
dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23

TOE25G-IP Two Port reference design

1 Introduction ... 1
2 Hardware overview .. 2

2.1 25G Ethernet System (25G BASE-SR) ... 4
2.2 MAC25GTxIF .. 5
2.3 MAC25GRxIF ... 8
2.4 TxEMacMux2to1 ... 11
2.5 TOE25G-IP ... 12
2.6 User2MAC .. 13

UserTxMAC .. 14
UserRxMAC .. 16

2.7 CPU and Peripherals .. 18
2.7.1 AsyncAxiReg .. 19
2.7.2 UserReg ... 21

3 CPU firmware and Test software of Ping demo .. 26
3.1 Firmware sequence .. 26

3.1.1 Display parameters .. 27
3.1.2 Reset IP ... 27
3.1.3 Send data test .. 28
3.1.4 Receive data test ... 29
3.1.5 Full duplex test ... 30
3.1.6 Ping reply test .. 31

3.2 Function list in User application .. 33
3.2.1 Function for operating fast-port connection by TOE25G-IP 33
3.2.2 Function for operating slow-port connection by CPU (Ping) 35

3.3 Test Software on PC ... 36
3.3.1 Tcpdatatest for half duplex ... 36
3.3.2 tcp_client_txrx_40G” application .. 38

4 CPU Firmware and Test software of DHCP demo .. 40
4.1 Firmware sequence .. 40
4.2 Function list in User application .. 46
4.3 Test software on PC (DHCP server application) ... 48

5 Revision History .. 49

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 1

TOE25G-IP Two Port reference design
Rev1.0 6-Jul-23

1 Introduction

Figure 1-1 TCP/IP protocol layer

TOE25G-IP is designed to transfer TCP payload data at ultra-high speed by using one TCP port.
However, there are some applications that need to use multiple ports for transferring many data
types. Also, increasing the number of TCP ports can accelerate total transfer performance for
transferring the data via one 25G Ethernet channel in some environments. If the additional ports
are applied for transferring TCP payload data at high-speed rate or increase transfer performance
for each 25G Ethernet channel, it is recommended to use multiple TOE25G-IPs in the system for
handling each port independently, as shown in the left side of Figure 1-1.

However, some applications require only one fast port for transferring data at high-speed rate
while the additional ports are applied for transferring some control information at low-speed rate
with other protocols such as ICMP or DHCP. The right system of Figure 1-1 is purposed instead.
One TOE25G-IP is applied for handling one high-speed TCP port while CPU is applied for
handling the other ports or the other protocols with lower speed processing.

This document shows the right-side solution which uses CPU for handling other protocols - Ping
command (ICMP protocol) and DHCP command (DHCP protocol). While one TOE25G-IP is
integrated for processing one high speed TCP payload data.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 2

2 Hardware overview

Figure 2-1 Demo block diagram

The reference design supports two port connections. First is slow-port connection which is
handled by CPU system via User2MAC. The demo shows the slow-port connection for
processing two protocols by using different CPU firmware – Ping test (ICMP protocol) and DHCP
test (UDP protocol). For processing each protocol, CPU assigns different parameters to
User2MAC via UserReg. Second is fast-port connection which is handled by TOE25G-IP.
UserReg module connects to TOE25G-IP for setting the parameters via 32-bit Reg I/F and
transferring high-speed data in both transfer directions by PattGen and PattVer. The transmitted
packet from User2MAC and TOE25G-IP may be transferred in the same time. Therefore,
TxEMacMux2to1 module is designed to be the switch logic to transfer the transmitted data from
User2MAC and TOE25G-IP to Ethernet system. While the receive interface of Ethernet system is
connected to both User2MAC and TOE25G-IP directly.

When 25G Ethernet System is implemented by DG 10G25GEMAC-IP and Xilinx PCS/PMA-IP,
the 25G Ethernet System can connect to TOE25G-IP directly. While using Xilinx 25G Ethernet
(MAC) Subsystem IP, the adapter logic (MACTxIF and MACRxIF) must be included to be
interface module with TOE25G-IP.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 3

The target device in the test environment is the Test PC which can run four test applications.
“tcpdatatest” and “tcp_client_txrx_40G” are the test application, provided by Design Gateway, for
transferring high-speed data in half-duplex mode and full-duplex mode, respectively. “Ping”
command is run to check round-trip time and “dhcpsrv” is run to assign IP address by DHCP
(Dynamic Host Configuration Protocol)

There are three clock domains in the design, i.e., CpuClk which is the clock for running the CPU
system, MacClk which is the user interface clock of 25Gb Ethernet System, and UserClk which is
the clock for running user logic of TOE25G-IP. In real system, the user can change the frequency
of CpuClk and UserClk. According to TOE25G-IP datasheet, clock frequency of UserClk should
be more than or equal to 195.3125 MHz for 25Gb Ethernet to achieve the best performance.
AsyncAxiReg is designed to support asynchronous signals between CpuClk and UserClk. More
details of each module inside the TOE25CPUTest are described as follows.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 4

2.1 25G Ethernet System (25G BASE-SR)

25G Ethernet System consists of the MAC layer and PCS/PMA layer. The user interface for
connecting with Ethernet MAC is 64-bit AXI4-stream interface running at 390.625 MHz. The
physical interface is 25G BASE-SR. There are many solutions for implementing 25G
Ethernet System. Three solutions are explained in this document, as shown in Figure 2-2.

