
dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 1 

 

TOE1G-IP Two-Port Demo Reference Design Manual 
Rev1.3  2-Sep-16 

 

1 Introduction 
 Two-port demo implements more than one TCP connection by using TOE1G-IP and CPU 
firmware. In general system, at least two TCP ports are required, one for data transfer (fast 
connection) and another for control signal (slow connection). In the demo, fast connection is 
implemented by TOE1G-IP and slow connection is implemented by CPU firmware and simple 
logic.  
 

 
Figure 1 Two-port Hardware Structure 

 
 User can select test operation through Serial console. There are three test modes in the demo, 
i.e. receive data through fast connection, send data through fast connection, and receive/send 
data through slow connection. For fast connection test, special test application provided by 
Design Gateway is used to run on TestPC. For slow connection test, ping command is used to test. 
Ping command uses Echo reply and request type of ICMP protocol to send the request and wait 
response. 
 
 Otherwise, FTP server demo is also developed by using same hardware design, but modifying 
only CPU firmware. So, by using two-port hardware system, user can develop many applications 
by modifying only the firmware. More details about hardware are described in the next topic. 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 2 

 

2 Hardware Structure 
 As shown in Figure 2, the hardware of two port demo is split into two blocks, i.e. AXITOE1G for 
fast connection and AXIEMAC for slow connection. The hardware can separate the packet from 
EMAC by using different port number. Port number of each connection is programmed by CPU 
firmware through register access. 
 

 
Figure 2 Two-port Demo Hardware Block Diagram 

 
AsyncAXIIF module is used to convert AXI4-Lite interface in AXI clock domain to be register 
interface in another clock domain. 
 
For fast connection, data is burst transferred with DDR3 memory directly through AXI4 bus 
interface which is suitable for high bandwidth transfer. DMA engine is designed within AXIIF 
module to burst transfer from/to DDR3 to/from Ff32to8, depending on transfer direction. 
AsyncAXIIF is mapped to two register areas, i.e. TOE1GIP and TOE1GRegIF, so CPU can 
access control/status signal of TOE1GIP and AXIIF through AXI4-Lite bus. 
 
For slow connection, AsyncAXIIF module is mapped to three register areas, i.e. TxEMAC, 
RxEMAC, and RegIF.  Hardware is designed to bypass Ethernet packet between EMAC and CPU 
by using RAM to be data buffer. For transmit side, TxEMAC is designed to dump data from RAM 
to EMAC. For received side, it includes packet header filtering which can be programmed by CPU. 
So, only the packet which has valid header will be stored to the RAM for CPU processing. Since 
the packet of slow connection is Ethernet packet without adding/removing TCP/IP header, CPU 
firmware needs to implement TCP/IP stack for constructing and decoding TCP packet. Slow 
connection does not require high bandwidth, so AXI4-Lite bus is used to access control register 
and RAM. RegI/F stores all control/status signals for this connection.  



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 3 

 
2.1 AXITOE1G 
 

 
Figure 3 AXITOE1G Block Diagram 

 
AXITOE1G module includes TOE1G-IP to handle TCP/IP packet for fast connection. For 
high-performance and simple design, DMA engine within AXIIF fixes burst transfer to be 512-byte 
by using 128-beatx32-bit. Since total data length setting from CPU may not align 512-byte, the 
logic to remove dummy data for transmit side and to add dummy data for received side are 
designed between FIFO and TOE1G-IP module. Ff32to8 and Ff8to32 are designed to be data 
buffer and also used for converting data bus size between 32-bit of AXI4 bus and 8-bit of 
TOE1G-IP interface. To support different clock domain between AXI4 and TOE1G-IP, both FIFOs 
are asynchronous type. The details of sub-module inside AXITOE1G are described as follows. 
 
2.1.1 TOE1G-IP 

The IP includes simple TCP/IP stack, and TCP offload engine for both TX and RX side to 
calculate checksum of TCP packet. More details about TOE1G-IP have been described in 
TOE1G-IP datasheet. 

