
dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 1

TOE1G-IP Two-Port Demo Reference Design Manual
Rev1.4 8-Aug-23

1 Introduction ... 2
2 Hardware Structure ... 3

2.1 AXITOE... 5
2.1.1 TOE1G-IP .. 6
2.1.2 AXIIF .. 6
2.1.3 TOERegIF .. 8

2.2 AXIEMAC ... 10

2.2.1 TxEMAC ... 10

2.2.2 RxEMAC .. 11

2.2.3 RegIF ... 12
2.3 AsyncAXIReg.. 13

3 CPU Firmware .. 15
3.1 Receive Data Test ... 16

3.2 Send Data Test ... 17
3.3 Ping Command Test ... 18

4 Necessary consideration .. 19
5 Revision History .. 19

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 2

1 Introduction
The Two-port reference design is implemented to support multiple TCP sessions through the
cooperation of TOE1GIP and the CPU. The TCP sessions are categorized into two types: fast
connections and slow connections. Each TOE1G-IP can handle only one fast connection, while
the CPU handles the remaining TCP sessions which are slow connections.

This reference design demonstrates the usage of two TCP sessions for transferring two data
types. The fast connection is applied for data transfer, while the slow connection is utilized to
transfer control and status information.

Figure 1-1 Two-port Hardware Structure

By incorporating the CPU system into the design, the Serial console is available to allow the user
to set the test parameters and monitor the test status. Design Gateway provides two demo
systems that share the same hardware but use different CPU firmware: the Two-port demo and
the FTP server demo.

The Two-port demo offers three test menus for basic test operations: Receive data test via fast
connection (TOE1G-IP), Send data test via fast connection (TOE1G-IP), and Data transfer test
via slow connection (CPU). Design Gateway also provides test applications running on the PC,
enabling users to send or receive TCP data with TOE1G-IP when they select the fast connection
test. The slow connection can be tested using the Ping command. As a result, the CPU firmware
of the Two-port demo implements two types of ICMP protocol: Echo reply and Echo request to
support the Ping command.

The FTP server demo is developed using two TCP sessions. The Fast connection handles data
transfer while the Slow connection is responsible for transferring FTP Commands and FTP
Replies. For more information about the FTP server demo, please visit our website.
https://dgway.com/TOE-IP_X_E.html

The following sections will provide detailed descriptions of the hardware and the CPU firmware
implemented in the Two-port demo system.

https://dgway.com/TOE-IP_X_E.html

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 3

2 Hardware Structure
To support multiple sessions which are handled by different logics, the user interface of EMAC
module is connected to two hardware sets: AXITOE (Fast connection) and AXIEMAC (Slow
connection), as shown in Figure 2-1.

Figure 2-1 Two-port demo hardware block diagram

The CPU system utilizes the AXI4-Lite bus interface to connect additional I/O modules. Within this
hardware system, two additional I/O interfaces are exported from the CPU system to connect with
AXITOE and AXIEMAC. To facilitate this connection and accommodate different clock domains
between the CPU system and the connected hardware module, an AsyncAXIReg module serves
as the interface module between the CPU system via the AXI4-Lite bus and the hardware module
via the Register interface.

Furthermore, the CPU system includes a DDR controller to enable data transfer with DDR
memory. The DDR controller employs the AXI4 bus interface to connect to both the CPU and the
hardware module. In this demo system, the DDR memory is utilized to store the data of the fast
connection, making it accessible by the CPU or the AXITOE module.

The AXITOE module contains the TOE1G-IP, which processes one TCP session at the peak
bandwidth of Gigabit Ethernet. The CPU assigns network parameters, including the port number
of TOE1G-IP to handle the fast connection via the Register I/F. The data bus of TOE1G-IP is an
8-bit interface, which requires the user of two FIFOs (Ff32to8 and Ff8to32) to convert the 8-bit
data stream at TOE1G-IP to a 32-bit data stream at the AXI4 interface and vice versa. An AXIIF
module serves as the DMA engine responsible for data transfer between TOE1G-IP and DDR
memory through Ff32to8 and Ff8to32. The CPU system also assigns DMA engine parameters,
such as the data transfer size of the AXIIF module, through the TOERegIF module.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 4

The AXIEMAC module includes the TxEMAC and RxEMAC modules, serving as the hardware
engine for transferring Ethernet packets using the Ethernet MAC (EMAC). To transmit packets,
the CPU prepares the transmitted packet data directly to TxRAM via Register I/F and sends a
request to TxEMAC to initiate the transfer of the packet from TxRAM to EMAC. On the other hand,
the received packet data, filtered by RxEMAC, is stored in RxRAM. The CPU can directly access
RxRAM via the Register I/F to decode the received Ethernet packet. The parameters of both
TxEMAC and RxEMAC can be configured by the CPU via the RegIF module.

