address of RxRAM, and 
Block (3) manages the storage of the received packet. The details of UserRxMAC operation 
upon receiving a packet are elaborated as follows. 
 
1) Two user-configured parameters, 38-byte header data (UserRxHdData) and a 38-bit data 

mask for verifying the packet header (UserRxHdMask), must remain stable when the 
user enables this module by asserting UserRxMacEn to 1b. Upon receiving the first data 
of a new packet, SOPDet asserts rSOPDet0 to initiate the Compare module. The 38-byte 
header data is compared to byte#0 - byte#37 of the received data, controlled by the data 
mask bit. Each bit of the data mask corresponds to one byte of received data. If the data 
mask is de-asserted to 0b, that data byte is bypassed. Therefore, header verification is 
disabled if UserRxHdMask is set to all zeros. When a specific byte of the received packet 
header is valid, the dedicated bit of rHdOK is asserted to 1b. The packet can be stored in 
RxRAM only when all 38 bits of rHdOK are set to 1. 

2) Subsequently, two signals are additional read – the enable flag from user (UserRxMacEn) 
and RxMacFf data counter (UserRxMacFfWrCnt). It needs to confirm that CPU is ready to 
process the received packet by asserting UserRxMacEn to 1b and this module has 
sufficient free space to store the received packet and the write pointer of RxRAM. Bit[4] of 
UserRxMacFfWrCnt must be equal to 0b. If both conditions are met and the header is 
valid, the write enable of RxRAM (rRxRamWrEn) is asserted to store the received data in 
RxRAM. RxMacFf stores the RAM address after finishing storing each packet in RxRAM. 
Therefore, EOPDet is designed to assert a pulse of rRxRamWrEnLast when the end of 
the packet is received. After that, rUserRxMacFfWrEn is asserted to 1b to write the end 
address to RxMacFf. 

3) Lastly, the valid packet is stored to RxRAM by asserting the write enable to RxRAM 
(rRxRamWrEn) when the data is received (RxValid=1b). The address counter is 
incremented after each 512-bit data is stored to RxRAM. The last address after receiving 
the end-of-packet is stored in RxMacFf. 
 
Note: Using bit[4] of UserRxMacFfWrCnt for checking FIFO space, up to 16 addresses 
can be stored in RxMacFf. Therefore, up to 16 packets can be stored in RxRAM. Given 
that the RxRAM size is 4 KB, one packet size should not exceed 256 bytes. However, 
users have the flexibility to adjust RAM size and FIFO size to align with their system 
requirements. 

 
The CPU’s process for handling received packets stored in UserRxMAC is outlined as 
follows. 
1) The CPU awaits the condition where the FIFO is not empty (UserRxMacFfEmpty=0b). 
2) The CPU read the last address using the UserRxMacFfRdData signal, which is valid for 

reading due to RxMacFf being a FWFT FIFO. 
3) After that, the CPU asserts UserRxMacFfRdAck to 1b to flush the read data from 

RxMacFf. 
4) The CPU reads and decodes a received packet from RxRAM, starting from the latest read 

position to the last address obtained from RxMacFf. Upon completing packet processing, 
the CPU returns to step 1 to wait and process the next packet. 
 
Note: UserRxRamRdAddr is the address for 32-bit data, while rRxRamWrAddr is the 
address for 512-bit data. Therefore, the CPU firmware must convert the 512-bit address 
stored in RxMacFf to a 32-bit address before starting data reading from RxRAM. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 26 

 
2.5 CPU and Peripherals 

 
The CPU system uses a 32-bit AXI4-Lite bus as the interface to access peripherals such as 
the Timer and UART. The system also integrates an additional peripheral to access the test 
logic by assigning a unique base address and address range. To support CPU read and 
write operations, the hardware logic must comply with the AXI4-Lite bus standard. LAxi2Reg 
module, as shown in Figure 2-14, is designed to connect the CPU system via the AXI4-Lite 
interface, in compliance with the standard. 

 
Figure 2-14 LAxi2Reg block diagram 

 
LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg converts AXI4-Lite signals 
into a simple register interface with a 32-bit data bus size, similar to the AXI4-Lite data bus 
size. It also includes asynchronous logic to handle clock domain crossing between the 
CpuClk and UserClk domains. 
 
UserReg includes the Register files designed to store parameters and status signals for both 
User2MAC (via UserTxMac I/F and UserRxMac I/F) and TOE100GADV-IP (via TOE Control 
I/F). The data interface of User2MAC utilizes a simple dual-port RAM interface, which aligns 
with the Register I/F. While the data interface of TOE100GADV-IP employs an AXI4-ST 
interface, facilitated through TOETx I/F and TOERx I/F. Additional details regarding 
AsyncAxiReg and UserReg are provided below. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 27 

 
2.5.1 AsyncAxiReg 
 

 
Figure 2-15 AsyncAxiReg interface 

 
The signal on AXI4-Lite bus interface can be grouped into five groups, i.e., LAxiAw* (Write 
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* 
(Read address channel), and LAxir* (Read data channel). More details to build custom logic 
for AXI4-Lite bus is described in following document. 
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/
designing_a_custom_axi_slave_rev1.pdf 
 
According to AXI4-Lite standard, the write channel and read channel operate independently 
for both control and data interfaces. Therefore, the logic within AsyncAxiReg to interface 
with AXI4-Lite bus is divided into four groups, i.e., Write control logic, Write data logic, Read 
control logic, and Read data logic, as shown in the left side of Figure 2-15. The Write control 
I/F and Write data I/F of the AXI4-Lite bus are latched and transferred to become the Write 
register interface with clock domain crossing registers. Similarly, the Read control I/F of 
AXI4-Lite bus is latched and transferred to the Read register interface, while Read data is 
returned from Register interface to AXI4-Lite via clock domain crossing registers. In the 
Register interface, RegAddr is a shared signal for write and read access, so it loads the 
value from LAxiAw for write access or LAxiAr for read access. 
 
The Register interface is compatible with single-port RAM interface for write transaction. 
The read transaction of the Register interface has been slightly modified from RAM interface 
by adding the RdReq and RdValid signals to control read latency time. The address of 
Register interface is shared for both write and read transactions, so user cannot write and 
read the register at the same time. The timing diagram of the Register interface is shown in 
Figure 2-16. 
 

https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf


dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 28 

 

 
Figure 2-16 Register interface timing diagram 

 
1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn 

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units), 
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte 
enable consists of four bits that indicate the validity of the byte data. For example, bit[0], 
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, 
respectively. 

2) To read register, AsyncAxiReg sets the RegRdReq signal to 1b with a valid value for 
RegAddr. The 32-bit data is returned after the read request is received. The slave detects 
the RegRdReq signal being set to start the read transaction. In the read operation, the 
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address 
can then be used to select the returned data using multiple layers of multiplexers. 

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b. 
After that, AsyncAxiReg forwards the read value to the LAxir* interface. 

 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 29 

 
2.5.2 UserReg 

 
Figure 2-17 UserReg block diagram 

 
UserReg implementes three key operations: an Address decoder with a Register File for 
write access and a Register Mux for read access, User Data Generator (UserDataGen), and 
User Data Verification (UserDataVer). Detailed information is provided below.  
 
Address decoder with Register File and Register Mux 
As shown in Figure 2-17, the address range mapped to UserReg is divided into seven areas. 
1) 0x0000 – 0x01FF: Control and status signals of TOE100GADV-IP 
2) 0x0800 – 0x09FF: Status signal of EMAC 
3) 0x1000 – 0x013FF: UserDataGen and UserDataVer signals for transferring data with  

  4 sessions of TOE100GADV-IP 
4) 0x2000 – 0x2FFF: Control and status signals of UserTxMAC 
5) 0x3000 – 0x3FFF: Write interface of Tx RAM inside UserTxMAC 
6) 0x4000 – 0x4FFF: Control and status signals of UserRxMAC 
7) 0x5000 – 0x5FFF: Read interface of Rx RAM inside UserRxMAC 
 
The upper bits of RegAddr are utilized to select the active module for writing or reading, 
while the lower bits of RegAddr are forwarded to each module to access the internal signals 
within each module. The details of register map are outlined in Table 2-1. 
 
To read register, multiple multiplexers are utilized to select data from each module, leading 
to increased real latency time due to the multiplexer. The slowest path for returning read 
data is from UserRxRAM, which has a latency time of four clock cycles. Therefore, 
RegRdValid is generated by RegRdReq through the assertion of four D Flip-flops. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 30 

 
Table 2-1 Register Map Definition 

Address Register Name  Description  

Wr/Rd (Label in the  

“toe100gadvtest.c”) 

(BA+0x0000) – (BA+0x01FF): Control and Status of TOE100GADV-IP 

Further information of each TOE100GADV-IP I/O signals is described in the datasheet. 