 
2.1.2 AXIIF 

DMA engine within AXIIF is designed by using state machine. Since AXIr interface (AXI4 -> 
TxFIFO) and AXIw interface (RxFIFO->AXI4) can run independently, two state machines 
are designed to control each interface independently. 
 
For transmit side (AXIr interface), after receiving start signal from CPU, state machine will 
check remain space in Ff32to8 which must be more than 512-byte. If FIFO space area is 
enough, 512-byte read request will be generated to AXI4 bus. After that, AXI4 bus returns 
512-byte data to store to Ff32to8. State machine repeats to check FIFO status step until 
waiting end of each 512-byte data transfer step. Repeat step will be stopped when 
complete total size transfer. 
 
For received side (AXIw interface), after receiving start signal from CPU, state machine will 
wait until at least 512-byte data is available in Ff8to32. Next, state machine generates the 
write request to AXI4 bus. After AXI4 returns request acknowledgement, 512-byte data will 
be burst transferred from Ff8to32 to AXI4. Similar to AXIr, state machine runs in the loop 
from FIFO status checking to data sending until complete total request size.  



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 4 

 
2.1.3 AsyncAXIIF 

This module is used to convert AXI4-Lite I/F to be register interface which both run in 
different clock domain. Memory map of register interface is mapped to TOE1G-IP and 
other control/status signals within AXITOE1G module. More details are shown in Table 1. 
 

2.1.4 TOE1GRegIF 
This module is used to decode address of control/status signals for DMA engine and data 
adder/remover. Start signal and transfer length for both directions are generated in both 
clock domains (AXI clock for AXIIF operation, and TOE1GIP clock for data remover/adder 
logic).  
 

Address Register Name  Description  

Rd/Wr Label in 

“ftp_demo.c/twoport.c” 

BA+0x80000 – BA+0x8002B: TOE1G-IP Register Area 

BA+0x80000 RST Reg of TOE1G-IP Please see more details in “Table 2: Register map Definition” of TOE1G-IP 

datasheet. Address of the demo is byte unit while register address in 

TOE1G-IP datasheet is 32-bit unit. 

Wr (TOE1G_RST_REG) 

BA+0x80004 CMD Reg of TOE1G-IP 

Wr/Rd (TOE1G_CMD_REG) 

BA+0x80008 SML Reg of TOE1G-IP 

Wr (TOE1G_SML_REG) 

BA+0x8000C SMH Reg of TOE1G-IP 

Wr (TOE1G_SMH_REG) 

BA+0x80010 DIP Reg of TOE1G-IP 

Wr (TOE1G_DIP_REG) 

BA+0x80014 SIP Reg of TOE1G-IP 

Wr (TOE1G_SIP_REG) 

BA+0x80018 DPN Reg of TOE1G-IP 

Wr (TOE1G_DPN_REG) 

BA+0x8001C SPN Reg of TOE1G-IP 

Wr (TOE1G_SPN_REG) 

BA+0x80020 TDL Reg of TOE1G-IP 

Wr/Rd (TOE1G_TDL_REG) 

BA+0x80024 TMO Reg of TOE1G-IP 

Wr/Rd (TOE1G_TMO_REG) 

BA+0x80028 PKL Reg of TOE1G-IP 

Wr (TOE1G_PKL_REG) 

 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 5 

 
Address Register Name  Description  

Rd/Wr Label in 

“ftp_demo.c/twoport.c” 

BA+0x80100 – BA+0x8011B: Other control/status of AXITOE1G 

BA+0x80100 Start Transmit DDR Address Wr [31:0] – Start DDR Address for transmit from DDR to TOE1G-IP  

(Must be aligned to 32-bit or bit[1:0] must be equal to “00”).  