There are two sources for transmitting Ethernet packet to EMAC via the TxMAC I/F, so a
multiplexer (Mux 2-to-1) is employed to select the transmitted packet from one of them.
Conversely, the RxMAC I/F for transferring received Ethernet packets from EMAC is directly
mapped to both TOE1G-IP and RxEMAC modules. Both the TOE1G-IP and RxEMAC modules
include the filtering logic to process only the desired TCP session, which is set by the CPU. The
CPU assigns different port numbers to TOE1G-IP and RxEMAC modules to enable them to
process Ethernet packets from different TCP sessions.

For detailed information of each hardware module, please refer to the following sections.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 5

2.1 AXITOE

Figure 2-2 AXITOE block diagram

To efficiently handle the TCP/IP packets of the fast connection, additional logics are
designed to cooperate with TOE1G-IP and the CPU system. The top module of AXITOE
includes small logics with specific functions, including RegSW, Dummy Data Remover, and
Dummy Data Adder.

The RegSW logic is responsible for selecting one of the two Register I/Fs (TOE1G-IP or
TOERegIF) for operation when the CPU sends requests for write or read access at the
AXITOE module. It decodes the address value to select the appropriate destination.

The Dummy Data Remover and Adder modules have been specifically designed to handle
the removal and addition of dummy data to the data stream. The AXIIF functions as the DMA
engine, and it is designed to fix the burst transfer size to be 512 bytes. When the total
transfer size of data is not aligned to 512 bytes, dummy data is included. The Dummy Data
Remover effectively removes any dummy data that is transferred from Ff32to8 to TOE1GIP
for packet transmission. Conversely, the Dummy Data Adder automatically adds required
dummy data that is transferred from TOE1GIP to Ff8to32.

Both Ff32to8 and Ff8to32 serve as asynchronous FIFOs, facilitating data transfer between
AXIIF and TOE1G-IP in different clock domains. These asynchronous FIFOs buffer the data
stream during the transfer process.

For more detailed information about each submodule within AXITOE, please refer to the
following sections.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 6

2.1.1 TOE1G-IP

TOE1G-IP implements TCP/IP stack to be the offload engine for transferring TCP/IP
packets with the network device. User interface contains two signal groups: control signals
and data signals. The control signal group uses the Register interface which is compatible
to the single-port RAM interface while the data signal group uses the FIFO interface.
Further information of TOE1G-IP is available on our website.
https://dgway.com/products/IP/TOE1G-IP/dg_toe1gip_data_sheet_xilinx_en/

2.1.2 AXIIF
The AXI4 bus standard enables data transfer in both directions simultaneously. This
interface consists of four signal groups: AXIAw for Write address, AXIw for Write data,
AXIAr for Read address, and AXIr for Read data.

The AXIIF logics can be categorized into two groups: AXIWr for Write transfer and AXIRd
for Read transfer, each operating individually. The details of AXIWr and AXIRd are
described below.

AXIRd

Figure 2-3 AXIRd Transfer Logic diagram

The AXIRd manages the sequence of each signal transmission using a state machine
(AXIrState), which operates as follows.

https://dgway.com/products/IP/TOE1G-IP/dg_toe1gip_data_sheet_xilinx_en/

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 7

1) Idle (stIdle): In this state, the state waits for a new request to initiate data transfer from

the CTRL I/F. When the TxStart signal is asserted, the operation proceeds to the next
step.

2) Check FIFO status (stWtDataRdy): In this state, the state reads AXIrFfCnt, which
indicates the free space available in the FIFO for transferring 512-byte data. If there is
enough free space, the state proceeds to the next step.

3) Address request (stSendReq): In this state, the state generates a read request to the
AXI4 interface by asserting AXIArValid along with the address value on AXIArAddr. The
request remains asserted until the request is accepted, indicated by AXIArReady being
asserted. The ArReq Counter is then decremented to show the remaining transfer size,
and the state proceeds to the next step.

4) Data transfer (stRcvData): In this state, the state waits until all 512-byte data is
completely transferred from the AXIr I/F to the FIFO I/F. The transfer is completed when
AXIrLast is asserted, indicating the last data transfer. The ArAddr Counter is
incremented to indicate the next address for reading.
Note: The address counter updates its value after finishing the read data transfer to
indicate the completed read position of the DDR memory.