(BA+0x0000) – (BA+0x00FF): Hardware system signals 

BA+0x0000 Hardware reset [0]: Set to 1b to reset TOE100GADV-IP, all UserDataGen modules, and all 

UserDataVer modules. Wr/Rd (HW_RST_INTREG) 

BA+0x0084 Ethernet MAC status [0]: Ethernet MAC link status (0b-Link down, 1b-Link up) 

[6]: Rx alignment status (0b-Not aligned, 1b-Aligned) 

[7]: RxPCS ready status (0b-RxPCS is busy, 1b-RXPCS is ready) 

[8]: Remote Fault Code detect (0b-Not detect, 1b-Detect) 

Rd (EMAC_STS_INTREG) 

(BA+0x0100) – (BA+0x013F): Common parameters and status signals 

BA+0x0100 TOE IP version [31:0]: Mapped to IPVersion[31:0] of TOE100GADV-IP 

Rd (TOE_VER_INTREG) 

BA+0x0104 TOE initial finish flag [0]: Mapped to InitFinish of TOE100GADV-IP 

Rd (TOE_INF_INTREG) 

BA+0x0110 Source MAC Address Low [31:0]: Mapped to SrcMacAddr[31:0] of TOE100GADV-IP 

Wr/Rd (TOE_SML_INTREG) 

BA+0x0114 Source MAC Address High [15:0]: Mapped to SrcMacAddr[47:32] of TOE100GADV-IP 

Wr/Rd (TOE_SMH_INTREG) 

BA+0x0118 Dest MAC Address In Low [31:0]: Mapped to DstMacAddr[31:0] of TOE100GADV-IP 

Wr/Rd (TOE_DMIL_INTREG) 

BA+0x011C Dest MAC Address In High [15:0]: Mapped to DstMacAddr[47:32] of TOE100GADV-IP 

Wr/Rd (TOE_DMIH_INTREG) 

BA+0x0120 Source IP Address [31:0]: Mapped to SrcIPAddr[31:0] of TOE100GADV-IP 

Wr/Rd (TOE_SIP_INTREG) 

BA+0x0124 Dest IP Address [31:0]: Mapped to DstIPAddr[31:0] of TOE100GADV-IP 

Wr/Rd (TOE_DIP_INTREG) 

BA+0x0128 Dest MAC Mode [1:0]: Mapped to DstMacMode[1:0] of TOE100GADV-IP 

Wr/Rd (TOE_DMM_INTREG) 

BA+0x012C Window Threshold [9:0]: Mapped to WindowThres[9:0] of TOE100GADV-IP 

Wr/Rd (TOE_WIN_INTREG) 

BA+0x0130 TCP Control Timeout [31:0]: Mapped to TCPCtlTimeOutSet[31:0] of TOE100GADV-IP 

Wr/Rd (TOE_TCT_INTREG) 

BA+0x0134 TCP Receive Timeout [23:0]: Mapped to TCPRxTimeOutSet[23:0] of TOE100GADV-IP 

Wr/Rd (TOE_TRT_INTREG) 

BA+0x0138 Dest MAC Address Out Low [31:0]: Mapped to DstMacAddrOut [31:0] of TOE100GADV-IP 

Rd (TOE_DMOL_INTREG) 

BA+0x013C Dest MAC Address Out High [15:0]: Mapped to DstMacAddrOut [47:32] of TOE100GADV-IP 

Rd (TOE_DMOH_INTREG) 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 31 

 
Address Register Name  Description  

Wr/Rd (Label in the  

“toe100gadvtest.c”) 

(BA+0x0140) – (BA+0x017F): Session control and status signals 

BA+0x0140 Source Port Number [15:0]: Mapped to TCPSrcPort[15:0] of TOE100GADV-IP 

Wr/Rd (TOE_SPN_INTREG) 

BA+0x0144 Dest Port Number [15:0]: Mapped to TCPDstPort[15:0] of TOE100GADV-IP 

Wr/Rd (TOE_SPN_INTREG) 

BA+0x0148 TCP Last Mode [1:0]: Mapped to TCPLastMode[1:0] of TOE100GADV-IP 

Wr/Rd (TOE_LMD_INTREG) 

BA+0x014C TCP Command Wr 

[3:0]: Set value to TCPConnCmd[3:0] of TOE100GADV-IP 

When this register is written, the connection request (TCPConnReq) is 

asserted to initiate the TOE100GADV-IP operation. 

Rd 

[3:0]: The latest value of TCPConnCmd[3:0] set to TOE100GADV-IP 

[8]: Mapped to TCPConnReady of TOE100GADV-IP 

Wr/Rd (TOE_CMD_INTREG) 

BA+0x0150 TCP Connection ON [3:0]: Mapped to TCPConnOn[3:0] of TOE100GADV-IP 

Rd (TOE_CON_INTREG) 

BA+0x0154 TOE Interrupt  Wr - Set the specified bit to 1b to clear the corresponding interrupt, read from 

this register. For instance, if bit[0] of TOE_INT_INTREG is set to 1b to indicate 

retry interrupt from common functions, users can set bit[0] of 

TOE_INT_INTREG to 1b to clear the interrupt, and the read value of this bit 

will become zero value. 

Rd – The interrupt status is activated by various conditions. 

[0]: Set to 1b when TCPRtrInt is triggered by common functions 

(TCPRtrIntStatus[15:0] is non-zero). 

[8]: Set to 1b when TCPConnCpl is triggered by session#0 commands 

(TCPConnCplStatus[3:2] is 00b). 

[9]: Set to 1b when TCPConnCpl is triggered by session#1 commands 

(TCPConnCplStatus[3:2] is 01b). 

[10]: Set to 1b when TCPConnCpl is triggered by session#2 commands 

(TCPConnCplStatus[3:2] is 10b). 

[11]: Set to 1b when TCPConnCpl is triggered by session#3 commands 

(TCPConnCplStatus[3:2] is 11b). 

[16]: Set to 1b when TCPRtrInt is triggered by session#0 functions 

(TCPRtrIntStatus[31:16] is non-zero). 

[17]: Set to 1b when TCPRtrInt is triggered by session#1 functions 

(TCPRtrIntStatus[47:32] is non-zero). 

[18]: Set to 1b when TCPRtrInt is triggered by session#2 functions 

(TCPRtrIntStatus[63:48] is non-zero). 

[19]: Set to 1b when TCPRtrInt is triggered by session#3 functions 

(TCPRtrIntStatus[79:64] is non-zero). 

[24]: Set to 1b when TCPRstInt is triggered by session#0 functions 

(TCPRstIntStatus[31:16] is non-zero). 

[25]: Set to 1b when TCPRstInt is triggered by session#1 functions 

(TCPRstIntStatus[47:32] is non-zero). 

[26]: Set to 1b when TCPRstInt is triggered by session#2 functions 

(TCPRstIntStatus[63:48] is non-zero). 

[27]: Set to 1b when TCPRstInt is triggered by session#3 functions 

(TCPRstIntStatus[79:64] is non-zero). 

Wr/Rd (TOE_INT_INTREG) 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 32 

 
Address Register Name  Description  

Wr/Rd (Label in the  

“toe100gadvtest.c”) 

(BA+0x0180) – (BA+0x01FF): Session#0 – Session#3 status signals 

BA+0x0180 TCP Conn Status#0 Low [31:0]: Mapped to TCPConnStatus[31:0] of TOE100GADV-IP (session#0) 

Rd (TOE_TCS0L_INTREG) 

BA+0x0184 TCP Conn Status#0 High [31:0]: Mapped to TCPConnStatus[63:32] of TOE100GADV-IP (session#0) 

Rd (TOE_TCS0H_INTREG) 

BA+0x0188 TOE Transmit Status#0 [31:0]: Mapped to TOETxStat0[31:0] of TOE100GADV-IP (session#0 status) 

Rd (TOE_TTS0_INTREG) 

BA+0x018C TOE Receive Status#0 [31:0]: Mapped to TOERxStat0[31:0] of TOE100GADV-IP (session#0 status) 

Rd (TOE_TRS0_INTREG) 

BA+0x0190 Conn Completion Status#0 [4:0]: Latched value of TCPConnCplStatus[4:0] when TCPConnCpl is 

triggered by session#0 commands. Rd (TOE_CCS0_INTREG) 

BA+0x0194 Retry Interrupt Status#0 [15:0]: Latched value of TCPRtrIntStatus[31:16] when TCPRtrInt is triggered 

by session#0 functions. Rd (TOE_RTS0_INTREG) 

BA+0x0198 Reset Interrupt Status#0 [15:0]: Latched value of TCPRstIntStatus[31:16] when TCPRstInt is triggered 

by session#0 functions. Rd (TOE_RSS0_INTREG) 

BA+0x01A0 – 

BA+0x01BB 

TOE_TCS1L_INTREG – 

TOE_RSS1_INTREG 

Similar to (BA+0x0180) – (BA+0x019B), these registers indicate the status of 

session#1. 

BA+0x01C0 – 

BA+0x01DB 

TOE_TCS2L_INTREG – 

TOE_RSS2_INTREG 

Similar to (BA+0x0180) – (BA+0x019B), these registers indicate the status of 

session#2. 

BA+0x01E0 – 

BA+0x01FB 

TOE_TCS3L_INTREG – 

TOE_RSS3_INTREG 

Similar to (BA+0x0180) – (BA+0x019B), these registers indicate the status of 

session#3. 

(BA+0x1000) – (BA+0x13FF): UserDataGen and UserDataVer interface 

(BA+0x1000) – (BA+0x107F): UserDataGen#0 control/status 

BA+0x1000 User#0 Transmit Command Wr 

[0]: Set to 1b to send the request to UserDataGen#0, triggering data sending 

function. This signal is auto-cleared after initiating data transmission. 

[1]: Set to 1b to clear the value read from USR0TX_LENL/H_INTREG. 