Rd [31:0] – Current DDR Address for transmit from DDR to TOE1G-IP 

Wr/Rd (TX_DDR_ADDR) 

BA+0x80104 Transmit Length Wr [31:0] – Total transmit data size from DDR to TOE1G-IP in byte unit 

Wr (TX_DDR_LEN) 

BA+0x80108 Start Receive DDR Address Wr [31:0] – Start DDR Address for receive from TOE1G-IP to DDR 

(Must be aligned to 32-bit or bit[1:0] must be equal to “00”). 

Rd [31:0] – Current DDR Address for receive from TOE1G-IP to DDR 

Wr/Rd (RX_DDR_ADDR) 

BA+0x8010C Receive Length Wr [31:0] – Total receive data size from TOE1G-IP to DDR in byte unit 

Wr (RX_DDR_LEN) 

BA+0x80110 AXITOE1G Control Wr [0] – Start transmit data from DDR to TOE1G-IP. Auto clear. 

      [1] – Start to receive data from TOE1G-IP to DDR. Auto clear. 

Rd [0] – Busy flag from DDR -> TOE1GIP process 

      [1] – Busy flag from TOE1GIP -> DDR process 

Wr/Rd (AXITOE1G_CTRL) 

BA+0x80114 ConnOn of TOE1G-IP Rd [0] – Mapped to ConnOn signal output from TOE1G-IP to show port 

status Rd CONNON_REG 

BA+0x80118 FIFO Read Count of 

TOE1G-IP 

Rd [15:0] – Mapped to TCPRxFfRdCnt signal output from TOE1G-IP to show 

total number of received data in byte unit  

Rd FFRDCNT_REG 

Table 1 Register Map in TOE1GRegIF 
 
 Note: BA is base address of AXI4-Lite interface which is different value on each FPGA platform. 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 6 

2.2 AXIEMAC 

 
Figure 4 AXIEMAC Block Diagram 

 
The slow connection is designed to transfer control/status information which is small packet and 
does not sent more frequently. The memory map of AXIEMAC is split into three areas, i.e. RAM of 
TxEMAC (TxRAM), RAM of RxEMAC (RxRAM), and general register as shown in Table 2. 
TxRAM and RxRAM store Ethernet packet which is transferred between CPU and EMAC.  
 

Address Register Name  Description 

Rd/Wr (Label in the “ftp_demo.c” ) 

BA+0x00000- 

BA+0x00FFF 

RAM in TxEMAC RAM to store transmit Ethernet data of control connection 

Wr (TXRAM) 

BA+0x10000- 

BA+0x10FFF 

RAM in RxEMAC RAM to store received Ethernet data of control connection 

Rd (RXRAM) 

BA+0x20000 Destination MAC address 

[31:0] 

Lower 32-bit MAC address value for FPGA 

Wr (DSTMACL_REG) 

BA+0x20004 Destination MAC address 

[47:32] 

Upper 16-bit MAC address value for FPGA 

Wr (DSTMACH_REG) 

BA+0x20008 Destination IP address 32-bit IP address value for FPGA 

Wr (DSTIP_REG) 

BA+0x20010 Rx Pattern enable Enable to compare header of received packet (‘1’: enable, ‘0’: disable) 

[0] – Enable to compare byte23 with RXPATT23_REG[7:0] 

[1] – Enable to compare byte36 with RXPATT32_REG[7:0] 

[2] – Enable to compare byte37 with RXPATT32_REG[15:8] 

Wr (RXPATTEN_REG) 

BA+0x20014 Rx Pattern Byte 23 [7:0] Pattern to compare with byte23 of received packet 

Wr (RXPATT23_REG) 

BA+0x20018 Rx Pattern Byte 34 [15:0] Pattern to compare with byte36 – byte 37 of received packet 

Wr (RXPATT36_REG) 

BA+0x20100 Start TXRAM address Start address of TXRAM to transmit Ethernet data 

Wr (TXADDR_REG) 

BA+0x20104 Transmit length Wr: Transfer length of transmit Ethernet data in byte unit. Valid form 2-4095. 