5) Check remaining length (stChkEnd): In this state, the state reads the remaining transfer
size (rTxTrnCnt) to determine if there is any remaining data for the next transfer. If there
is remaining data, the state returns to step 2). Otherwise, it returns to the Idle state and
asserts the interrupt signal (TxInt) to indicate that the operation is completed.

As shown in Figure 2-3, both the data valid (AXIrValid) and the read data (AXIrData) from
the AXIr I/F are directly mapped to the FIFO write enable (AXIrFfWrEn) and the write data
(AXIrFfWrData) of the FIFO I/F. The burst size of the AXIr I/F is fixed at 512 bytes.

AXIWr

Figure 2-4 AXIWr Transfer Logic diagram

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 8

The AXIWr manages the sequence of each signal transmission using a state machine
(AXIwState), which operates as follows.

1) Idle (stIdle): In this state, the state waits for a new request to initiate data transfer from

the CTRL I/F. When the RxStart signal is asserted, the operation proceeds to the next
step.

2) Check FIFO status (stWtDataRdy): In this state, the state reads AXIwFfCnt, which
indicates the amount of data in the FIFO for transferring 512-byte data. If there is at
least 512-byte data available, the state proceeds to the next step.

3) Address request (stSendReq): In this state, the state generates a write request to the
AXI4 interface by asserting AXIAwValid along with the address value on AXIAwAddr.
The request remains asserted until the request is accepted, indicated by AXIAwReady
being asserted. The AwReq Counter is then decremented to show the remaining
transfer size, and the state proceeds to the next step.

4) Data transfer (stSendData): In this state, the state waits until all 512-byte data is
completely transferred from the FIFO I/F to the AXIw I/F. The transfer is completed
when both AXIwReady and AXIwLast are asserted, indicating the last data transfer.

5) Wait response (stWtResp): In this state, the state waits until the AXI I/F returns the
response to confirm the successful write operation. Afterward, the AwAddr Counter is
incremented to indicate the next address for reading.
Note: The address counter updates its value after completing the write data transfer to
indicate the completed write position of the DDR memory.

6) Check remaining length (stChkEnd): In this state, the state reads the remaining transfer
size (rRxTrnCnt) to determine if there is any remaining data for the next transfer. If there
is remaining data, the state returns to step 2). Otherwise, it returns to the Idle state and
asserts the interrupt signal (RxInt) to indicate that the operation is completed.

Additionally, Figure 2-4 illustrates the details of the logics that forwards the data stream
from FIFO I/F to AXIw I/F. The data bus is directly mapped from the read data of the FIFO
I/F (AXIwFfRdData) to the write data of the AXIw I/F (AXIwData). AXIwReady is used as
data flow control. When de-asserted, the read enable of the FIFO I/F (AXIwFfRdEn) is also
de-asserted to pause data transmission and latch the data during this pause time. The
number of cycles to transfer data in each loop is fixed to 128 beats of 32-bit data; however,
AXIwStrb is designed to be de-asserted before the end of the transfer if the transfer size is
less than 512-bytes.

2.1.3 TOERegIF

The CPU communicates with the AXITOE through AsyncAXIReg, which converts the
AXI4-Lite interface to be the Register I/F for simple connection. The memory area of the
AXITOE that is mapped to the CPU system is divided into two areas: the TOE1G-IP area
and the TOERegIF area. The address map of the Register I/F to each AXITOE’s signal is
shown in Table 2-1.

The TOERegIF consists of an address decoder and the register files, responsible for
storing test parameters and the control signals used within the AXITOE. To accommodate
the different clock domains of the TOE1G-IP and AXIIF modules, asynchronous circuits
are integrated into the TOERegIF to interface with the signals of the AXIIF module. The
Start signal and transfer length for each transfer direction are generated independently in
both the TOE1G-IP and AXIIF clock domains. These signals are then utilized by the
Dummy Data Remover/Adder and AXIIF modules, respectively.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 9

Table 2-1 Memory Map of TOERegIF within AXITOE module

Address Register Name Description

Rd/Wr Label in the

“ftp_demo.c/twoport.c”

(BA1+0x0000) – (BA1+0x00FF): TOE1G-IP Register Area

More details of each register are described in TOE1G-IP datasheet.