Rd[0]: Indicate busy flag of UserDataGen#0. 0b-Idle, 1b-Data is transmitting. 

Wr/Rd (USR0TX_CMD_INTREG) 

BA+0x1004 User#0 Tx Transfer Speed [6:0]: Set maximum performance for transmitting data in percentage unit of 

16000 MB/s (250 MHz x 512-bit data). Valid range is 1 – 100.  Wr/Rd (USR0TX_TRS_INTREG) 

BA+0x1008 User#0 Transmit Length Low Wr [31:0]: Bits[31:0] of total transmit size in byte unit. 

Rd [31:0]: Bits[31:0] of complete transmit size in byte unit Wr/Rd (USR0TX_LENL_INTREG) 

BA+0x100C User#0 Transmit Length High Wr [15:0]: Bits[47:32] of total transmit size in byte unit. 

Rd [15:0]: Bits[47:32] of complete transmit size in byte unit Wr/Rd (USR0TX_LENH_INTREG) 

BA+0x1010 User#0 Tx Packet Len Low [31:0]: Bits[31:0] of transmit packet size in byte unit. 

Wr/Rd (USR0TX_PKLL_INTREG) 

BA+0x1014 User#0 Tx Packet Len High [15:0]: Bits[47:32] of transmit packet size in byte unit. 

Wr/Rd (USR0TX_PKLH_INTREG) 

(BA+0x1080) – (BA+0x10FF): UserDataVer#0 control/status 

BA+0x1080 User#0 Receive Command Wr 

[0]: Set to 1b to enable receive function of UserDataVer#0. 

0b-Disable receive function, 1b-Enable receive function. 

[1]: Set to 1b to enable data verification function of UserDataVer#0. 

0b-Disable verification function, 1b-Enable verification function. 

[2]: Set to 1b to clear the value read from USR0RX_LENL/H_INTREG. 

Rd [0]: Indicate verification error status. 0b-No error, 1b-Verification is error. 

Wr/Rd (USR0RX_CMD_INTREG) 

BA+0x1084 User#0 Recv Transfer Speed [6:0]: Set maximum performance for receiving data in percentage unit of 

16000 MB/s (250 MHz x 512-bit data). Valid range is 1 – 100. Wr/Rd (USR0RX_TRS_INTREG) 

BA+0x1088 User#0 Receive Length Low Rd [31:0]: Bits[31:0] of total receive size in byte unit 

Rd (USR0RX_LENL_INTREG) 

BA+0x108C User#0 Receive Length High Rd [15:0]: Bits[47:32] of total receive size in byte unit 

Rd (USR0RX_LENH_INTREG) 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 33 

 
Address Register Name  Description  

Wr/Rd (Label in the  

“toe100gadvtest.c”) 

BA+0x1100 – BA+0x13FF: UserDataGen and UserDataVer interface for session#1 – session #3 

BA+0x1100 – 

BA+0x11FF 

Similar to (BA+0x1000) – (BA+0x10FF), these registers are mapped to the control/status signals of 

UserDataGen#1 and UserDataVer#1 for session#1. 

BA+0x1200 – 

BA+0x12FF 

Similar to (BA+0x1000) – (BA+0x10FF), these registers are mapped to the control/status signals of 

UserDataGen#2 and UserDataVer#2 for session#2. 

BA+0x1300 – 

BA+0x13FF 

Similar to (BA+0x1000) – (BA+0x10FF), these registers are mapped to the control/status signals of 

UserDataGen#3 and UserDataVer#3 for session#3. 

BA+0x2000 – BA+0x3FFF: UserTxMAC 

BA+0x2000 UserTxMAC Transmit Length Wr [11:0]: Total amount of transmitted data in byte unit. Valid from 1 – 4095. 

After this register is written, UserTxMAC initiates data transmission to EMAC. 

Rd [0]: Indicate busy status of UserTxMAC. 0b-Idle, 1b-Packet is transmitting. 

Wr/Rd (TXEMAC_LEN_INTREG) 

BA+0x3000 – 

BA+0x3FFF 

TxRAM in UserTxMAC TxRAM area for storing transmitted packet, created by CPU, for low-speed 

connection. 

Wr (TXRAM_BASE_ADDR) 

BA+0x4000 – BA+0x5FFF: UserRxMAC 

BA+0x4000 – 

BA+0x4027 

UserRxMAC Header Data 38 bytes of header data is utilized for packet filtering within UserRxMAC. This 

facilitates packet header comparison from byte#0 to byte#37 in each received 

packet. To activate the packet filtering logic, the user must additionally set 

RXEMAC_CMD_INTREG[0] to 1b, enabling the receive operation. 

The byte mappings for header data are as follows.  

0x4000[7:0], [15:8], [23:16], [31:24] correspond to byte#0, #1, #2, #3. 

0x4004[7:0], [15:8], [23:16], [31:24] correspond to byte#4, #5, #6, #7. 

… 

0x4020[7:0], [15:8], [23:16], [31:24] correspond to byte#32, #33, #34. 

0x4024[7:0], [15:8] correspond to byte#36, #37. 

Wr/Rd (RXEMAC_HDVAL_ADDR) 

BA+0x4040 – 

BA+0x4047 

UserRxMAC Header Byte 

Enable 

A 38-bit signal is used to activate the verification function for 38-byte data, with 

each bit dedicated to controlling individual byte data. 

Byte-wise mappings for the signal are as follows. 

0x4040[0], [1], [2], …, [31] correspond to byte#0, #1, #2, …, #31. 

0x4044[0], [1], [2], …, [5] correspond to byte#32, #33, #34, …, #37. 

The states of each bit are defined as follows. 

0b-Disable byte filtering (bypass data), 1b: Enable byte filtering. 

Wr/Rd (RXEMAC_HDEN_ADDR) 

BA+0x4060 

 

UserRxMAC Command Wr/Rd 

[0] – Set to 1b to enable UserRxMAC module. 0b-Disable, 1b-Enable. 

Wr 

[1] – Set to 1b to assert the Read enable of RxMacFf within UserRxMAC 

module. Since RxMacFf is FWFT type, writing to this register is used to flush 

one existing data from the FIFO. The data output of RxMacFf can be read 

from bits[5:0] of RXMAC_FF_INTREG. The user sets this bit to 1b once to 

flush one data from FIFO. 

Wr/Rd (RXEMAC_CMD_INTREG) 

BA+0x4064 RxMacFf of UserRxMAC [5:0]: Mapped to read data output from RxMacFf. 

[15]: Indicate the empty status of RxMacFf Rd (RXEMAC_FF_INTREG) 

BA+0x5000 – 

BA+0x5FFF 

RxRAM in UserRxMAC RxRAM area for storing received packet. To process the received packet from 

a low-speed connection, the CPU accesses and decodes the packets from 

the RxRAM. Rd (RXRAM_BASE_ADDR) 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 34 

 
User Data Generator 
 
Within the UserReg module, the UserDataGen submodule functions as the user logic 
responsible for facilitating high-speed data transmission to TOE100GADV-IP. Each 
UserDataGen instance is dedicated to transmitting data for one TCP session data to 
TOE100GADV-IP. This reference design incorporates the utilization of four UserDataGen 
modules. 
 
To initiate the test operation of this module, users trigger the start signal, TrnStart, setting it 
to 1b. This action, accompanied by specifying parameters such as Total data transfer size 
(TotDataLenSet) in bytes, Packet size (PacketSizeSet) in bytes, and Maximum speed 
(MaxSpeed) as a percentage (ranging from 1 to 100), kicks off the data transmission 
process.  
 
If the value of ‘TolDataLenSet’ surpasses that of ‘PacketSizeSet’, UserDataGen generates a 
data stream using multiple packets. The transmission of the first data of the next packet 
occurs in the following clock cycle immediately after sending the last data of the preceding 
packet, without any pause. However, the MaxSpeed parameter is utilized to control the 
pause cycle for transmitting data every 100 transfer cycles. For instance, if ‘MaxSpeed’ is 
set to 90, a pause time of 10 clock cycles is inserted every 100 transfer cycles to control the 
speed of data transfer. 
 
Upon the assertion of TrnStart, the busy flag (TrnBusy) is set to 1b, indicating that data 
transmission is in progress. Users can track the transmission progress by reading the 
completed transfer size (CurTrnSize) in bytes. This information can be reset by the user 
through the ‘ClrTrnSize’ signal or by initiating a new transfer request via ‘TrnStart’. The data 
stream is generated and transmitted through a 512-bit AXI4 stream interface. 
 

 
Figure 2-18 UserDataGen block diagram 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 35 

 
Figure 2-18 illustrates the block diagram of UserDataGen. The module incorporates a 
Fast-Word Fall-Through FIFO named DataFifo, serving as a buffer for the generated test 
data before streaming it out as AXI4-ST. As a result, the logic of UserDataGen is categorized 
into two groups based on this FIFO – the Write and Read sides of the FIFO. 
 
On the FIFO Write side, a state machine is designed to generate flow control signals for 
writing each data packet to DataFifo. The operation concludes when the total write data size 
reaches the TotDataLenSet value. Three key logic functions collaborate with the state 
machine for the Write function, as detailed below. 
 
The first is TrnLenCal, a counter group providing information to other logics about the 
necessary transfer size, described as below. 