Figure 2-2 TOE25G-IP with several Ethernet system solutions

First uses DG 10G25GEMAC-IP with Xilinx PCS/PMA module. Using this solution optimizes
the IP resource and the operation has less latency time. Also, the user interface of DG
10G25GEMAC-IP can connect with TOE25G-IP/TxEMacMux2to1 directly. While PCS/PMA
module is the no charge IP core that can be created by using IP wizard of Xilinx tool. More
details of this solution are described in the following website.
https://dgway.com/products/IP/10GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx_en.pdf

Second uses 10G/25G Ethernet Subsystem which integrates both Ethernet MAC and
PCS/PMA function. While MAC interface of TOE25G-IP and TxEMacMux2to1 do not
support to pause data transmission before the end of packet is transmitted, user interface of
10G/25G Ethernet Subsystem may de-assert valid/ready signal to pause data transmission.
Therefore, the adapter logics (MACTxIF and MACRxIF) with small FIFO must be included to
interface between TOE25G-IP/TxEMacMux2to1 and 10G/25G Ethernet Subsystem. More
details of this solution are described in the following website.
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

https://dgway.com/products/IP/10GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx_en.pdf
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 5

Final solution uses Ethernet MAC Subsystem which is the IP on Versal device. This IP does
not include Transceiver module (PMA module), so Transceiver must be generated to
interface with external I/O pin. The user interface of the IP can be configured to several
modes. In this reference design, 64-bit non-segmented mode with independent clock is
applied. The minimum clock frequency in this mode is 390.625 MHz. Similar to 10G/25G
Ethernet Subsystem, it needs to integrate the adapter logics to interface between
TOE25G-IP/TxEMacMux2to1 and Ethernet MAC Subsystem. More details of the final
solution are described in the following website.
https://www.xilinx.com/products/intellectual-property/mrmac.html

2.2 MAC25GTxIF

Figure 2-3 MAC25GTxIF Timing diagram

Tx interface timing diagram of Ethernet (MAC) Subsystem and TxEMACMux2to1 are
different. TxEMacMux2to1 needs to send data of one packet continuously while Xilinx
Ethernet (MAC) Subsystem does not support this feature. EMAC may de-assert ready
signal to pause receiving data before end of the packet.

MAC25GTxIF is designed to store transmitted data from TxEMacMux2to1 when EMAC is
not ready to receive the new data. The FIFO depth is 2048 to store at least one data packet
during pausing time. Maximum packet size of TOE25G-IP reference design is 8960 bytes or
1120 of 64-bit data. Therefore, 2048 is enough for storing one packet. The FIFO is
First-Word Fall-Through (FWFT) FIFO which the read data is valid for reading before
asserting read enable to ‘1’. After read enable of FIFO is asserted to ‘1’, the next read data is
valid on read data bus in the next clock cycle.

The operation of MAC25GTxIF is split into two parts. First is the logic for transferring a
packet from TxEMacMux2to1 to FIFO. Second is the logic for transferring a packet from
FIFO to Ethernet (MAC) Subsystem. Timing diagrams of each part are displayed in Figure
2-4 and Figure 2-5.

https://www.xilinx.com/products/intellectual-property/mrmac.html

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 6

Figure 2-4 Timing diagram for transferring data from TxEMacMux2to1 to FIFO

1) Before asserting U2MacReady to ‘1’ for receiving the new packet from user, two

conditions must be met. First, free space in FIFO is enough for storing maximum packet
size, 9014 bytes. For simple monitoring logic, the upper bit of FfDataCnt is read to confirm
the amount of data in FIFO is not more than 896 (free space is more than 1151). Second,
the previous packet is completely transferred, monitored by U2MacReady=’0’.

2) User starts transmitting a packet by asserting U2MacValid to ‘1’. The input signals from
user (U2MacData, U2MacKeep, and U2MacLast) are valid and stored to FIFO when
U2MacValid and U2MacReady are asserted to ‘1’. After that, the inputs are stored to
FIFO by asserting rFfWrEn to ‘1’. 73-bit write data to FIFO consists of 64-bit data
(U2MacData), 8-bit empty byte (U2MacKeep), and end flag (U2MacLast).

3) After receiving the final data of a packet (U2MacLast=’1’ and U2MacValid=’1’),
U2MacReady is de-asserted to ‘0’ to pause data transmission for reading FfDataCnt.

4) If FfDataCnt shows free space of FIFO is enough, U2MacReady will be re-asserted to ‘1’
in the next cycle.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 7

Figure 2-5 Timing diagram of data transferring from FIFO to EMAC

1) The new packet starts transmission when the FIFO stores some data (FfDataCnt[10:2] ≠

0) and the packet is not transmitting (tx_axis_tvalid=’0’). To start data transmission,
tx_axis_tvalid is asserted to ‘1’ with the valid output signals to EMAC, i.e., 64-bit
tx_axis_tdata, 8-bit tx_axis_tkeep, and tx_axis_tlast.

2) If the data is transmitted to EMAC completely (tx_axis_tvalid =’1’ and tx_axis_tready=’1’),
wFfRdAck is asserted to ‘1’ to read the next data from FIFO.

3) If tx_axis_tready is de-asserted to ‘0’, wFfRdAck will be de-asserted to ‘0’ to pause
reading the new data from FIFO. Therefore, all output signals sent to EMAC hold the
same value until EMAC re-asserts tx_axis_tready to 1’.

4) After the final data of a packet is transferred completely (tx_axis_tlast=’1’ and
tx_axis_tready=’1’), tx_axis_tvalid is de-asserted to ‘0’ to pause data transmission and
check data size in FIFO for transferring the next packet.

