
dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 1

TOE1G-IP reference design manual
Rev1.3 19-Aug-16

1. Introduction
TCP/IP is the core protocols of the Internet Protocol Suite for networking application. TCP/IP
model has four layers, i.e. Application Layer, Transport Layer, Internet Layer, and Network Access
Layer. In Figure 1, five layers are displayed for simple matching with hardware implementation by
FPGA. Network Access Layer is split into Link and Physical Layer.

Physical Layer

Link Layer

Internet Layer

Transport Layer

Application Layer

PHY IC

EMAC IP

TCP/IP

Controller IP by

Design Gateway

User Logic

FPGATCP/IP Protocol Layer

Figure 1 TCP/IP Protocol Layer

TOE1G-IP implements Transport and Internet layer of TCP/IP Protocol. To transmit data,
TOE1G-IP will split long TCP data stream from user logic into many packets following TCP/IP
standard. Then, combine TCP data with TCP/IP header which is generated within IP before
sending out to EMAC. To receive data, TOE1G-IP will check TCP packet that data and header are
valid. Then, extract TCP data and header from valid packet. Only TCP data will be stored in buffer
for user logic reading.

Using TCP protocol can guarantee data reliability by monitoring acknowledge packet. During
transmitting data, TOE1G-IP will retransmit data if acknowledge packet from receiver is lost.
During receiving data, TOE1G-IP will monitor the sequence number of received packet. If lost
packet is detected, it will send duplicate acknowledge packet to request the lost packet.

The lower layer protocols are implemented by EMAC-IP from Altera and external PHY chip.

This reference design provides evaluation system which includes simple user logic to send and
receive data with TOE1G-IP. This system demonstrates on Altera Development board to operate
with Test application on PC for transferring high speed data on network. More details are
described as follows.

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 2

2. Environment
To operate this reference design, following environment must be setup.

� FPGA Development board
� QuartusII Programmer
� Ethernet cable (Cat5e or Cat6)
� PC with Gigabit Ethernet
� USB A-B cable for FPGA configuration
� Test Application, i.e. “send_tcp_client” and “recv_tcp_client”, provided by Design Gateway

Figure 2 TOE1GIP Demo on ArriaV GX board

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 3

3. Hardware description

Figure 3 Hardware Architecture in ArriaV GX reference design (RGMII)

Figure 4 Hardware Architecture in StratixIV GX/Arria10 SoC reference design (SGMII)

As shown in Figure 3, hardware architecture can be divided into 4 modules to support each
TCP/IP layer protocol. TOE1G-IP operates with EMAC and external PHY to implement all four
lower layers of TCP/IP Protocol. User module can transfer TCP data by using FIFO interface and
write/read control signal with TOE1G-IP by using Register interface. TCP data will be transferred
to PC which will run test application to generate or verify data.

This reference design includes the example of User Module to generate Test pattern in
transmitting mode or verify Test pattern in receiving mode on ArriaV/StratixIV GX/Arria10 SoC
development board.

� External PHY
Physical layer is implemented by external PHY chip. The interface type of PHY chip can be three
formats, i.e. SGMII (like StartixIV GX/Arria10 SoC board), RGMII (like ArriaV GX Starter board), or
GMII.

� EMAC
Link layer and PCS/PMA are implemented by Triple-speed Ethernet MAC, provided by Altera.
Internal FIFO and all options of EMAC are disabled to reduce resource. TOE1G-IP can connect to
user interface of EMAC directly.

In the demo system, Avalon interface of EMAC is controlled by EMAC State machine. The state
machine runs only one time to initialize basic parameters of EMAC and external PHY. The details
about the register in EMAC are described in “Configuration Register Space” topic within
“Triple-Speed Ethernet MegaCore Function User Guide” document, provided by Altera. EMAC
State machine of SGMII and RGMII is different design.

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 4

For SGMII mode, EMAC state machine will program only Base Configuration area to configure
MAC function such as disable/enable transmit and receive paths, frame length, Tx IPG length,
and software reset.

For RGMII mode, EMAC state machine will program both Base Configuration and MDIO Space1
area. MDIO Space1 area is used to access external PHY register through MDIO interface for
enable RGMII Receive/Transmit timing control function. When enable timing control bit, transmit
and receive clock will include the delay to shift clock phase for synchronous with transmit/receive
data.

� TOE1G-IP
More details about both modules are described in “dg_toe1gip_data_sheet_altera_en.pdf”
document.

� User Module

PacSel Tx Packet Size

Register

Tx Packet

Counter

TCPTxFfFull

TCPTxFfWrEn

TxPatt

Generator

TCPTxFfWrData

TxFfDataCnt

rPacketSizeSet

TCPRxFfRdEmpty
DFF

TCPRxFfRdEn

RxPatt

Generator

rRxFfRdEn

Comparator
TCPRxFfRdData

rExpPatt

ErrLED

State

Machine

StartSW
Debounce

rStartCnt

ModeSel

State

Decoder

rState

RegRdData

ConnOn

RegAddr

RegWrEn

RegWrData

TOE1G-IP

Triple-Speed

EMAC

MAC I/F
SGMII

RGMII I/F

User Module

TCP1GIPTest.vhd

1000BASE-X/

SGMII PCS

GMII

EMAC

State

Machine

State

Decoder

Avalon I/F
MDIO

Figure 5 User Module and Test System block diagram

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 5

User Module can split into three parts, i.e. TxFIFO interface, RxFIFO interface, and Register
Control interface. 32-bit increment test data is increased when end of sending each Tx packet. Tx
Packet counter is designed to count data size in each Tx packet which can be set by external
PacSel DIPSW. There are two supported sizes in this demo, i.e. 1460 bytes for non-Jumbo frame,
and 8960 bytes for Jumbo frame.