BA1+0x0000 TOE_RST_REG Mapped to RST register within TOE1G-IP

BA1+0x0004 TOE_CMD_REG Mapped to CMD register within TOE1G-IP

BA1+0x0008 TOE_SML_REG Mapped to SML register within TOE1G-IP

BA1+0x000C TOE_SMH_REG Mapped to SMH register within TOE1G-IP

BA1+0x0010 TOE_DIP_REG Mapped to DIP register within TOE1G-IP

BA1+0x0014 TOE_SIP_REG Mapped to SIP register within TOE1G-IP

BA1+0x0018 TOE_DPN_REG Mapped to DPN register within TOE1G-IP

BA1+0x001C TOE_SPN_REG Mapped to SPN register within TOE1G-IP

BA1+0x0020 TOE_TDL_REG Mapped to TDL register within TOE1G-IP

BA1+0x0024 TOE_TMO_REG Mapped to TMO register within TOE1G-IP

BA1+0x0028 TOE_PKL_REG Mapped to PKL register within TOE1G-IP

BA1+0x002C TOE_PSH_REG Mapped to PSH register within TOE1G-IP

BA1+0x0030 TOE_WIN_REG Mapped to WIN register within TOE1G-IP

BA1+0x0038 TOE_SRV_REG Mapped to SRV register within TOE1G-IP

BA1+0x003C TOE_VER_REG Mapped to VER register within TOE1G-IP

(BA1+0x0100) – (BA1+0x011B): Other control/status of AXITOE

BA1+0x0100 Start Transmit DDR Address Wr [31:0] – Start DDR Address for transmitting data (DDR to TOE1G-IP)

It must be aligned to 32 bits or bit[1:0] must be equal to 00b.

Rd [31:0] – Current value of transmitted DDR Address

Wr/Rd (TX_DDR_ADDR)

BA1+0x0104 Transmit Length Wr [31:0] – Total amount of transmitted data in byte unit (DDR to TOE1G-IP)

Wr (TX_DDR_LEN)

BA1+0x0108 Start Receive DDR Address Wr [31:0] – Start DDR Address for receiving data (TOE1G-IP to DDR)

It must be aligned to 32 bits or bit[1:0] must be equal to 00b.

Rd [31:0] – Current value of received DDR Address

Wr/Rd (RX_DDR_ADDR)

BA1+0x010C Receive Length Wr [31:0] – Total amount of received data in byte unit (TOE1G-IP to DDR)

Wr (RX_DDR_LEN)

BA1+0x0110 AXITOE Control Wr [0] – Asserted to initiate Tx transfer from DDR to TOE1G-IP.

 [1] – Asserted to initiate Rx transfer from TOE1G-IP to DDR.

Bit[1] and bit[0] are automatically cleared to 0b after user asserts them to 1b.

Rd [0] – Transmit busy flag.

 Asserted during data transfer from DDR to TOE1G-IP.

 [1] – Receive busy flag.

 Asserted during data transfer from TOE1G-IP to DDR.

Wr/Rd (AXITOE_CTRL)

BA1+0x0114 ConnOn of TOE1G-IP Rd [0] – Mapped to ConnOn signal output from TOE1G-IP to show

connection status. Asserted when the connection has been established. Rd CONNON_REG

BA1+0x0118 FIFO Read Count

of TOE1G-IP

Rd [15:0] – Mapped to TCPRxFfRdCnt signal output from TOE1G-IP to show

total number of received data in byte unit

Rd FFRDCNT_REG

Note: BA1 is base address of AXITOE that is mapped to the CPU system

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 10

2.2 AXIEMAC

Figure 2-5 AXIEMAC Block Diagram

The AXIEMAC module is designed to facilitate the transfer of Ethernet packets using the
Ethernet MAC. The CPU directly manages this module through Register I/F. Within the
AXIEMAC, two engines, called TxEMAC and RxEMAC, are the logics responsible for
transferring data between the RAM and the Ethernet MAC. There is RAM located within
TxEMAC and RxEMAC which are directly mapped to Register I/F. This allows the CPU to
have direct control of these RAMs.

Furthermore, RegIF is also connected to the Register I/F to store test parameters, control
signals, and status signals of each sub module. The CPU can configure each parameter
value to match the specific requirements.

The detailed descriptions of each submodule within the AXIEMAC are provided below.

2.2.1 TxEMAC

TxEMAC is designed to transmit Ethernet packets to the EMAC. It incorporates an
asymmetric RAM, known as TxRAM or RAM1kx32to8, which serves as the Tx buffer for
the Ethernet packet transmission. Also, TxRAM is responsible for converting data width
from 32 bits to 8 bits. The Write interface of TxRAM is connected to the CPU system via
Register I/F, while specific logics are designed to interface with the Read interface of
TxRAM.