5) The next packet is transmitted when FIFO has enough data. It returns to step 1 to transmit
the new packet.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 8

2.3 MAC25GRxIF

Figure 2-6 MAC25GRxIF Timing diagram

Rx interface timing diagram of Ethernet (MAC) Subsystem and TOE25G-IP are different.
TOE25G-IP needs to receive data of one packet continuously, but Xilinx EMAC does not
support this feature. EMAC may de-assert valid signal to pause transmitting data before the
end of the packet.

MAC25GRxIF is designed to store one packet data transmitted from EMAC and then
forward to TOE25G-IP without pausing data transmission. The FIFO depth is 4096 which is
enough for storing several Ethernet packets. The FIFO is First-Word Fall-Through FIFO,
similar to MAC25GTxIF.

Remain packet counter counts the number of packets stored in the FIFO. The counter is
increased when the new packet is received from EMAC while the counter is decreased
when the packet is transferred to TOE25G-IP completely.

The operation of MAC25GRxIF is split into two parts. First is the logic for transferring a
packet from EMAC to FIFO. Second is the logic for transferring a packet from FIFO to
TOE25G-IP. Timing diagrams of each part are displayed on Figure 2-7 and Figure 2-8.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 9

Figure 2-7 Timing diagram for transferring data from EMAC to FIFO

1) FfDataCnt is read to check the free space size. If FfDataCnt is less than 2944 (the free

space in FIFO is more than 1153), it is enough for storing the maximum packet size (9014
bytes). Also, rPacTrans must be equal to 0 to confirm the packet is not in transmitting.
After that, rx_axis_tready is asserted to ‘1’ to start data reception from EMAC.

2) When rx_axis_tvalid is asserted to ‘1’ to transfer the new packet, the data and control
signals from EMAC are stored to FIFO, i.e., 64-bit rx_axis_tdata, 8-bit rx_axis_tkeep,
rx_axis_tlast, and rx_axis_tuser. rFfWrEn is asserted to ‘1’ to write 74-bit data to FIFO.

3) After the first data of a packet is received, rPacTrans is asserted to ‘1’ until receiving the
end of packet. Therefore, rPacTrans can be applied to monitor the packet transmission
status.

4) If the final data of a packet is received and free space size in FIFO is not enough
(FFDataCnt≥2944), rx_axis_tready will be de-asserted to ‘0’ to pause data reception.

5) After the final data of a packet is received, rPacTrans is de-asserted to ‘0’ to change
packet transmission status from Busy to Idle.

6) After storing the final data of a packet to FIFO (rFfWrEn=’1’ and rFfWrData[72] which is
last flag =’1’), rPacCnt which is the counter to show total number of packet stored in FIFO
is increased by 1.

7) If the next packet is received but rx_axis_tready is still de-asserted to ‘0’, that received
packet will be dropped and not be stored to FIFO.

8) rx_axis_tready is re-asserted to ‘1’ when there is no packet transmitted and free space
size in FIFO is enough.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 10

Figure 2-8 Timing diagram of data transferring from FIFO to TOE25G-IP

1) The packer forwarding from FIFO to TOE25G-IP begins when at least one packet is

stored in FIFO (rPacCnt which shows the number of packets stored in FIFO is not equal
to 0). Mac2UValid is asserted to ‘1’ to start data transmission.

2) The read data output from FIFO are applied to be the data and control signals sent to
TOE25G-IP, i.e., 64-bit Mac2UData, 8-bit Mac2UKeep, Mac2ULast, and Mac2UUser.
Mac2UValid is asserted to ‘1’ until the end of packet to transfer the data and control
signals to TOE25G for each packet continuously.

3) After each data is transferred to TOE25G-IP completely (Mac2UValid=’1’ and
Mac2UReady=’1’), wFfRdAck is asserted to ‘1’ to read the next data.

4) After the final data of a packet is transferred (aMac2ULast=’1’ and Mac2UValid=’1’),
Mac2UValid and wFfRdAck are de-asserted to ‘0’ to pause a packet transmission. Also,
rPacCnt are decreased by 1 after completing transferring one packet.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 11

2.4 TxEMacMux2to1

This module is data switch to select transmitted data from two sources to forward to EMAC.
rChSel is the control signal to select the active channel. When two channels are requested
in Idle condition, the same channel is selected. After finishing the current channel
transferring, rChSel changes the value to transfer the data from another channel. More
details are shown in Figure 2-9.

Figure 2-9 TxEMacMux2to1 timing diagram

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 12

1) When two user sends the new packet by asserting U2MuxTxValid to ‘1’ at the same time

and now the module is in Idle condition, rChSel (the signal to indicate the active channel)
does not change the value to forward the data from the same channel to EMAC. In Figure
2-9, the Ch#0 is selected, so U2MuxTxReady of the selected channel (Ch#0) is asserted
to ‘1’ to accept the first data.

2) The input signals of the selected channel (Ch#0), i.e., U2MuxTxEOP#0 (end-of-packet)
and U2MuxTxData[63:0] (64-bit data) are loaded to the output signals of EMAC (tx_last
and tx_data, respectively). Also, tx_valid is asserted to ‘1’ to start sending the new packet
to EMAC.

3) When EMAC is not ready to receive data by de-asserting tx_ready to ‘0’, all output signals
of EMAC hold the same value. Also, U2MuxTxReady of the active channel is de-asserted
to ‘0’ to hold the input signals from the source.

4) After EMAC re-asserts tx_ready to accept the data, the next output signals to EMAC will
be loaded from the internal latch register (rTxDataLat). The internal latch register is
designed to load the data from the active source when U2MuxTxReady is asserted to ‘1’.
Therefore, the latch register is applied to store the unsent data to EMAC when EMAC
pauses data transmission.