• rRemTotDataCnt: Remaining transfer size in byte units initialized from TotDataLenSet 
and decreases after a packet is written to the FIFO. 

• rCurPkLenLat: Indicates the data size of each packet in byte units. Every packet size is 
typically equal to PacketSizeSet, except for the last packet. When TotDataLenSet does 
not align with PacketSizeSet, the final packet size is loaded from rRemTotDataCnt. 

• rWrRemPkCnt: A down-counter indicating the remaining cycles for writing the current 
packet to the FIFO. The initial cycle amount corresponds to the rCurPkLenLat value. 

 
The second is the write enable controller (WrEnCtrl). This logic manages the assertion of 
FIFO write enable (wFfWrEn and rFfWrEn, sourced by wFfWrEn with specific latency time 
for signal synchronization) and the last cycle of the packet (rWrDataLast). Data is written to 
the FIFO when the state machine enters the ‘stWrData’ state, and the FIFO data counter 
indicates sufficient free space. 
 
Lastly, PattGen is designed to generate the 32-bit incremental test data, which is finally 
packed with byte enable (ByteEn) and last flag (EOP) to become the write data of DataFifo. 
The initial value of test data is zero and resets to zero after the user asserts a new start flag 
(TrnStart) or ClrTrnSize. CurTrnSize, for user monitoring, is also handled by the PattGen 
logic. 
 
Comparing to the Write function, the FIFO Read size comprises there are simply two logic 
groups: SpeedCtrl and StreamGen. SpeedCtrl is designed to introduce a pause time for 
transmitting the data stream. This logic, based on counter, asserts rTrnEn signal within a 
specific period defined by the MaxSpeed value, every 100 transfer cycles. Subsequently, 
rTrnEn is de-asserted to 0b until the 100-cycle counter is triggered for the new 100-cycle 
round.  
 
StreamGen is responsible for reading data from DataFifo only when rTrnEn is asserted. The 
readiness of the read data (FIFO Empty) and the stream interface (TxReady) are also 
considered in deciding the FIFO reading. Finally, the FIFO read data is formed to become 
the output AXI4 stream of UserDataGen. Further operation details of UserDataGen are 
depicted as timing diagram presented in Figure 2-19 and Figure 2-20. 
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 36 

 

 
Figure 2-19 Timing diagram of FIFO Write side in UserDataGen 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 37 

 
1) The operation commences when the user asserts TrnStart to 1b. The state enters 

stChkLen and TrnBusy is asserted to 1b. At this point, the value of TotDataLenSet and 
PacketSizeSet are loaded to initialize counters in the TrnLenCal logic, one of which is 
rRemTotDataCnt. 

2) In stChkLen, rRemTotDataCnt is examined to determine the next state. If 
rRemTotDataCnt is non-zero, the state machine enters stLdSize to prepare for packet 
writing. Additonally, rCurPkLenLat calculates the current packet size, which is typically 
equal to PacketSizeSet for every packet, except for the last packet. 

3) ‘stLdSize’ is one-clock cycle state for reading rCurPkLenLat to compute the 
rWrRemPkCnt value, a down-counter indicating the remaining cycle amount for writing 
the current packet to DataFifo. Subsequently, the state enters stWrData. 

4) ‘stWrData’ is the period for writing one packet of data to DataFIFO. The WrEnCtrl logic 
asserts wFfWrEn to write DataFifo if the FIFO has sufficient free space (rFfAFull=0b). 
When wFfWrEn is asserted, rWrRemPkCnt is decreased, and FIFO write enable 
(rFfWrEn[1]) is asserted in the next two clock cycles. Additionally, CurTrnSize is 
incremented to inform the user about the current transfer size. 

5) If DataFifo has insufficient free space, rFfWrAFull is set to 1b, resulting in the immediate 
de-assertion of wFfWrEn. Also, rFfWrEn[1] is de-asserted to 0b in the next two clock 
cycles. 

6) When rWrRemPkCnt=2 and wFfWrEn=1b, rWrDataLast is set to 1b, indicating that the 
next data is the last data of the current packet. After wFfWrEn is asserted for writing the 
last data, rRemTotDataCnt is decreased by the packet size (rCurPkLenLat), and the state 
machine returns to stChkLen for checking the next packet writing. 

7) If the state enters stChkLen for sending the last packet, rCurPkLenLat loads the packet 
size directly from rRemTotDataCnt, which may be less than PacketSizeSet set by user. 

8) Once the state returns to stChkLen and rRemTotDataCnt=0, the write operation nearly 
completed. The last packet is going to be written to the FIFO in the next few cycles 
(accounting for D Flip-flops latency). At this point, the state awaits in stChkLen until both 
the Write and Read operations are completed. TrnBusy is still asserted at 1b. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 38 

 

 
Figure 2-20 Timing diagram of FIFO Read side in UserDataGen 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 39 

 
1) The read FIFO operation is initiated when three conditions are met: DataFifo must have 

data (FfEmpty=0b), the transfer speed should not exceed the set value (rTrnEn=1b), and 
TOE100GADV-IP must be ready to receive data (TxReady=1b). If all three conditions are 
met, wFfRdAck is asserted to read data out from DataFifo. 

2) Once wFfRdAck is asserted to 1b, FIFO read data is loaded to become the output signals 
of the AXI4 stream, with the assertion of TxValid in the next cycle. 

3) During data transfer, if TxReady is de-asserted to 0b, wFfRdAck is immediately 
de-asserted to pause data reading. 

4) Additionally, wFfRdAck can be de-asserted by SpeedCtrl, which includes a counter 
(rCnt100) to split the transfer cycle in a 100-cycle loop. When rCnt100 reaches 
MaxSpeed value, rTrnEn is set to 0b to pause FIFO reading. The read operation resumes 
when rCnt100 resets to zero, leading to the re-assertion of rTrnEn. 

5) When there is no remaining data in the FIFO (FfEmpty=0b) and no packet transfer in 
AXI4-ST I/F (TxValid=0b), the read operation is completed. If the write operation is also 
completed, with rFfWrEn[3:0] equal to zero, the state returns to stIdle. 

6) In stIdle, TrnBusy is de-asserted to 0b to indicate the completion of the operation. rTrnEn 
and rCnt100 are also reset from the de-assertion of TrnBusy. Although UserDataGen 
completes its operation, CurTrnSize maintains its value for user monitoring until a new 
start (TrnStart) or a clear signal (ClrTrnSize) is set. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 40 

 
User Data Verification 
 
Similar to UserDataGen, UserDataVer is a submodule within UserReg designed to facilitate 
high-speed data reception from TOE100GADV-IP. Four UserDataVer modules are 
specifically allocated for receiving data from four TCP sessions of TOE100GADV-IP. If the 
user sets the enable flag (RecvEn) to 1b, this module asserts the ready signal to receive the 
data stream via the AXI4 stream and subsequently verifies it. In the absence of the RecvEn 
assertion, the ready signal is de-asserted, resulting in the pause of data transmission from 
TOE100GADV-IP. 

 

 
Figure 2-21 UserDataVer block diagram 

 
As shown in Figure 2-21, UserDataVer incorporates three operations: Speed Control, 
represented by block (1), for controlling transfer speed; Data Counter, denoted as block (2), 
for counting the received data amount; and Data Verification, designated as block (3), for 
verifying the received data. Most of these logics initialize their values upon detecting the 
rising edge of the RecvEn signal, initiating their respective operations. Further details of 
each operation are described as follows. 
 
The Speed Control employs the same concept as the corresponding block in DataGen. An 
up-counter (rCnt100) counts from 0 to 99, establishing a 100-clock transfer cycle during the 
operation. RxReady is initialized to 1b when rCnt100 equals zero. Upon rCnt100 reaching 
MaxSpeed, RxReady is de-asserted to 0b, pausing data transmission from 
TOE100GADV-IP. RxReady is subsequently re-asserted to 1b when rCnt100 returns to zero. 
The user-input, MaxSpeed, is loaded upon the new assertion of RecvEn.  
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 41 

 
The Data Counter incorporates a counter to display the total amount of data received from 
TOE100ADV-IP, employing two distinct calculation units. The first unit, 64BTrnCal, is 
dedicated to counting the received data amount in 64-byte units. Generally, 64-byte data is 
received in every transfer cycle, except for the last cycle which may contain 1-64 bytes of 
data. Consequently, the second calculation unit, LastByteCal, is designed to compute the 
amount of remaining received data in byte units by checking RxReady, RxValid, RxLast, and 
RxKeep. The output of LastByteCal, denoted as wTotalLastDataCnt, is calculated by 
aggregating the byte offset from the preceding packet transmission and the number of valid 
bytes in the last transfer cycle of the current packet transmission. If the result exceeds 64 
bytes, wTotalLastDataCnt[6] is set to 1b, causing the 64BTrnCal to increment its result, 
rRxTrnCnt, by one. The remaining bytes that do not align with 64 bytes are stored in the 
rDataOffset signal. Consequently, the total amount of received data, CurRevSize, can be 
computed from rRxTrnCnt[47:6] and rDataOffset[5:0]. These values can be cleared by the 
rising edge of the new RecvEn or by setting the clear flag (ClrRecvSize) to 1b.  
 