The functions of the logics at the Read interface of TxRAM are outlined below.
1) Address counter (rTxRamRdAddr): This counter generates the read address of TxRAM.

It loads the initial value from the RegIF and increments to read the next data from
TxRAM after the EMAC confirms the successful reception of each data by asserting
MacTxReady to 1b to.

2) Length counter (rTxLengthCnt): This counter controls the number of transmitted data in
each packet. The transfer size of each packet is initially loaded from the RegIF and is
decremented after each data is successfully sent to the EMAC.

3) Data stream controller: The transmitted data to the EMAC (MacTxData) is directly fed
by the read data of TxRAM (TxRamRdData). Additionally, specific logics are designed
to generate the data control signals, including valid (MacTxValid), start-of-packet
(MacTxSOP), and end-of-packet (MacTxEOP).

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 11

The transmit operation is initiated when the CPU sets the start flag to 1b. The CPU can
monitor the progress of the operation by reading the remaining length from the length
counter. The remaining length will become zero once all data has been successfully
transferred.

2.2.2 RxEMAC

The RxEMAC module is responsible for processing received packets from the EMAC and
storing them in the RxRAM, which is an asymmetric RAM module integrated within
RxEMAC. The read interface of RxRAM is directly connected to the CPU, which utilizes a
32-bit data bus. On the other hand, the write interface of RxRAM is connected to the EMAC
which uses 8-bit data bus.

Upon receiving each packet from the EMAC, the internal logics of RxEMAC store the new
packet to RxRAM. The write address is incremented after receiving each data until the end
of the packet is reached. During the write process, the packet header is verified by the
filtering logic to validate its contents. The CPU configures all values used for comparison
with the packet header. These values include 48-bit Destination MAC address, 32-bit
Destination IP address, 8-bit Protocol value, and 16-bit Destination port number.

The CPU has the option to enable or disable the verification of the Protocol value and
Destination port number, assigned by three-bit signals, while the verification of other
parameters is always operated. Additionally, the IP header must be IPv4 type and the IP
header length must be equal to 20 bytes.

For instance, to support the Ping command, the CPU configures the parameters for header
verification using the following values.
- Protocol = ICMP (RxPatt23=01h, RxPattEn[0]=1b)
- Destination port number = Disable (RxPattEn[2:1]=00b)

If the packet header is valid, the RxEMAC module stores the latest write address of
RxRAM after receiving the end of packet into a latched register (rRxRamWrEndAddrLat).
The CPU monitors the value of this latched register to indicate the reception of a new valid
packet. After that, the CPU initiates the process to decode the new packet.

However, if the packet is determined to be invalid during the header verification, the write
address of RxRAM will be reverted to the previous value, which corresponds to the start
position before receiving the latest packet. Subsequently, the next received packet will
replace the invalid one in RxRAM.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 12

2.2.3 RegIF

The CPU communicates with the AXIEMAC through AsyncAXIReg, which converts the
AXI4-Lite interface to be the Register I/F for simple connection. The memory area of the
AXIEMAC that is mapped to the CPU system is divided into three areas: the TxRAM area,
the RxRAM area, and the RegIF area. The address map of the RegIF is shown in Table
2-2.

The RegIF consists of an address decoder and the register files, responsible for storing
test parameters and the control signals used within the TxEMAC and RxEMAC.

Table 2-2 Memory Map of RegIF within AXIEMAC module

Address Register Name Description

Rd/Wr (Label in the

“ftp_demo.c/twoport.c”)

BA0+0x00000-

BA0+0x00FFF

TxRAM in TxEMAC 4Kbyte RAM to store the transmitted Ethernet packet to the EMAC. It is applied

for operating the Slow connection, controlled by the CPU.

Wr (TXRAM)

BA0+0x10000-

BA0+0x10FFF

RxRAM in RxEMAC 4Kbyte RAM to store the received Ethernet packet from the EMAC. It is applied

for operating the Slow connection, controlled by the CPU.

Rd (RXRAM)

BA0+0x20000 Destination MAC address

[31:0]

[31:0] - 32 lower bits of destination MAC address, assigned to filtering packet

inside RxEMAC.

Wr (DSTMACL_REG)

BA0+0x20004 Destination MAC address

[47:32]

[15:0] - 16 upper bits of destination MAC address, assigned to filtering packet

inside RxEMAC.