5) After accepting the final data of a packet from the active channel, the next active channel
is scanned. If U2MuxTxValid of another channel is asserted, rChSel will switch the value.
In Figure 2-9, the next active channel is Ch#1 (rChSel=‘1’) to accept the data from Ch#1.

6) The input signals (U2MuxTxEOP and U2MuxTxData) of the active channel (Ch#1) are
forwarded to be the output signals of EMAC (tx_last and tx_data) until transferring the final
data of a packet

2.5 TOE25G-IP

TOE25G-IP implements TCP/IP stack and offload engine. User interface has two signal
groups, i.e., control signals and data signals. Register interface is applied to set control
registers and monitor status signals. Data signals are accessed by using FIFO interface.
The interface with 25G EMAC is 64-bit AXI4 interface. More details are described in
datasheet.
https://dgway.com/products/IP/TOE25G-IP/dg_toe25gip_data_sheet_xilinx.pdf

https://dgway.com/products/IP/TOE25G-IP/dg_toe25gip_data_sheet_xilinx.pdf
https://dgway.com/products/IP/TOE25G-IP/dg_toe25gip_data_sheet_xilinx.pdf

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 13

2.6 User2MAC

Figure 2-10 User2MAC block diagram

User2MAC is responsible to transfer Ethernet packet by using low-speed connection. Two
protocols are implemented in the reference design. First is Ping command which is ICMP
protocol for checking round-trip time. ICMP echo reply packet is returned after receiving
ICMP echo request packet. Second is DHCP for dynamic IP address assignment. To
operate DHCP, UDP protocol is configured to User2MAC. The Ethernet packet is created
and decoded by CPU via LAxi2Reg. Data bus width on LAxi2Reg side is 32 bits while data
bus width on MAC I/F is 64 bits.

User2MAC consists of two modules, i.e., UserTxMAC and UserRxMAC. UserTxMAC
includes TxRAM for storing Ethernet packet that is prepared by CPU firmware. While
UserRxMAC includes RxRAM for storing Ethernet packet from EMAC. Before storing the
packet to RxRAM, there is filtering logic to verify some Ethernet data. Only the valid Ethernet
packet is stored to RxRAM while the invalid packet is rejected. After that, CPU reads
RxRAM to decode the packet. More details of UserTxMAC and UserRxMAC are described
as follows.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 14

UserTxMAC

UserTxMAC includes 1024 x 32-bit to 64-bit Asynchronous dual port RAM to store the
transmitted packet that is written by CPU via UserTxRam write I/F. Packet size
(UserTxMacLen) is also set by CPU. After CPU asserts the request (UserTxMacReq), the
logic starts forwarding the packet read from TxRAM to EMAC. Transmit interface of EMAC is
64-bit AXI4 stream which may de-assert ready (TxReady) to pause data transmission. After
finishing the packet transmission to EMAC, busy signal (UserTxMacBusy) is de-asserted to
‘0’. More details about the logic design inside UserTxMAC is shown in Figure 2-11.

Figure 2-11 UserTxMAC Logic Diagram

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 15

The steps to transmit a packet from UserTxMAC are described as follows.

1) CPU checks that UserTxMacBusy=’0’ to confirm UserTxMAC is in Idle state.
2) CPU prepares a transmitted packet to TxRAM. The first data is written at address#0.

(UserTxRamWrAddr=0). Therefore, the maximum transmitted packet size is 4 Kbytes
which is the size of TxRAM.

a. Note: TxRAM has byte enable to allow CPU to write TxRAM by using byte unit.
3) CPU sets UserTxMacLen to set transmit packet size in byte unit. Also, UserTxMacReq is

asserted to ‘1’ to begin data transmission.
4) After that, the request signal is transferred to MacClk domain via AsyncReg module. Also,

UserTxMacBusy is asserted to ‘1’ to show user that the operation is run. Total transfer size
(UserTxMacLen) is loaded to internal logic. The transfer size is split into two parts. First is
the amount of 64-bit data which is calculated by using UserTxMacLen[11:3]. The value is
rounded up when the size is not aligned to 64-bit. Another part is bit[2:0] which is latched to
create the byte enable of the final data of a packet (rLastByteEn and TxKeep) by using
decoder.

5) When the start flag on MacClk domain is asserted, the first data is read from TxRAM and
the data valid (TxValid) is asserted to ‘1’. The read address (wTxRamRdAddr) is
up-counted to transfer the next data from TxRAM after finishing each data transferring
(TxValid=’1’ and TxReady=’1’). Also, the Length counter (rLenCnt) is down-counted when
finishing transferring each data to check the last data position.

6) When rLenCnt=1 or the next data is the final data of a packet, last flag (TxLast) is asserted
to ‘1’. Also, byte enable (TxKeep) loads the last value from rLastByteEn. TxKeep is equal
to all one to send 64-bit data when the data is not the final data of a packet.

7) After the final data is transferred, End flag (rTrnEnd) is asserted for de-asserting busy flag.
It needs to pass AsyncReg to transfer the End flag from MacClk to Clk domain.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 16

UserRxMAC

UserRxMAC has three operations to validate the received packet and store the valid packet
to RxRAM which is 512 x 64-bit to 32-bit Asynchronous dual port RAM. Therefore, the logic
inside UserRxMAC can be divided to three groups. First is the logic to verify 38-byte header
(byte#0 – byte#37) of each received packet. The expected value and mask bit to enable
data comparison are set by user. Only the packet that includes the correct header can be
bypassed. Second is the logic to check enable flag from user and free space in RxMacFf.
The packet will be rejected if the user disable this module or FIFO has not enough space.
RxMacFf is applied to store the end address of RxRAM after finishing storing the received
packet. Therefore, CPU determines the received packet size from the end address. Third is
the logic to store the received packet to RxRAM. More details about the logic design inside
UserRxMAC is shown in Figure 2-12.