The Data Verification incorporates the ExpDataCal logic, which calculates the expected data 
based on the received data counter generated in block (2). The expected pattern data 
(ExpData1) is determined as a 32-bit incremental pattern. If the user activates the receive 
enable flag (RecvEn) and verification enable flag (VerifyEn), each byte of the expected data 
is compared with the received data stream (rRxData1). In the event of data verification error, 
the Fail flag (VerifyFail) is set to 1b until to notify the user of a mis-matched in the data 
stream. This Fail flag remains set to 1b until the user asserts the new RecvEn or 
ClrRecvSize.  
 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 42 

 

3 CPU firmware and Test software 
 
The reference design uses a bare-metal OS for the CPU firmware operating, which facilitates 
hardware handling. When executing the test system, the first step is to initialize the hardware, 
described in more details below. 

 
Figure 3-1 System initialization in Client mode by using default parameters 

 
Figure 3-1 illustrates the four-step hardware initialization process, detailed below. 
 
1) Upon FPGA boot-up, the CPU initializes peripherals such as UART and timer. Subsequently, a 

welcome message is presented on the console via the UART interface. The CPU then awaits 
Ethernet link establishment, monitored through polling EMAC_STS_INTREG[0]. Once the 
Ethernet link is established, the console displays a menu for parameter configuration. 

2) Users can choose from three IP initialization options: Client, Server, or Fixed-MAC mode. 
These modes offer the flexibility to obtain the MAC address of the target device. Client and 
Server options can be chosen only when the TOE100GADV-IP and the target device are 
installed in the same network domain. Otherwise, Fixed-MAC mode is required, allowing users 
to set the MAC address of the target device based on the Ethernet switch connected to 
TOE100GADV-IP. Details for each initialization mode are outlined as follows. 

 
a) Client mode: TOE100GADV-IP sends an ARP request packet to retrieve the MAC address 

of the target device from the ARP reply packet. 
b) Server mode: TOE100GADV-IP waits for an ARP request packet, decodes the MAC 

address upon reception, and responds with an ARP reply packet. 
c) Fixed-MAC mode: Users manually set the MAC address of the target device to a constant 

value. 
 
In summary, within a two-FPGA board test environment, users can configure three initialization 
options: Client<->Server, Client<->Fixed-MAC, and Fixed-MAC<->Fixed-MAC. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 43 

 
3) The CPU displays default values for network parameters: the Window update gap value, Last 

packet mode, initialization mode, FPGA MAC address, FPGA IP address, Target IP address, 
four FPGA port numbers, and four Target port numbers. The firmware offers two default 
parameter sets customized for distinct initialization modes: the Server parameter set (used for 
Server mode only) and Client parameter set (used for both Client and Fixed-MAC modes). In 
Fixed-MAC mode, an additional parameter, Target MAC address, is also displayed. Users can 
choose to conclude the initialization process using default parameters or modify specific 
parameters before initiating the process. The process for updating parameters is outlined in the 
Reset parameters menu (refer to section 3.2). 

4) The CPU awaits the completion of IP the initialization process, signaled by 
TOE_INF_INTREG[0] being set to 1b. Upon completion, the console displays the message “IP 
initialization complete” and the main menu, presenting five options. Detailed explanations for 
each menu option are provided in the subsequent sections. 

 
3.1 Display parameters 

 
This menu serves to present the current parameters of TOE100GADV-IP, i.e., Windows 
update threshold, last packet mode, initialization mode, source (FPGA) MAC address, 
source (FPGA) IP address, target MAC address (displayed exclusively in Fixed MAC mode), 
target IP address, all source (FPGA) port numbers, and all target port numbers. The 
sequence for displaying parameters is outlined below. 
1) Read all parameters from each variable within the firmware. 
2) Print out each variable. 
Note: Source parameters refer to the FPGA parameters set to TOE100GADV-IP, while 
target parameters are the parameters of a PC or another FPGA. 

 
3.2 Reset parameters 

 
This menu facilitates to modify TOE100GADV-IP parameters, including the initialization 
mode, IP address, and source port number. As each parameter undergoes an update to be 
TOE100GADV-IP input signals, the CPU asserts reset signals to both TOE100GADV-IP and 
user modules. Following the parameter update process, the reset signal is de-asserted, 
initiating the IP initialization. The sequence for resetting the IP is outlined below. 
 
1) Display the latest value of all parameters on the console, similar to section 3.1 (Display 

parameters). 
2) Prompt the user to proceed with the current parameters or update their values. 

a) Press ‘x’ on the keyboard to skip to step 4 using the latest parameters. 
b) Press any other key to modify the parameter values, proceeding to step 3. 

3) Receive input parameters from the user through the following steps. 
i) Receive the initialization mode from the user. If the initialization mode changes, display 

the latest parameter set for the new mode on the console. The user can select ‘x’ to 
apply the latest parameter set and proceed to step 4. If not, the console requests the 
next parameter setting (step 3-ii). 

ii) Receive the remaining parameters from the user and validate each input individually. If 
an input is deemed invalid, that specific parameter will not be updated. 

4) Assert a reset to TOE100GADV-IP, UserDataGen, and UserDataVer by setting 
HW_RST_INTREG[0] to 1b. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 44 

 
5) Set all parameters of TOE100GADV-IP to the registers such as TOE_SML_INTREG and 

TOE_DIP_INTREG. 
6) De-assert the hardware reset by setting HW_RST_INTREG [0] to 0b. Subsequently, 

TOE100GADV-IP initiates the initialization process. 
7) Await the completion of the IP initialization process, signified by TOE_INF_INTREG[0] 

being set to 1b. 
 
3.3 Half Duplex Test 

 
This menu facilitates the one-way transfer of data for each session. Users can designate the 
transfer mode for each session independently, choosing among Send test, Receive test, or 
no operation. Following this, users input parameters such as transfer size, maximum speed, 
and connection mode (active open for Client mode or passive open for Server mode) to 
initiate data transmission. It is noted that required parameters vary between “Send test” and 
“Receive test”, and any invalid inputs automatically cancel the operation. 
 
When “Send test” is selected, the logic generates and transmits 32-bit incremental data to 
the target device. On the other hand, in a “Receive test”, users can choose to enable or 
disable data verification while receiving data. If the target device is a PC transmitting dummy 
logic to showcase optimal performance, disabling the data verification function is 
recommended to prevent a verification error. The sequence for half-duplex data transfer is 
outlined below. 
 
1) Display the port number of the current session. 
2) Prompt the user to input transfer mode, transfer size, packet size/data verification mode, 

maximum transfer speed, and connection mode, and validate all inputs. 
3) Iterate steps 1) – 2) to execute subsequent sessions until the current session is the final 

one. The operation is cancelled if all sessions are set to ‘no operation’ transfer mode. 
4) Configure UserReg registers based on the transfer mode. 

a) For Send test: Set maximum speed, packet size, and transfer size to the registers 
(USR0TX_TRS_INTREG, USR0TX_PKLL/H_INTREG, USR0TX_LENL/H_INTREG, 
respectively). 

b) For Receive test: Set maximum speed to USR0RX_TRS_INTREG. 
5) Read the connection mode of the current active session. If it is ‘passive mode’, set the 

current state variable to ST_CONN_WAIT. Configure parameters for initiating passive 
open using user-defined values: FPGA port number (TOE_SPN_INTREG) and TCP Last 
mode (TOE_LMD_INTREG). Set the command register (TOE_CMD_INTREG[1:0]) to 
send the passive open request to the specified session. Repeat this step until setup is 
completed for all active sessions configured by passive open mode.  

6) Display recommended test application parameters on the PC by reading the current 
system parameters. 

7) If there are active sessions configured by active open mode, display message "Press any 
key to proceed”. This message indicates that the user should start port listening (passive 
open) on the target device by running the test application on the PC or the hardware on 
the FPGA. Upon completion of passive open execution, users can advance to the next 
step by entering keys. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 45 

 
8) To initiate the active open operation for each session, the current state variable is set to 

ST_CONN_WAIT, and the parameters are configured according to user-defined values: 
FPGA port number (TOE_SPN_INTREG), Target port number (TOE_DPN_INTREG), 
and TCP Last mode (TOE_LMD_INTREG). The command register (TOE_CMD_ 
INTREG[1:0]) is then set to send the active open request to a specified session. Repeat 
this step until all active sessions configured by active open mode are set up. 

9) The operation sequence for transferring data in each active session is as follows, iterated 
until all active connections are closed. Four state machines are designated to indicate the 
connection status of each active session: ST_CONN_WAIT for waiting connection 
establishment, ST_CONN_ON for transferring data, ST_CONN_OFF for no connection, 
and ST_CONN_ERR for error operation. 
 
ST_CONN_WAIT: This state is designated to wait for connection establishment, 
monitoring by reading TOE_CON_INTREG. Once established, the current state variable 
changes to ST_CONN_ON. Additionally, either UserDataGen or UserDataVer begins 
operation by setting the command register (USR0TX_CMD_INTREG or USR0RX_CMD_ 
INTREG). In case of failure in active open command (indicated by TOE_INT_INTREG[8] 
being 1b and TOE_CCS0_INTREG[4] being 0b), the current state variable changes to 
ST_CONN_ERR. Once all active sessions complete connection establishment, display 
the connection information on the console, including the Target port number, MSS value, 
and Target Window Size. This information is obtained by reading the connection status 
from TOE100GADV-IP (TOE_TCS0L\H_INTREG). 
 