Rd: Remain transmit length in byte unit. Polling this register=0 for monitoring 

that data can transmit completely. 

Wr/Rd (TXLEN_REG) 

BA+0x20200 Received RXRAM address Current end address of received packet. Compare this value with previous 

value to calculate total received data size in byte unit. Rd (RXADDR_REG) 

Table 2 Memory Map of RegIF within AXIEMAC module 
 
Note: BA is base address of AXI4-Lite interface which is different value on each FPGA platform. 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 7 

 
2.2.1 TxEMAC 

Similar to Ff32to8 inside AXITOE1G, TxRAM (RAM1kx32to8) is used to be data buffer and 
convert 32-bit data from AXI4-Lite to 8-bit data. Small data transmitter is designed to read 
data from RAM and arrange into the packet for sending to EMAC. The value of packet size 
and start RAM address for 1st data are programmed by CPU through RegIF module. Also, 
CPU can monitor remaining transfer size to check transfer progress through register 
access.  
 
RAM1kx32to8 is simple dual-port RAM. Write interface is 32-bit bus size and mapped to 
address = BA – (BA+0xFFF) on CPU system. Read interface is 8-bit bus size and 
connected to internal logic within TxEMAC module. 

 
2.2.2 RxEMAC 

Similar to Ff8to32 inside AXITOE1G, RxRAM (RAM4kx8to32) is used to be data buffer and 
convert 8-bit data from EMAC I/F to 32-bit data for CPU. The logic includes header packet 
filtering feature to filter only valid packet for CPU. The header pattern for filtering function 
consists of the constant value inside the logic and the value which can be programmed by 
CPU.  
 
The constant value inside the logic is the IP version and IP header length. IP version must 
be IPv4 and IP header length must be 20 bytes. Programmable value from CPU is 
Destination MAC address, Destination IP address, Protocol value, and Destination port 
number. Protocol value and destination port number can be selected to enable/disable 
pattern verification while other values are designed to enable mode only. 
 
To support ping command, the filter header is programmed to be following value. 
- Destination MAC address = broadcast ID or set value from CPU 
- Destination IP address of = set value from CPU 
- Protocol = ICMP (RXPATT23_REG=0x01, RXPATTEN_REG[0]=’1’) 
- Destination port number = Disable (RXPATTEN_REG[2:1]=”00”) 

From above setting, only ICMP packet will be stored to RxRAM. 
 
RAM4kx8to32 is simple dual-port RAM. Write interface is 8-bit bus size and connected to 
EMAC I/F. Read interface is 32-bit bus size and mapped to address = (BA+0x10000) – 
(BA+0x10FFF) on CPU system.  
 
Write address of RxRAM is auto-increment by internal logic to store received packet 
continuously, so CPU must remember current read address of the last packet to be start 
read address of next valid packet. By comparing the write address with read address of 
RAM, CPU can calculate the size of received packet. 
 

2.2.3 RegIF 
This module is designed to decode address and data for controlling TxEMAC and 
RxEMAC operation and monitoring the current status.  

 
 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 8 

 

3 CPU Firmware 
 Three test operations are designed in CPU Firmware, i.e. 
(1) Transmit data test through fast connection 
(2) Receive data test through fast connection 
(3) Ping command test through slow connection 
 
User can select the operation through Serial console. So, the sequence of CPU operation for 
two-port demos is follows. 
(1) Initialize network parameters such as MAC address, IP address, and Port number to 

TOE1G-IP and AXIEMAC module.  
(2) Wait until TOE1G-IP initialization complete. 
(3) Receive all user inputs to start the test operation. 
(4) Set the parameter from user to the hardware and start operation. 
(5) Since FPGA board runs in Server mode, the port will be opened by test application on TestPC 

after running the application. 
(6) Run the test until complete. 
 
For fast connection, the upper 512 MB area is used to be data buffer for transmit/receive test. So, 
if transfer length value from user is more than 512 MB, data verification feature will not be 
available. Maximum transfer size of fast connection test is 4 GByte. 
 