Figure 2-12 UserRxMAC Logic Diagram

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 17

As shown in Figure 2-12, Block (1) is the logic to verify 38-byte header of each packet. Block
(2) is the logic to store the end address of RxRAM and Block (3) is the logic to store the
received packet. The details of UserRxMAC operation when the packet is received are
described as follows.

1) Two parameters are configured by user – 38-byte header data (UserRxHdData) and

38-bit data mask to verify the packet header (UserRxHdMask). Both parameters must be
stable when user enables this module by asserting UserRxMacEn to ‘1’. The parameters
must be forwarded to AsyncReg for clock domain crossing. When the first data of the new
packet is received, SOPDet asserts the signal to start Compare module. 38-byte header
data is compared to byte#0 - byte#37 of received data which is received for 5 clock cycles.
SOPDet is fed to shift register to generate enable flag for comparing the data for 5 cycles.
Also, 38-bit data mask bit is applied to be enable flag for 38-byte data (one bit for one
byte). If data mask is de-asserted to ‘0’, that data byte is bypassed. Therefore, header
verification is disabled if UserRxHdMask is set to all zero.

2) Next, two signals are additional read - enable flag from user (UserRxMacEn) and
RxMacFf data counter (UserRxMacFfWrCnt). It needs to confirm that CPU is ready for
processing the received packet by asserting UserRxMacEn to ‘1’ and the logic has
enough free space to store received packet and write pointer of RxRAM. Bit4 of
UserRxMacFfWrCnt must be equal to 0. If both conditions are met and the header is valid
(rHdOK=’1’), RxMacFf stores the RAM address after finishing storing each packet to
RxRAM by asserting rUserRxMacFfWrEn to ‘1’. Therefore, EOPDet is designed to assert
a pulse when end of packet is received.

3) When the new packet is received, the packet is always stored to RxRAM. However, the
start address to store the new packet is loaded from the last write address of the valid
packet (rLastAddrLat). Therefore, when the invalid packet is stored to RxRAM, it will be
replaced by the new packet. The valid packet is stored to RxRAM by asserting write
enable to RxRAM (rRxRamWrEn) when the data is received (RxValid=’1’). The address
counter is counted after each 64-bit data is stored to RxRAM.
Note: Using Bit4 of UserRxMacFfWrCnt for checking FIFO space, up to 16 addresses
can be stored to RxMacFf. Therefore, up to 16 packets can be stored to RxRAM. Since
RxRAM size is 4 Kbyte, one packet size should be not more than 256 bytes. However, the
user can modify RAM size and FIFO size to match with user system requirement.

The CPU function for processing the received packet that stores in UserRxMAC is described
as follows.
1) CPU waits until FIFO is not empty (UserRxMacFfEmpty=’0’).
2) CPU read the last address via UserRxMacFfRdData signal which is valid for read

because RxMacFf is FWFT FIFO.
3) After that, CPU asserts UserRxMacFfRdAck to ‘1’ to flush the read data from RxMacFf.
4) CPU reads and decodes one received packet from RxRAM, starting from the latest read

position to the last address that reads from RxMacFf. After finishing packet processing,
CPU returns to step 1 to wait and process the next packet.
Note: UserRxRamRdAddr is the address for 32-bit data while rRxRamWrAddr is the
address for 64-bit data. Therefore, CPU firmware must convert the 64-bit address that is
stored in RxMacFf to 32-bit address before starting reading data from RxRAM.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 18

2.7 CPU and Peripherals

32-bit AXI4-Lite is applied to be the bus interface for the CPU accessing the peripherals
such as Timer and UART. To control and monitor the test system, the control and status
signals are connected to register for CPU access as a peripheral through 32-bit AXI4-Lite
bus. CPU assigns the different base address and the address range to each peripheral for
accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. So, the hardware logic must be designed to support AXI4-Lite bus standard for
supporting CPU writing and reading. LAxi2Reg module is designed to connect the CPU
system as shown in Figure 2-13.

Figure 2-13 LAxi2Reg block diagram

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size (similar to
AXI4-Lite data bus size). Also, AsyncAxiReg includes asynchronous logic to support clock
domain crossing between CpuClk and UserClk.

UserReg has the register files for storing the parameters which are set to User2MAC and
TOE25G-IP. Also, the status signals of User2MAC and TOE25G-IP are mapped for CPU
reading. The data interface of User2MAC uses simple dual-port RAM interface while the
data interface of TOE25G-IP uses FIFO interface. More details of AsyncAxiReg and
UserReg are described as follows.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 19

2.7.1 AsyncAxiReg

Figure 2-14 AsyncAxiReg interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi
_slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. The
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-14. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly,
Read control I/F of AXI4-Lite bus are latched and transferred to be Read register interface.
While the returned data from Register Read I/F is transferred to AXI4-Lite bus by using clock
domain crossing registers. In register interface, RegAddr is shared signal for write and read
access, so it loads the address from LAxiAw for write access or LAxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write
transaction. The read transaction of the register interface is slightly modified from RAM
interface by adding RdReq and RdValid signals for controlling read latency time. The
address of register interface is shared for write and read transaction, so user cannot write
and read the register at the same time. The timing diagram of the register interface is shown
in Figure 2-15.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 20

Figure 2-15 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. So, the address
can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to
‘1’. After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 21

2.7.2 UserReg

Figure 2-16 UserReg block diagram

The logic inside UserReg has three operations, i.e., Address decoder with Register File for
write access and Register Mux for read access, Pattern generator (PattGen), and Pattern
verification (PattVer). More details are described as follows.