Wr (DSTMACH_REG)

BA0+0x20008 Destination IP address [31:0] - 32-bit destination IP address, assigned to filtering packet inside

RxEMAC. Wr (DSTIP_REG)

BA0+0x20010 Rx Pattern enable Enable flag to verify certain bytes inside the header of the received packet (1b:

enable, 0b: disable).

[0] – Asserted to compare byte#23 of received packet with

RXPATT23_REG[7:0]

[1] – Asserted to compare byte#36 of received packet with

RXPATT32_REG[7:0]

[2] – Asserted to compare byte#37 of received packet with

RXPATT32_REG[15:8]

Wr (RXPATTEN_REG)

BA0+0x20014 Rx Pattern Byte 23 [7:0]: Expected value for comparing with byte#23 of received packet

Wr (RXPATT23_REG)

BA0+0x20018 Rx Pattern Byte 34 [7:0] - Expected value for comparing with byte#36 of received packet

[15:8] - Expected value for comparing with byte#37 of received packet Wr (RXPATT36_REG)

BA0+0x20100 Start TXRAM address [11:0] - Start address of TxRAM to transmit Ethernet packet to EMAC

Wr (TXADDR_REG)

BA0+0x20104 Transmit length Wr [11:0] - Transmitted Ethernet packet size in byte unit. Valid form 2-4095.

The TXEMAC initiates data transfer after this register is set to value other than

0 or 1.

Rd [11:0] – The remaining transmitted size in byte unit. The CPU detects the

end of packet transmission by polling this register until the read value becomes

0.

Wr/Rd (TXLEN_REG)

BA0+0x20200 Received RXRAM address The latest write address of RxRAM to store the received packet. The CPU

reads this register until its value changes, indicating the arrival of a new packet.

Additionally, this value is used to calculate the total data size by determining the

difference between the current value and the previous value stored in the

register.

Rd (RXADDR_REG)

Note: BA0 is base address of AXIEMAC that is mapped to the CPU system.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 13

2.3 AsyncAXIReg

Figure 2-6 AsyncAxiReg interface

The AXI4-Lite bus interface consists of five groups: LAxiAw* (Write address channel),
LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr* (Read address
channel), and LAxir* (Read data channel). The details to build custom logic for AXI4-Lite bus
can be found in the following document.
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/
designing_a_custom_axi_slave_rev1.pdf

According to the AXI4-Lite standard, the write and read channels operate independently for
both control and data interfaces. Therefore, the logic within AsyncAxiReg, which interfaces
with the AXI4-Lite bus, is divided into four groups: Write control logic, Write data logic, Read
control logic, and Read data logic, as illustrated on the left side of Figure 2-6.

The Write control I/F and Write data I/F of the AXI4-Lite bus are latched and transferred to
become the Write register interface with the use of clock domain crossing registers. Similarly,
the Read control I/F of the AXI4-Lite bus is latched and transferred to the Read register
interface, while Read data is returned from Register interface to AXI4-Lite via clock domain
crossing registers. In the Register interface, RegAddr serves as a shared signal for write and
read access, loading the value from LAxiAw for write access or LAxiAr for read access.

The Register interface is compatible with a single-port RAM interface for write transaction.
However, the read transaction of the Register interface has been slightly modified from the
RAM interface by adding the RdReq and RdValid signals to control read latency time. Since
the address of Register interface is shared for both write and read transactions, user cannot
write and read register simultaneously. The timing diagram of the Register interface is
shown in Figure 2-7.

https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 14

Figure 2-7 Register interface timing diagram

1) The timing diagram for writing to the register is similar to that of a single-port RAM. When

initiating a write operation, the RegWrEn signal is set to 1b, along with valid RegAddr
(Register address in 32-bit units), RegWrData (write data for the register), and
RegWrByteEn (write byte enable). The byte enable consists of four bits that indicate the
validity of the byte data. For instance, bit[0], [1], [2], and [3] are set to 1b when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, AsyncAxiReg sets the RegRdReq signal to 1b with a valid value for
RegAddr. The 32-bit data is then returned after the read request is received. The slave
detects the RegRdReq signal being set to start the read transaction. In the read operation,
the address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The
address can then be used to select the returned data using multiple layers of
multiplexers.

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b.
After that, AsyncAxiReg forwards the read value to the LAxir* interface.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 15

3 CPU Firmware
The CPU in this reference design operates using a bare-metal OS, which facilitates hardware
handling. After the test system is booted, the initialization of the system follows these steps.