 
Figure 5 DDR3 Memory Map 

  
 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 9 

 
3.1 Ping Command Test 
Ping command can be used to test for both transmit and received side on slow connection. IP 
Datagram of ICMP protocol for ping command is shown in Figure 6.  
 

Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31

Version/IHL Type of service Length

TTL Protocol Checksum

Source IP address

Destination IP address

Type of message Code Header Checksum

Identifier Sequence Number

Data

IP Header

(20 Bytes)

ICMP Header

(8 Bytes)

 
Figure 6 IP Datagram for ICMP 

 
For ping command test, TestPC sends Echo request (Type=8) to FPGA, and FPGA generates 
Echo reply (Type=0) back to TestPC. All data of Echo reply are copied from Echo request. More 
information about ping command can be checked from below website. 
http://en.wikipedia.org/wiki/Ping_(networking_utility) 
 
The sequence of firmware is follows. 

1) Polling RXADDR_REG to monitor that received data available in RXRAM. 
2) Dump received packet to received temp buffer on firmware. Only 256-byte size is reserved 

by defining “TMPBUF_SIZE” parameter value. 
3) Calculate IP and ICMP checksum to check that packet is valid. Return error when 

checksum is not correct. 
4) Prepare Echo reply packet in TxRAM. Data is copied from the received packet, but IP and 

ICMP checksum must be re-calculated. 
5) Set register to start data sending by AXIEMAC module which is slow connection. 

 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 10 

 
3.2 Receive Data Test 
In this test, test data will be transferred from TestPC by using “send_tcp_client” application to 
FPGA through fast connection. 512 MB area of DDR3 is used to be data buffer, so data 
verification function of the firmware will be disabled when total transfer length is more than 512 
MB area. The sequence of firmware is follows. 

1) Wait the connection on by monitoring CONNON_REG. CONNON_REG will be set after 
TestPC runs “send_tcp_client” application. 

2) Wait until data is available in received FIFO of TOE1G-IP.  
3) Calculate DDR3 start address and transfer size, and set the result to AXITOE1G register 

with start transfer flag. Then, data will be dump from TOE1G-IP to DDR3. 
4) Wait until complete data transfer. 
5) Step 2) – 4) runs in the loop until the connection is closed by TestPC. 
6) If total data length is not more than 512 MB, the menu to start data verification will be 

displayed. 
 
3.3 Transmit Data Test 
In this test, test data will be transferred from FPGA to TestPC. “recv_tcp_client_single” application 
is used to run on TestPC to receive/verify data from FPGA. Data can be verified on TestPC only 
when transfer length is not more than 512 MB, same as Receive Data Test. The sequence of 
firmware is follows. 

1) Fill test data to DDR3. 
2) Set transfer size and packet length which are user inputs to TOE1G-IP register. Then, set 

register to start TOE1G-IP operation. 
3) If total transfer size is more than 512 MB, the transfer size of AXIIF will be split into more 

than one loop to avoid DDR3 address overlap. Transfer size and DDR3 start address will 
be re-calculated for each loop. 

4) Wait until complete all data transfer, and then set TOE1G-IP register to close connection. 
5) Wait until the connection is closed. 



dg_toe1gip_2port_refdesign_xilinx_en.doc  

2-Sep-16 Page 11 

 

4 Necessary consideration 
 For simple design, fast connection and slow connection test cannot operate at the same time. But 
user can modify the firmware to support running fast and slow connection at the same time. 
Please see the example design which run fast and slow connection together from FTP Server 
demo. 
 

5 Revision History  
 

Revision Date Description 

1.0 9-Jan-15 Initial version release 

1.1 28-Oct-15 Correct Table1 description 

1.2 29-Dec-15 Add asynchronous clock support 

1.3 2-Sep-16 IP core product renamed from TOE2-IP to TOE1G-IP 

 
 