Address decoder with Register File and Register Mux
As shown in Figure 2-16, the address range, mapped to UserReg, is split into eight areas.
1) 0x0000 – 0x0FFF: Register interface of TOE25G-IP
2) 0x0000 – 0x1FFF: PattGen and PattVer signals for transferring data with TOE25G-IP
3) 0x2000 – 0x2FFF: Control and status signals of UserTxMAC
4) 0x3000 – 0x3FFF: Write interface of Tx RAM inside UserTxMAC
5) 0x4000 – 0x4FFF: Control and status signals of UserRxMAC
6) 0x5000 – 0x5FFF: Read interface of Rx RAM inside UserRxMAC
7) 0x6000 – 0x6FFF: Status signal of EMAC

The upper bits of RegAddr are applied to select the active module for writing or reading while
the lower bits of RegAddr are forwarded to each module to access the internal signals within
each module. The details of register map are shown in Table 2-1.

To read register, it includes many multiplexers to select the data from each module.
Therefore, the read latency time is increased from the multiplexer. The slowest path to return
read data is the read data from UserRxRAM which has three clock cycles latency time.
Therefore, RegRdValid is created by RegRdReq with asserting three D Flip-flops.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 22

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the

“ping25gtest.c” and

“dhcp25gtest.c”)

BA+0x0000 – BA+0x00FF: TOE25G-IP Register Area

More details of each register are described in TOE25G-IP datasheet.

BA+0x0000 TOE_RST_INTREG Mapped to RST register within TOE25G-IP

BA+0x0004 TOE_CMD_INTREG Mapped to CMD register within TOE25G-IP

BA+0x0008 TOE_SML_INTREG Mapped to SML register within TOE25G-IP

BA+0x000C TOE_SMH_INTREG Mapped to SMH register within TOE25G-IP

BA+0x0010 TOE_DIP_INTREG Mapped to DIP register within TOE25G-IP

BA+0x0014 TOE_SIP_INTREG Mapped to SIP register within TOE25G-IP

BA+0x0018 TOE_DPN_INTREG Mapped to DPN register within TOE25G-IP

BA+0x001C TOE_SPN_INTREG Mapped to SPN register within TOE25G-IP

BA+0x0020 TOE_TDL_INTREG Mapped to TDL register within TOE25G-IP

BA+0x0024 TOE_TMO_INTREG Mapped to TMO register within TOE25G-IP

BA+0x0028 TOE_PKL_INTREG Mapped to PKL register within TOE25G-IP

BA+0x002C TOE_PSH_INTREG Mapped to PSH register within TOE25G-IP

BA+0x0030 TOE_WIN_INTREG Mapped to WIN register within TOE25G-IP

BA+0x0034 TOE_ETL_INTREG Mapped to ETL register within TOE25G-IP

BA+0x0038 TOE_SRV_INTREG Mapped to SRV register within TOE25G-IP

BA+0x003C TOE_VER_INTREG Mapped to VER register within TOE25G-IP

BA+0x0040 TOE_DML_INTREG Mapped to DML register within TOE25G-IP

BA+0x0044 TOE_DMH_INTREG Mapped to DMH register within TOE25G-IP

BA+0x1000 – BA+0x10FF: UserReg control/status

BA+0x1000 Total transmit length Wr [31:0] – Total amount of transmitted data in 128-bit unit.

Valid from 1-0xFFFFFFFF.

Rd [31:0] – Current amount of transmitted data in 128-bit unit.

The value is cleared to 0 when USER_CMD_INTREG is written by user.

Wr/Rd (USER_TXLEN_INTREG)

BA+0x1004 User Command Wr

[0] – Start transmitting. Set ‘0’ to start transmitting data.

[1] – Data verification enable

(‘0’: Disable data verification, ‘1’: Enable data verification)

Rd

[0] – Busy of PattGen inside UserReg (‘0’: Idle, ‘1’: PattGen is busy)

[1] – Data verification error (‘0’: Normal, ‘1’: Error)

This bit is auto-cleared when user starts new operation or reset.

[2] – Mapped to ConnOn signal of TOE25G-IP

Wr/Rd (USER_CMD_INTREG)

BA+0x1008 User Reset Wr

[0] – Reset signal. Set ‘1’ to reset UserReg. This bit is auto-cleared to ‘0’.

[8] – Set ‘1’ to clear TimerInt latched value

Rd

[8] – Latched value of TimerInt output from IP

(‘0’: Normal, ‘1’: TimerInt=’1’ is detected)

This flag can be cleared by system reset condition or setting

USER_RST_INTREG[8]=’1’.

Wr/Rd (USER_RST_INTREG)

BA+0x100C FIFO status Rd[3:0] - Mapped to TCPRxFfLastRdCnt signal of TOE25G-IP

[15:4] - Mapped to TCPRxFfRdCnt signal of TOE25G-IP

[24] - Mapped to TCPTxFfFull signal of TOE25G-IP

Rd (USER_FFSTS_INTREG)

BA+0x1010 Total receive length Rd[31:0] – Current amount of received data in 128-bit unit

The value is cleared to 0 when USER_CMD_INTREG is written by user. Rd (USER_RXLEN_INTREG)

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 23

Address Register Name Description

Wr/Rd (Label in the

“ping25gtest.c” and

“dhcp25gtest.c”)

BA+0x2000 – BA+0x3FFF: UserTxMAC

BA+0x2000 UserTxMAC transmit length Wr [11:0] – Total amount of transmitted data in byte unit.