1) The CPU sets the initial values of the network parameters of TOE1G-IP such as MAC address,

IP address, and port number. The initial values can be updated in the CPU firmware.
2) The CPU sets the initial values of the network parameters and expected values of the received

packet header for ICMP packet to the AXIEMAC module.
3) The CPU de-asserts the reset signal of TOE1G-IP to initiate the IP initialization process and

then checks the busy status to determine when the initialization process is completed.
4) The test menu is displayed on the console, offering three test options.

a) Receive data test (Target -> TOE1G-IP) using the fast connection
b) Send data test (TOE1G-IP -> Target) using the fast connection
c) Ping Test using the slow connection

When executing the Receive data test or Send data test using the fast connection, half of the DDR
memory size is utilized as the data buffer. For instance, the KCU105 board has 2 GB DDR
memory, only 1 GB DDR is allocated as the data buffer for data transfer over the fast connection.

Figure 3-1 DDR Memory Map

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 16

3.1 Receive Data Test

This menu is selected to execute the receive operation of TOE1G-IP. In our test environment,
the target device (the PC) runs the “send_tcp_client” application to transmit test data
through a specific TCP port (port 4000: the port number assigned to TOE1G-IP). If the total
transfer size exceeds the allocated DDR area, the data verification function within the CPU
firmware will be disabled. Conversely, if the data size is within the memory capacity, the
console asks the user to proceed with the data verification process or finish the test
operation. The firmware steps are outlined as follows.
1) The CPU monitors CONNON_REG to wait for the establishment of a new connection by

the target device (PC). When the PC runs the “send_tcp_client” application and the
connection is successfully established, the read value of CONNON_REG becomes equal
to 1. If user enters any key during this period, the operation is cancelled.

2) The CPU reads FFRDCNT_REG to determine the amount of received data from
TOE1G-IP and also checks CONNON_REG to decide the next action following these
steps.
i) If the connection has been closed (CONNON_REG=0) and there is no remaining

received data in TOE1G-IP (FFRDCNT_REG=0), the process proceeds to step 3).
ii) The CPU calculates the data size to be transferred from TOE1G-IP to DDR memory

using the following conditions.

• If the amount of received data exceeds the free space of DDR, the data size is set to
be equal to the available free space of DDR.

• If the free space of DDR is sufficient and this is last transfer (the connection has
been closed), the data size is set to be equal to the total amount of received data
(FFRDCNT_REG).

• Otherwise, the data size is determined by the amount of received data, which is
aligned to 512-byte size.

iii) The result is set to RX_DDR_LEN register, the start DDR address value is updated to
RX_DDR_ADDR, and the start flag of Rx transfer (AXITOE_CTRL[1]=1b) is asserted.
Subsequently, the AXIIF initiates data transfer from TOE1G-IP to DDR.

iv) The CPU waits until the data transfer is completed, indicated by AXITOE_CTRL[1]=0,
and then returns to step i) for the next data transfer.

3) The total transfer size is displayed on the console. If the total transfer size does not
exceed the allocated DDR area, the console offers the option to start data verification on
the DDR. Otherwise, the operation is finished.

4) If the user chooses to initiate data verification, the CPU reads and verifies data at DDR
using 32-bit incremental pattern. In case any mismatched data is found, an error
message will be displayed. The operation is finished once all the last data has been
verified.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 17

3.2 Send Data Test

This menu is selected to execute the transmit operation of TOE1G-IP. In our test
environment, the target device (the PC) runs the “recv_tcp_client_single” application to
receive test data through a specific TCP port (port 4000: the port number assigned to
TOE1G-IP). The user has the option to enable or disable data verification for the
“recv_tcp_client_single” application.

On the FPGA console, the user can specify the total transfer size for the test. If the total
transfer size does not exceed the allocated DDR area, the user has the option to prepare
test data in the DDR or proceed without preparing the data. However, if the transfer size
exceeds the allocated DDR area, the operation begins using dummy data. The firmware
steps to execute the Send data test are outlined as follows.

1) Receive the packet size and transfer length from the user. If the inputs are valid, assign

them to TOE_PKL_REG and TOE_TDL_REG.
2) If the transfer length does not exceed the allocated DDR area, the console displays the

option to prepare the test data (using a 32-bit incremental pattern) to the DDR. If the user
chooses data preparation, the CPU initiates a loop to fill the test data into DDR until the
process is completed.

3) Calculate the number of test loops required for transferring data from DDR to TOE1G-IP.
If total transfer size exceeds the allocated DDR area, multiple test loops are necessary.

4) The CPU monitors CONNON_REG to wait for the establishment of a new connection by
the targe device (PC). Once the PC runs the “recv_tcp_client_single” application and the
connection is successfully established, the read value of CONNON_REG becomes equal
to 1. If user enters any key during this period, the operation is cancelled.