ST_CONN_ON: This state is designated for transferring data and closing the connection 
upon the completion of the ‘Send test’. 
 

Send test 
i) If the connection close command is in process, the state transitions to other states 

based on two conditions. First, if the connection is terminated successfully, monitored 
by TOE_CON_INTREG, the state enters ST_CONN_OFF, and the total number of 
active sessions is decremented. Second, if command failure is detected (indicated by 
TOE_INT_INTREG[8] being 1b and TOE_CCS0_INTREG[4] being 0b), the current 
state changes to ST_CONN_ERR, and the total number of active session is 
decremented. 

ii) If UserDataGen completes its operation, indicated by USR0TX_CMD_INTREG[0]=0b, 
ensure that all data have been transmitted successfully by reading the amount of 
remaining data from TOE_TTS0_INTREG[15:0]. If all data transmission has been 
confirmed, request the active close command by setting TOE_CMD_INTREG[1:0] with 
an assertion flag to indicate the connection close command is in process. If the 
connection is terminated before sending the close request, set the state variable to 
ST_CONN_ERR. 

iii) Ensure that the connection is still active (monitored by TOE_CON_INTREG) and 
update the test progress by retrieving and displaying the total amount of transmitted 
data (USR0TX_LENL/H_INTREG) on the console every second. If the connection is 
inactive before completing data transmission, set the state variable to 
ST_CONN_ERR and decrement the total number of active sessions. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 46 

 
Receive test 
i) Monitor the connection status by reading TOE_CON_INTREG. When it changes to 

OFF, set the state variable to ST_CONN_OFF. While the connection is active, update 
the test progress by retrieving and displaying the total amount of received data 
(USR0RX_LENL/H_INTREG) on the console every second. 

ii) Upon completion of data transfer, indicated by the connection status changing to OFF, 
read the verification result (USR0RX_CMD_INT_REG) and compare the total amount 
of received data with the set value. If verification failure or a mismatch in the total 
number of received data is found, display an error message. 

 
10) Calculate performance and display the test result on the console. 

 
3.4 Full duplex test 

 
This menu enables bidirectional data transfer for each session using a single target device, 
which can be a PC or FPGA. Users can independently enable data transfer of each session, 
choosing between full-duplex testing or no operation. Following this, users input parameters 
such as total transfer size and connection mode (active open/close for Client mode or 
passive open/close for Server mode). The transfer size set by the user must match the size 
set on the target device. If utilizing the test application ‘tcp_client_txrx_single’ on PC for 
testing, the connection mode on the FPGA must be set to Server mode to execute passive 
open and close. The sequence for full-duplex data transfer is outlined below. 
 
1) Receive parameter inputs from users, following a process similar to the steps 1) through 

3) of the Half Duplex Test. 
2) If the transfer mode is enabled, configure UserReg registers accordingly. Set maximum 

speed for both transfer directions, packet size, and transfer size to the registers 
(USR0TX/RX_TRS_INTREG, USR0TX_PKLL/H_INTREG, USR0TX_PKLL/H_INTREG, 
respectively. 

3) Initiate the opening of a connection based on the specified connection mode, similar to 
the process outlined in the steps 5 through 7 of the Half Duplex Test. 

4) The operation sequence for transferring data in each active session is as follows, iterated 
until all active connections are closed. Four state machines are designated, similar to 
those in the Half Duplex Test; however, the operation in each state differs slightly different 
from that in the Half Duplex Test, as described below. 
 
ST_CONN_WAIT: The operation in this state is similar to that of the Half Duplex Test, with 
the distinction that both UserDataGen and UserDataVer begin operation by setting the 
command register (USR0TX/RX_CMD_INTREG) for bidirectional data transfer. 
 
ST_CONN_ON: This state is designated for bidirectional data transfer. Upon completion 
of all data transfer, the connection close is requested in this state, configured by active 
open/close mode. The completion process for each connection mode (active or passive) 
slightly differs, so the execution details for each mode are split into two parts, as follows. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 47 

 
Passive mode 
i) Monitor the connection status by reading TOE_CON_INTREG. If it changes to OFF, 

proceed to the next step. Otherwise, update the test progress by retrieving and 
displaying the total amount of transmitted data and received data on the console every 
second, reading from USR0TX/RX_LENL/H_INTREG. 

ii) Ensure that all data is transmitted successfully, indicated by the de-assertion of 
UserDataGen’s busy flag (USR0TX_CMD_INTREG[0]=0b) and the remaining 
transmitted data amount equal to zero (TOE_TTS0_INTREG[15:0]). Upon the 
successful completion of data transfer, set the state variable to ST_CONN_OFF. 
Otherwise, set the state variable to ST_CONN_ERR. During transitioning to other 
states, decrement the total number of active sessions. 

 
Active mode 
i) If the connection close command is in process, the state transitions to other states 

based on two conditions. First, if the connection is terminated successfully, monitored 
by TOE_CON_INTREG, the state enters ST_CONN_OFF, and the total number of 
active sessions is decremented. Second, if command failure is detected (indicated by 
TOE_INT_INTREG[8] being 1b and TOE_CCS0_INTREG[4] being 0b), the current 
state changes to ST_CONN_ERR, and the total number of active session is 
decremented. 

ii) If the connection is terminated before UserDataGen completes its operation, set the 
state variable to ST_CONN_ERR and decrement the total number of active sessions. 
Otherwise, proceed to the next step. 

iii) Monitor the completion status of UserDataGen, indicated by USR0TX_CMD_ 
INTREG[0] set to 0b and TOE_TTS0_INTREG[15:0] equal to 0. If it does not complete, 
update the test progress by retrieving and displaying the total amount of transmitted 
data and received data on the console every second, reading from USR0TX/RX_ 
LENL/H_INTREG. If the UserDataGen operation is completed, it needs to wait for the 
completion of UserDataVer, indicated by USR0TX_LENL/H_INTREG matching the 
transfer size set by the user. Once all data transfer is successfully completed, request 
the active close command by setting TOE_CMD_INTREG[1:0] with an assertion flag to 
indicate the connection close command is in process.  

 
5) Read the verification result (USR0RX_CMD_INT_REG) and compare the total amount of 

received data with the set value. If verification failure or a mismatch in the total number of 
received data is found, display an error message. 

6) Calculate performance and display the test result on the console. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 48 

 
3.5 Ping reply test 

 
When the PC runs the Ping command to check round-trip time, it generates an ICMP Echo 
request packet. This menu is designed to configure the hardware to receive ICMP Echo 
request packets. Upon receiving a valid request packet, the hardware generates an ICMP 
Echo reply as the response packet. The packet structure of the ICMP protocol for echo 
request/reply type is shown in Figure 3-2. 

 

 
Figure 3-2 Packet structure for ICMP request/reply packet 

 
The ‘Type’ value of the Echo request packet is 8, while the ‘Type’ value of the Echo reply is 0. 
For more information about the Ping command, please refer to the following website. 
http://en.wikipedia.org/wiki/Ping_(networking_utility) 

 
Figure 3-3 ICMP Echo request packet filtering 

http://en.wikipedia.org/wiki/Ping_(networking_utility)


dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 49 

 
The sequence to run the Ping reply is described as follows. 
1) Call the ‘init_filter’ function to set the filtering parameters of UserRxMAC, allowing it to 

receive only ICMP Echo request packets. The configuration values for the ICMP Echo 
request packets are as follows (highlighted in blue in Figure 3-3). 

• Ethernet Type (2 bytes)   = 0x0800 (IPv4) 

• IP version (1 byte)    = 0x45 (Version 4) 

• Protocol (1 byte)    = 0x01 (ICMP Protocol) 

• Destination IP Address (4 bytes) = IP address of the FPGA 

• ICMP type (1 byte)    = 0x08 (Echo Request) 

• ICMP code (1 bytes)   = 0x00 (Echo Request code) 
Note: Figure 3-3 shows only a 38-byte ICMP packet. The actual size of the ICMP packet is 
42 bytes, excluding the reset of the header field, because the filtering logic in the 
UserRxMAC module is designed to support up to 38-byte header data. 

2) Enable the UserRxMAC module by setting RXEMAC_CMD_INTREG[0] to 1b.  
3) Wait until a new packet is stored in RxRAM, indicated by the empty flag of RxMacFf 

(RXEMAC_FF_INTREG[15]) being equal to 0b.  
4) Read and validate the last address of the received packet from RxMacFf 

(RXEMAC_FF_INTREG[5:0]). After that, assert read acknowledge to flush the current 
read data from RxMacFf (RXEMAC_CMD_INTREG[1]=1b). 

5) Copy the received packet from RxRAM (RXRAM_BASE_ADDR) to the receive temporal 
buffer (rxbuff_ch). 

6) Decode the received packet and proceed to the next step if the packet is an Echo request 
packet and the parameters, including checksum, are correct. Otherwise, display an error 
message. 

7) Prepare the Echo reply packet in the transmit temporal buffer (txbuff_ch), including the 
calculated IP checksum and ICMP checksum. After that, copy data from the transmit 
temporal buffer (txbuff_ch) to TxRAM (TXRAM_BASE_ADDR). 

8) Set UserTxEMAC register to start data sending by setting TXMAC_LEN_INTREG to the 
length of the Echo reply packet. 