Valid from 1 – 4095.

UserTxMAC starts transmitting packet to EMAC after this register is set.

Rd [0] – Busy flag of UserTxMAC (‘0’: Idle, ‘1’: Busy)

Wr/Rd (TXEMAC_LEN_INTREG)

BA+0x3000-

BA+0x3FFF

TxRAM in UserTxMAC TxRAM for storing transmitted packet that is created by CPU for slow-port

connection

Wr (TXRAM_BASE_ADDR)

BA+0x4000 – BA+0x5FFF: UserRxMAC

BA+0x4000 –

BA+0x4027

UserRxMAC header data 38-byte header data set to packet filtering inside UserRxMAC for comparing

byte#0-byte#37 of the received packet. To start UserRxMAC operation,

RXEMAC_CMD_INTREG[0] must be set to ‘1’ (enable received packet)

0x4000[7:0], [15:8], [23:16], [31:24] – byte#0, #1, #2, #3
0x4004[7:0], [15:8], [23:16], [31:24] – byte#4, #5, #6, #7
…
0x4020[7:0], [15:8], [23:16], [31:24] – byte#32, #33, #34

0x4024[7:0], [15:8] – byte#36, #37

Wr (RXEMAC_HDVAL_ADDR)

BA+0x4040 –

BA+0x4047

UserRxMAC header byte

enable

Byte enable to verify 38-byte header data. One bit is referred to one byte.

0x4040[0], [1], [2], …, [31] – Enable of byte#0, #1, #2, …, #31

0x4044[0], [1], [2], …, [5] – Enable of byte#32, #33, #34, …, #37

‘0’: Disable byte filtering (Bypass), ‘1’: Enable byte filtering

Wr (RXEMAC_HDEN_ADDR)

BA+0x4060 UserRxMAC Command [0] – UserRxMAC enable

‘0’: Disable UserRxMAC, ‘1’: Enable UserRxMAC

[1] – UserRxMAC FIFO read enable

User sets this bit to ‘1’ after finishing reading data from RxMacFf

(RXEMAC_FF_INTREG[8:0]). The FIFO read enable is asserted to ‘1’ for

one cycle when this bit is written to ‘1’ by user.

Wr (RXEMAC_CMD_INTREG)

BA+0x4064 UserRxMAC FIFO [8:0] – Read data of RxMacFf

[15] – Empty flag of RxMacFf Rd (RXEMAC_FF_INTREG)

BA+0x5000 –

BA+0x5FFF

RxRAM in UserRxMAC RxRAM for storing received packet that has the valid header.

CPU reads received packet for slow-port connection processing

Rd RXRAM_BASE_ADDR

BA+0x6000 – BA+0x6FFF: Ethernet MAC

BA+0x6000 EMAC IP version [31:0] – Mapped to IPVersion output from DG 10G25GEMAC-IP when the

system integrates DG 10G25GEMAC-IP. In this demo, it is equal to 0 Rd (EMAC_VER_INTREG)

BA+0x6004 EMAC Status [0] – Ethernet linkup status from Ethernet MAC

(‘0’: Not linkup, ‘1’: Linkup) Rd (EMAC_STS_INTREG)

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 24

Pattern Generator

Figure 2-17 PattGen block

Figure 2-18 PattGen timing diagram

Figure 2-17 shows the details of PattGen which generates test data to TOE25G-IP. Timing
diagram to show the relation of each logic is displayed in Figure 2-18.

To start PattGen operation, the user sets USER_CMD_INTREG[0]=’0’ and then rTxTrnEn is
asserted to ‘1’. When rTxTrnEn is ‘1’, TCPTxFfWrEn is controlled by TCPTxFfFull.
TCPTxFfWrEn is de-asserted to ‘0’ when TCPTxFfFull is ‘1’. rTotalTxCnt is the data counter
to check total amount of transmitted data to TOE25G-IP. Also, rTotalTxCnt is used to
generate 32-bit incremental data for TCPTxFfWrData signal. After all data is transferred
completely (Total amount of data is equal to rSetTxSize-1), rTxTrnEn is de-asserted to ‘0’.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 25

Pattern Verification

Figure 2-19 PattVer block

Figure 2-20 PattVer Timing diagram

Figure 2-19 shows the details of PattVer logic for reading the data from TOE25G-IP with or
without data verification, controlled by rVerifyEn flag which is set by the user. Timing diagram
of the logic is displayed in Figure 2-20.

When rVerifyEn is set to ‘1’, data comparison is enabled to compare read data
(TCPRxFfRdData) with the expected pattern (wExpPatt). If data verification is failed, rFail is
asserted to ‘1’. TCPRxFfRdEn is designed by using NOT logic of TCPRxFfRdEmpty.
TCPRxFfRdData is valid for data comparison in the next clock. rRxFfRdEn, one clock
latency of TCPRxFfRdEn, is applied to be counter enable of rTotalRxCnt, counting total
amount of received data. rTotalRxCnt is used to generate wExpPatt, so wExpPatt is valid at
the same time as TCPRxFfRdData valid.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 26

3 CPU firmware and Test software of Ping demo

The Ping firmware is modified from the standard TOE25G-IP which supports one fast-port
connection to support slow-port operation. The ICMP protocol is implemented to generate ICMP
Echo reply after receiving ICMP Echo request. More details of Ping demo are described as
follows.