5) Set TOE_CMD_REG to initiate the transmit operation of TOE1G-IP.
6) The CPU controls data transfer from DDR to TOE1G-IP register by following steps. The

number of loops to operate these steps is calculated in step 3).
i) Verify that the connection is still active (CONNON_REG=1b) and the AXIIF is not busy.

If the AXIIF is still busy (AXITOE_CTRL[0]=1b), the CPU waits until it becomes
de-asserted.

ii) Set the start address of DDR and the transfer size of this loop to TX_DDR_ADDR and
TX_DDR_LEN. The value of TX_DDR_LEN is equal to the allocated DDR area in
every loop, except the last loop, which is set by the remaining transfer length.

iii) Set AXITOE_CTRL[0] to 1b to initiate the data transfer from DDR to TOE1G-IP using
the AXIIF module. Afterward, the CPU proceeds to step 7) if this is the last run loop.
Otherwise, it returns to step i) to prepare the next loop transfer.

7) The CPU waits until TOE1G-IP completes the transmit operation, indicated by the busy
flag (TOE_CMD_REG[0]) being de-asserted.

8) The CPU sets TOE_CMD_REG to initiate the close connection operation.
9) The CPU waits until the connection status becomes OFF (CONNON_REG=0), and then

the operation is completed.

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 18

3.3 Ping Command Test

The Ping command is used to demonstrate data transfer via the slow connection. The CPU
firmware implements a simple method to decode and encode the Ethernet packet following
the ICMP protocol. The IP Datagram of the ICMP protocol utilized to support the Ping
command is illustrated in Figure 3-2.

Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31

Version/IHL Type of service Length

TTL Protocol Checksum

Source IP address

Destination IP address

Type of message Code Header Checksum

Identifier Sequence Number

Data

IP Header

(20 Bytes)

ICMP Header

(8 Bytes)

Figure 3-2 IP Datagram for ICMP

In response to receiving an Echo request packet (Type of message=8) from the target
device (PC), the CPU firmware implements a function to generate an Echo reply packet
(Type of message=0). The Echo reply packet replicates all data within the Echo request
packet. Further information about Pin command can be found from the following site.
http://en.wikipedia.org/wiki/Ping_(networking_utility)

The firmware steps for processing Ping command are outlined as follows.
1) The CPU waits until the read value of RXADDR_REG is updated, indicating the reception

of a new packet.
2) Copy the received packet from RxRAM to a temporal buffer for further processing. The

firmware allocates a 256-byte area as the temporal buffer for the receive operation,
defined by “TMPBUF_SIZE” parameter.

3) Validate the IP checksum and ICMP checksum of the received packet. If the checksum is
incorrect, an error message is displayed and the packet processing is terminated.

4) Create the Echo reply packet in the temporal buffer for the transmit operation. The
network parameters, most header data, and the ICMP data of the created packet are
loaded from the values inside the received packet.

5) Read the value of the created packet to calculate the IP checksum and ICMP checksum.
Fill the result to the temporal buffer for transmit operation.

6) Copy the created packet from the temporal buffer for transmit operation to TxRAM.
7) The CPU sets the start address of TxRAM and the transfer size to TXADDR_REG and

TXLEN_REG registers. The TxEMAC initiates data transfer after TXLEN_REG is set. As
the processing time from step 1) to 5) is expected to be longer than the processing time to
transmit each packet by TxEMAC, the CPU firmware ignores to wait for the completion of
the TxEMAC operation. Instead, it returns to step 1) for the next packet processing. The
user can exit the Ping command test menu by entering any key into the console.

http://en.wikipedia.org/wiki/Ping_(networking_utility)

dg_toe1gip_2port_refdesign_xilinx_en.doc

8-Aug-23 Page 19

4 Necessary consideration
For simple test menu, the fast connection and slow connection tests are not designed to operate
simultaneously. However, user can modify the firmware to enable the operation of fast and slow
connections concurrently if needed. An alternative example using two-port demo hardware,
known as the FTP Server demo, is available on our website to demonstrate how fast and slow
connections can be operated simultaneously.

5 Revision History

Revision Date Description

1.4 26-Jul-23 Add the details of the hardware structure and CPU firmware

1.3 2-Sep-16 IP core product renamed from TOE2-IP to TOE1G-IP

1.2 29-Dec-15 Add asynchronous clock support

1.1 28-Oct-15 Correct Table1 description

1.0 9-Jan-15 Initial version release