32-bit increment data is also generated by RxPatt Generator to verify data output from RxFIFO
interface of TOE1G-IP. Simple logic is designed to read out data from FIFO by monitoring Empty
flag. ErrLED is blinking when data verification is error.

Register Control interface is designed by using State Machine. Register address and write value
signals are decoded from State Machine. Transfer data direction is selected by ModeSel DIPSW,
and data starts transferring when StartSW is pressed by user. State Machine diagram is displayed
as shown in Figure 6.

Figure 6 State Machine Diagram within User Module

State machine changes to stSetParam state after user press StartSW button. In stSetParam state,
it will set parameters to register within TOE1G-IP, i.e.
- Source MAC address (SML/SMH Reg) = 00:01:02:03:04:05
- Source IP address (SIP Reg) = 192.168.11.42
- Source Port number (SPN Reg) = 4000
- Destination IP address (DIP Reg) = 192.168.11.25

Next State, stClrReset, is applied to release Reset signal (RST Reg=0) within TOE1G-IP and
then starting parameter initialization. State machine waits initialization complete by monitoring
Busy flag (bit 0 of CMD Reg) through Register interface. State will pause in stWtOpen until test
application on PC starts running.

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 6

On this demo, FPGA runs as Server mode and Test application on PC runs as Client mode, so the
connection is opened by Test application on PC. ConnOn output from TOE1G-IP will change to ‘1’
and then state machine will change to stSetTxLen for transmitting mode or to stWtClose for
receiving mode.

On transmitting mode, more three states, i.e. stSetTxLen, stSetTxPacLen, and stSetTxCmd are
designed for setting total transfer size (TDL Reg), packet size (PKL Reg), and data sending to
command register (CMD Reg=0) within TOE1G-IP. Then, Busy signal is monitored to wait
transfer complete in stWtBusy2 state. After all data are transferred completely, State sends
command to TOE1G-IP for sending packet to close connection (CMD Reg=0x3) in stTxClose
state. After connection is closed and Busy=‘0’, state will run in stWtOpen for waiting next transfer.

On receiving mode, state will stay in stWtClose to wait data transfer from PC complete and follow
with connection closed command from PC. So, ConnOn value from TOE1G-IP will change from
‘1’ to ‘0’ after connection has already closed. Similar to transmitting mode, state will go back to
stWtOpen for waiting next transfer.

In conclusion, the demo uses passive open mode for both transmitting and receiving data, but
uses different mode to close connection. Active close connection is operated for data transmitting
mode while passive close connection is operated for data receiving mode.

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 7

4. Test Software description
Two test applications are applied within this demo, i.e. “recv_tcp_client” and “send_tcp_client”.
Both application runs as client mode.

� recv_tcp_client

This test application runs to test sending operation of TOE1G-IP, so data sending to PC will be
verified by test application. This application requires three input parameters from user, i.e.
- FPGA IP address: This demo sets IP address to “192.168.11.42”. User can modify HDL code

of User module to change this value.
- FPGA Port number: This demo sets Port number to “4000”. User can modify HDL code of

User module to change this value.
- Packet size: This demo can set as two values, i.e. 1460 for non-Jumbo frame mode, and 8960

for Jumbo frame mode. If setting with wrong value, verified error message will be displayed on
Test application and operation will be stopped.

The operation sequence of the application is follows.

(1) Get three parameters from user.
(2) Create socket and then set properties of received buffer.
(3) Set IP address and Port number from user parameter and then connect.
(4) Loop run for receiving data and verify data. Data format will be 32-bit increment value

which will increase every end of packet. Thus, all data in same packet will be similar. Two
errors can be printed out from verification process, i.e. “Drop Expect” printed out when 1st
data of packet is not expect value, and “Error Expect” printed out when data within each
packet is not expect value. Total number of packet is printed out on console every second.

(5) Socket is closed by FPGA side and then Performance with total number of transferred
data will be printed out as test result.

(6) Go back to step (3) in loop to continue test operation until operation cancel.

� send_tcp_client

This test application sends data out to TOE1G-IP to test receiving operation. This application
requires four input parameters from user, i.e.
- FPGA IP address: This demo sets IP address to “192.168.11.42”. User can modify HDL code

of User module to change this value.
- FPGA Port number: This demo sets Port number to “4000”. User can modify HDL code of

User module to change this value.
- Packet Count: This value is set transfer size in 16kByte unit. Total transfer size is equal to this

value x 16kByte. Valid range is 1-262143.
- Verification On/Off: Select ‘0’ to transfer dummy data and ‘1’ to transfer 32-bit increment data

out. This setting value is effect to output performance from PC. In some PC, performance in
dummy data mode is better than increment data mode.

 The operation sequence of the application is follows.

(1) Get three parameters from user.
(2) Create socket and then set properties of transmit buffer.
(3) Set IP address and Port number from user parameter and then connect.
(4) Fill test pattern with dummy (all ‘0’) or increment pattern to buffer and then send data out.

Transfer size is set from user.
(5) Close socket and print out performance with total number of transferred data as test result.

dg_toe1gip_refdesign_altera_en.doc

2016/08/19 Page 8

5. Revision History

Revision Date Description

1.0 24-Jul-14 Initial Release
1.1 27-Nov-14 Update to support both StratixIV/ArriaV GX boards
1.2 12-Dec-14 Add EMAC register programming for RGMII
1.3 19-Aug-16 Change IP name and support Arria10 SoC

Copyright: 2014 Design Gateway Co,Ltd.