9) Return to step 2 to proceed with the next packet processing. This forever loop can be 
interrupted when users press any key on the console. To complete the operation, all data 
from both RxMacFf and RxRAM is removed, and the UserRxMAC module is disabled by 
setting RXEMAC_CMD_INTREG[0]=0b to halt low-speed port processing. Finally, return 
to the main menu. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 50 

 
3.6 Function list in CPU firmware 

 
This section outlines the function list, categorized into two groups: functions for executing 
high-speed connection and low-speed connection. Further details for each function are 
described as follows.  
 

3.6.1 Functions for High-Speed Connection 

unsigned int cal_strlen(unsigned int num) 
Parameters num: Integer input to calculate the string length 

Return value ret: The length of the string for displaying 
Description Calculate the length of the string required to display this value in integer 

style, and return the result as the function’s return value. 

 

void check_cmd_cpl(unsinged int session, unsigned int* status) 

Parameters session: The session number 
status: Returned value to indicate the completion status of command. 
0: Processing, 1: Failure, 2: Success. 

Return value None 
Description Decode the read value from the TOE_INT_INTREG register to track the 

command completion of a specific session, defined by the ‘session’ 
parameter. If the completion flag is detected, set TOE_CCS0_INTREG 
to clear the completion flag, and decode the completion status as 
success or failure. Finally, return the current status to the ‘status’ 
parameter. 

 

void check_conon(unsigned int session, unsigned int* status) 

Parameters session: The session number 
status: Returned value to indicate the connection status. 
0: Connection OFF, 1: Connection ON. 

Return value None 
Description Read the value from the TOE_CON_INTREG register for the specific 

session defined by the ‘session’ parameter, and return the result to the 
‘status’ parameter. 

 

void check_ethlink(unsigned int* status) 
Parameters status: Returned value to indicate the ethernet status. 

0: Ethernet link down, 1: Ethernet link up. 

Return value None 
Description Read Ethernet MAC link status from EMAC_STS_INTREG, and return 

the result to the ‘status’ parameter. 

 

void deactivate_session(unsigned int* wait_conn_off, unsigned int* num_act_session) 

Parameters wait_conn_off: The flag to indicate that the active close is processing 
num_act_session: The number of active sessions 

Return value None 
Description Reset the ‘wait_conn_off’ parameter to indicate the completion of the 

connection close request and decrement the value of ‘num_act_session’ 
parameter. This function is called to clean up the parameters after the 
connection is terminated. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 51 

 

void init_conn(TEST_PARAM* testparam, unsigned int* num_act_sesssion, 
unsigned int* num_aop_session, unsigned int* cur_state) 

Parameters testparam: A set of test parameters input from the user, such as 
operation mode, connection mode, and maximum speed 
num_act_session: The number of active sessions 
num_aop_session: The number of sessions configured by active open 
cur_state: The current state machine value indicating the connection 
status 

Return value None 

Description This function sets up UserDataGen, UserDataVer, and connection 
establishment before proceeding with the data transfer during both the 
Half Duplex Test and the Full Duplex Test. 

 

void init_param(void) 
Parameters None 

Return value None 

Description Execute the ‘Reset parameters’ menu according to the description in 
section 3.2. This involves calling the ‘show_param’ and ‘input_param’ 
functions to display and retrieve parameters from the user, respectively. 

 

int input_param(void) 

Parameters None 

Return value 0: Valid input, -1: Invalid input 
Description Receive network parameters from the user, including the initialization 

mode, the last packet mode, the window update threshold, FPGA MAC 
address, FPGA IP address, FPGA port number, Target IP address, 
Target port number, and Target MAC address (only when using Fixed 
MAC mode). Each input is validated separately. If a parameter is valid, it 
will be updated; otherwise, it will remain unchanged. After receiving all 
parameters, call the ‘show_param’ function to display them. 

 

int input_test_param(unsigned int test_menu, TEST_PARAM* testparam,  
unsigned int* num_act_sesssion, unsigned int* num_aop_session) 
Parameters test_menu: The test menu for execution, which can be half-duplex or 

full-duplex 
testparam: A set of test parameters input from the user, such as 
operation mode, connection mode, and maximum speed 
num_act_session: The number of active sessions 
num_aop_session: The number of sessions configured by active open 

Return value 0: Valid input, -1: Invalid input 
Description Receive test parameters from the user, including operation mode, 

transfer size, packet size, data verification mode, maximum speed, and 
connection mode. If any input is invalid, the operation will be cancelled 
Upon completion of parameter validation, calculate the number of active 
sessions and the number of sessions configured by active open mode, 
and return the results to the ‘num_act_session’ and ‘num_aop_session’ 
parameters, respectively.  

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 52 

 

void show_cursize(TEST_PARAM* testparam, unsigned int* cur_state,  
unsigned long long* cur_txsize, unsigned long long* cur_rxsize) 

Parameters testparam: A set of test parameters input from the user, such as 
operation mode, connection mode, and maximum speed 
cur_state: The current state machine value indicating the connection 
status 
cur_txsize: The current amount of transmitted data, measured in bytes 
cur_rxsize: The current amount of received data, measured in bytes 

Return value None 

Description Read and display the connection status of all sessions. If the data is 
transferring, read the current amount of transmitted and received data 
from USRTX/RX_LENL/H_INTREG, and then display it on the console in 
Byte, Kbyte, or Mbyte units. 

 

void show_eth_status(void) 
Parameters None 

Return value None 

Description Read the current status of the Ethernet MAC from EMAC_STS_ 
INTREG, decode it, and display the status on the console. 

 

void show_param(void) 

Parameters None 

Return value None 
Description Execute the ‘Display parameters’ menu according to the description in 

section 3.1. 

 

void show_perf_header(unsigned int *test_mode) 

Parameters test_mode: The operation mode which can be No test (0), Send test (1), 
Receive test (2), or Full-duplex (3) 

Return value None 
Description When ‘test_mode’ parameter is not set to ‘No test’, display session 

number as the header of the current status table. 

 

void show_perf_line(unsigned int *test_mode) 

Parameters test_mode: The operation mode which can be No test (0), Send test (1), 
Receive test (2), or Full-duplex (3) 

Return value None 

Description When ‘test_mode’ parameters is not set to ‘No test’, display a straight 
line to be a part of the current status table. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 53 

 

void show_port_info(TEST_PARAM* testparam, unsigned int *cur_state) 

Parameters testparam: A set of test parameters input from the user, such as 
operation mode, connection mode, and maximum speed 
cur_state: The current state machine value indicating the connection 
status 

Return value None 

Description Scan the active session by reading the ‘testparam’ parameter. If the 
connection status is ON, display its information, including the Target port 
number, MSS value, and the window scaling factor of the Target by 
reading TOE_TCS0L/H_INTREG. 

 

void show_reset_int_status(unsigned int session) 

Parameters session: The session number 
Return value None 

Description Read the reset interrupt status of a specific session, defined by the 
‘session’ parameter, from TOE_RSS0_INTREG, decode it, and display 
the message. 

 

void show_result(TEST_PARAM* testparam, unsigned int* cur_state, 
unsigned long long* cur_txsize, unsigned long long* cur_rxsize,  
unsigned int *recv_size_err, unsigned int *recv_ver_err) 

Parameters testparam: A set of test parameters input from the user, such as 
operation mode, connection mode, and maximum speed 
cur_state: The current state machine value indicating the connection 
status 
cur_txsize: The current amount of transmitted data, measured in bytes 
cur_rxsize: The current amount of received data, measured in bytes 
recv_size_err: An error flag asserted by the mismatch in receive size 
recv_ver_err: An error flag asserted by the mismatch in received data 

Return value None 
Description Check error conditions, including the connection error, the receive size 

error, and the received data error, by reading the ‘cur_state’, 
‘recv_size_err ’, and ‘recv_ver_err ’ parameters, respectively. Display the 
corresponding error message for each error flag. After that, read 
USRTX/RX_LENL/H_INTREG to display the total amount of transmitted 
data and received data, respectively. Also, read the timer value to 
calculate the total time usage for processing and display the result in 
usec, msec, or sec. Finally, calculate and display transfer performance in 
MB/s. 

 

void show_retry_int_status(void) 

Parameters None 

Return value None 
Description Display retry interrupt status of session which detect retry interrupt every 

4 times from read value of TOE_RSS_INTREG. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 54 

 

void show_space_line(unsigned int *test_mode) 

Parameters test_mode: pointer of array that stores test_mode which can be set to No 
test (0), Send test (1), Receive test (2), or Full-duplex (3) 

Return value None 

Description When test mode is not no test (0), display blank space line to be a part of 
the current status table. 

 

int toe_full_test(void) 
Parameters None 

Return value 0: The operation is successful 
-1: Receive invalid input or error is found 

Description Execute the ‘Full duplex test’ menu according to the description in 
section 3.4.  

 

int toe_half_test(void) 
Parameters None 

Return value 0: The operation is successful 
-1: Receive invalid input or error is found 

Description Execute the ‘Half duplex test’ menu according to the description in 
section 3.3. 

 

void update_cursize(unsigned long long* cur_txsize, unsigned long long* cur_rxsize) 

Parameters cur_txsize: The current amount of transmitted data, measured in bytes 
cur_rxsize: The current amount of received data, measured in bytes 

Return value None 
Description Read USRTX_LENL/H_INTREG and USRRX_LENL/H_INTREG to 

update the current amount of transmitted data and received data to 
‘cur_txsize’ and ‘cur_rxsize’ parameters, respectively. 

 

void update_curstat(unsinged int* disp_1st_stat, TEST_PARAM* testparam,  
unsigned int* cur_state, unsigned long long* cur_txsize, unsigned long long* cur_rxsize,  
unsigned long long* prv_txsize, unsigned long long* prv_rxsize) 

Parameters disp_1st_stat: The flag to indicate the first line for displaying to show the 
connection status 
Testparam: A set of test parameters input from the user, such as 
operation mode, connection mode, and maximum speed 
cur_state: The current state machine value indicating the connection 
status 
cur_txsize: The current amount of transmitted data, measured in bytes 
cur_rxsize: The current amount of received data, measured in bytes 
prv_txsize: The latest value of cur_txsize before updating 
prv_rxsize: The latest value of cur_rxsize before updating 

Return value None 
Description Check the current state machine and the current transfer size of both 

directions, then displays all information in table format by calling the 
‘show_port_info’ and ‘show_cursize’ functions. If additional data is 
transferred, the interrupt count will be cleared. Finally, check if there is an 
interrupt asserted in the system. If yes, call ‘show_retry_int_status’ 
function to decode and display interrupt status. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 55 

 

void wait_ethlink(void) 

Parameters None 

Return value None 
Description Read EMAC_STS_INTREG[0] to monitor the Ethernet link status. The 

function is completed when the Ethernet connection is established. 
 
3.6.2 Functions for Low-Speed Connection 
 

unsigned int cal_checksum (unsigned int byte_len, unsigned char *buf) 

Parameters byte_len: The data length in bytes 
buf: Pointer to the first byte data position 

Return value 16-bit checksum of the data 

Description Calculate the 16-bit checksum value of the data. The user must prepare 
the array of data in character data type and determine the data length. 
Then call the function using data length and the character pointer to the 
first data in the array. The return value is the calculated 16-bit checksum 
value of the data.  

 

void init_filter (void) 
Parameters None 

Return value None 

Description Disable UserRxEMAC by setting RXEMAC_CMD_INTREG to block the 
received packet. Next, Write RXEMAC_HDVAL_ADDR and RXEMAC_ 
HDEN_ADDR for filtering an ICMP Echo request packet, as shown in the 
blue text of Figure 3-3.  

 

void ping_test (void) 

Parameters None 
Return value None 

Description Execute the ‘Ping reply test’ menu according to the description in section 
3.5. 

 

unsigned int prepare_rxbuffer (void) 

Parameters None 
Return value The length of received packet in byte unit. 

Return 0 if there is no received packet. 

Description Read RXEMAC_FF_INTREG to check if there are any received data 
packets in the low-speed connection. If a new received packet is 
detected, read the packet length from RxMacFf by reading RXEMAC_ 
FF_INTREG, and flush this read data from RxMacFf by writing 
RXEMAC_CMD_INTREG[1]=1b. Next, copy data from RxRAM inside 
UserRxEMAC (RXRAM_BASE_ADDR) to the character array variable. 
Finally, return the read length in byte units.  

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 56 

 

4 Test Software on PC 
 
4.1 ‘tcpdatatest’ application 
 

 
Figure 4-1 “tcpdatatest” application usage 

 
The ‘tcpdatatest’ application is executed to send or receive TCP payload data on a PC. It 
requires six mandatory parameters and one optional parameter. It is important to ensure that 
the parameter inputs match those set on the FPGA. The details of each parameter are as 
follows. 

 
Mandatory parameters 
1) Mode  : c – The PC runs in Client mode and the FPGA runs in Server mode  

  s – The PC runs in Server mode and the FPGA runs in Client mode  
2) Dir  : t – transmit mode (the PC sends data to the FPGA) 

  r – receive mode (the PC receives data from the FPGA) 
3) ServerIP : The IP address of the FPGA when the PC runs in Client mode  

  (Default is 192.168.100.42)  
4) ServerPort : The port number of the FPGA when the PC runs in Client mode  

  (Default is 60000) 
5) ByteLen : The total size of data to be transferred in bytes. This parameter is used  

  only in transmit mode and is ignored in receive mode. In transmit mode, 
  the ByteLen value must match the total transfer size set in the receive 
  data test menu of the FPGA. In receive mode, the application is closed 
  when the connection is terminated. 

6) Pattern  : 0 – Generate dummy data in transmit mode and disable data verification 
  in receive mode.  
  1 – Generate incremental data in transmit mode and enable data        
  verification in receive mode. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 57 

 
Optional parameter 
1) Window Scale : Indicate the size of the allocated buffer for the TCP socket on the PC. 

It is also applied for TCP Window scaling feature. The valid range is 1-5. 
1 – Allocated buffer size of 64 KB 
2 – Allocated buffer size of 128 KB 
3 – Allocated buffer size of 256 KB 
4 – Allocated buffer size of 512 KB 
5 – Allocated buffer size of 1 MB 

Note: Window Scale parameter is optional. If the user does not provide this parameter, it is 
automatically set to 1.  
 
The sequence of the test application when running in transmit mode and receive mode is 
described as follows. 
 
Transmit mode 
1) Obtain and verify the user’s input parameters, excluding the optional one. 
2) Create a socket, set the socket options, and specify the socket memory size. 
3) Establish a new connection using the server IP address and server port number. 
4) Allocate 2 MB memory for the send buffer.  
5) Generate the incremental test pattern to the send buffer if the dummy pattern is not 

selected.  
6) Send the data out and read the total amount of sent data through the socket function. 
7) Calculate the remaining transfer size. 
8) Print the total transfer size every second.  
9) Repeat steps 5) – 8) until the remaining transfer size is 0. 
10) Calculate the total performance and print the result on the console. 
11) Close the socket and free the memory. 
 
Receive mode 
1) Follow steps 1) – 3) of the Transmit data mode. 
2) Allocate 2 MB memory for the receive buffer.  
3) Wait for the data to be stored in the receive buffer and read it, and increase the total 

amount of received data.  
4) Verify the received data using the incremental pattern if data verification is enabled. 

Otherwise, skip this step. Print an error message if the data is incorrect.  
5) Print the total amount of received data every second.  
6) Repeat steps 3) – 5) until the connection is closed by the other device. 
7) Calculate the total performance and print the result on the console. 
8) Close the socket and free the memory. 

 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 58 

 
4.2 ‘tcp_client_txrx_single’ application 

 

 
Figure 4-2 “tcp_client_txrx_single” application usage 

 
The “tcp_client_txrx_single” application allows the PC to send and receive TCP data 
through Ethernet using the same port number simultaneously. It operates exclusively in 
Client mode and necessitates the input of server parameters (network parameters set to this 
hardware) by the user. The application employs five parameters, outlined as follows. 
 
Mandatory parameters 
1) ServerIP : The IP address of the FPGA 
2) ServerPort : The port number of the FPGA 
3) ByteLen : The total transfer size in byte units, which is the total amount of data 

  for both transfer directions. This value must match the transfer size set 
  on the FPGA for running a full-duplex test. 

4) Pattern  : 0 – Generate dummy data for the sending function and disable data 
  verification for the receiving function. This mode is used to assess the  
  optimal performance of full-duplex transfer. 
  1 – Generate incremental data for the sending function and enable data  
  verification for the receiving function. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 59 

 
Optional parameter 
1) Window Scale : Indicate the size of the allocated buffer for the TCP socket on the PC. 

It is also applied for TCP Window scaling feature. The valid range is 1-5. 
1 – Allocated buffer size of 64 KB 
2 – Allocated buffer size of 128 KB 
3 – Allocated buffer size of 256 KB 
4 – Allocated buffer size of 512 KB 
5 – Allocated buffer size of 1 MB 

Note: Window Scale parameter is optional. If the user does not provide this parameter, it is 
automatically set to 1. 

 
The sequence of the test application is outlined below. 
1) Obtain and verify the user’s input parameters, excluding the optional one. 
2) Allocate 2 MB memory for the send and receive buffers separately. 
3) Create the socket, set socket options, and specify the socket memory size. 
4) Establish a new connection using the server IP address and server port number. 
5) If the test pattern is enabled, generate the incremental test pattern in the send buffer; 

otherwise, proceed with dummy data. 
6) If the send function is not ready to operate, skip this step; otherwise, proceed with the 

following sub-steps.  
i) If the test pattern is enabled, generate the incremental test pattern in the send buffer; 

otherwise, skip this step for dummy data. 
ii) Send the data out and read the amount of sent data through the socket function. 
iii) Calculate the remaining send size. 

7) If the receive function is not ready to operate, skip this step; otherwise, proceed with the 
following sub-steps. 
i) Read the data from the receive buffer and increase the total amount of received data. 
ii) If the test pattern is enabled, verify the received data using the incremental pattern, 

and print an error message if verification fails; otherwise, skip this step.  
8) Print the total amount of transmitted data and received data every second. 
9) Repeat steps 5) – 8) until the total amount of transmitted and received data equals 

ByteLen, as set by the user. 
10) Calculate the performance and print the result on the console.  
11) Close the socket. 



dg_toe100gadvip_refdesign_xilinx.doc  

9-Feb-24 Page 60 

 

5 Revision History  
 
Revision Date Description 

1.0 9-Feb-24 Initial version release 
 