Note: The standard reference design document can be downloaded by following website.
https://dgway.com/products/IP/TOE25G-IP/dg_toe25gip_cpu_refdesign_xilinx.pdf

3.1 Firmware sequence

After FPGA boot-up, 25G Ethernet link status (EMAC_STS_INTREG[0]) is polling. The CPU
waits until Ethernet link is established. Next, welcome message is displayed and user
selects the initialization mode of TOE25G-IP to be Client, Server, or Fixed-MAC. To run the
test with PC, it is recommended to set initialization mode to be Client mode to get the MAC
address of the target device by sending ARP request. After that, the default parameters are
displayed on the console. User enters the keys to start the initialization by using default
parameters or updated parameters, as shown in Figure 3-1.

Figure 3-1 Boot menu of Ping demo

There are four steps to complete initialization process, described as follows.
1) CPU receives the initialization mode and then displays default parameters of the selected

mode on the console.
2) User inputs ‘x’ to complete initialization process by using default parameters. Other keys

are set for changing some parameters. More details for changing some parameters are
described in Reset IP menu (topic 3.1.2).

3) CPU waits until TOE25G-IP finishes initialization process (TOE_CMD_INTREG[0]=’0’).
4) Main menu is displayed. There are six test operations for user selection. More details of

each menu are described as follows.

https://dgway.com/products/IP/TOE25G-IP/dg_toe25gip_cpu_refdesign_xilinx.pdf

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 27

3.1.1 Display parameters

This menu is used to show current parameters of TOE25G-IP, i.e., the initialization mode,
Windows update threshold, Reverse packet enable, source MAC address, destination IP
address, source IP address, destination port, source port, and destination MAC address
(when using Fixed MAC mode). The sequence of display parameters is as follows.
1) Read all network parameters from each variable in firmware.
2) Print out each variable.

3.1.2 Reset IP

This menu is used to change TOE25G-IP parameters such as IP address and source port
number. After setting updated parameter to TOE25G-IP register, the CPU resets the IP to
re-initialize by using new parameters. Finally, the CPU monitors busy flag to wait until the
initialization is completed. The sequence to reset IP is as follows.
1) Display current parameter value to the console.
2) Receive initialization mode from user and confirm that the input is valid. If initialization

mode is changed, the latest parameter set of new mode is displayed on the console.
3) Receive remaining input parameters from user and check if input is valid or not. When the

input is invalid, the parameter is not updated.
4) Reset PattGen and PattVer logic by sending reset to user logic

(USER_RST_INTREG[0]=’1’).
5) Force reset to IP by setting TOE_RST_INTREG[0]=’1’.
6) Set all parameters to TOE25G-IP register such as TOE_SML_INTREG and

TOE_DIP_INTREG.
7) De-assert IP reset by setting TOE_RST_INTREG[0]=’0’. After that, TOE25G-IP starts the

initialization process.
8) Monitor IP busy flag (TOE_CMD_INTREG[0]) until the initialization process is completed

(busy flag is de-asserted to ‘0’).

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 28

3.1.3 Send data test

Three user inputs are received to set total transmit length, packet size, and connection
mode (active open for client operation or passive open for server operation). The operation
is cancelled if some inputs are invalid. During running the test, 32-bit incremental data is
generated from the logic and sent to PC. Data is verified by Test application on PC. The
operation is finished when total data are transferred from FPGA to PC. The sequence of the
test is as follows.
1) Receive transfer size, packet size, and connection mode from user and verify if all inputs

are valid.
2) Set UserReg registers, i.e., transfer size (USER_TXLEN_INTREG), reset flag to clear

initial value of test pattern (USER_RST_INTREG[0]=’1’), and command register to start
data pattern generator (USER_CMD_INTREG=0). After that, test pattern generator in
UserReg starts sending data to TOE25G-IP.

3) Display recommended parameters of test application on PC by reading current system
parameters.

4) Open connection following connection mode setting.
i) For active open, CPU sets TOE_CMD_INTREG=2 (Open port) and waits until ConnOn

status (USER_CMD_INTREG[2]) is equal to ‘1’.
ii) For passive open, CPU waits until connection is opened by another device (PC).

ConnOn status (USER_CMD_INTREG[2]) is monitored until it is equal to ‘1’.
5) Set packet size to TOE25G-IP register (TOE_PKL_INTREG) and calculate total number

of loops from total transfer size. Maximum transfer size of each loop is 4 GB. The
operation of each loop is as follows.
i) Set transfer size of this loop to TOE25G-IP register (TOE_TDL_INTREG). Transfer

size is fixed to 4 GB except the last loop which is equal to the remaining size.
ii) Set send command to TOE25G-IP register (TOE_CMD_INTREG=0).
iii) Wait until operation is completed by monitoring busy flag (TOE_CMD_INTREG[0]=’0’).

During monitoring busy flag, CPU reads current amount of transmitted data from user
logic (USER_TXLEN_INTREG) and displays the results on the console every second.

6) Set close connection command to TOE25G-IP register (TOE_CMD_INTREG=3).
7) Calculate performance and show test result on the console.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 29

3.1.4 Receive data test

User sets total amount of received data, data verification mode (enable or disable), and
connection mode (active open for client operation or passive open for server operation). The
operation is cancelled if some inputs are invalid. During running the test, 32-bit incremental
data is generated to verify the received data from another device (PC) when data verification
mode is enabled. The sequence of this test is as follows.
1) Receive total transfer size, data verification mode, and connection mode from user input.

Verify that all inputs are valid.
2) Set UserReg registers, i.e., reset flag to clear the initial value of test pattern

(USER_RST_INTREG[0]=’1’) and data verification mode (USER_CMD_INTREG[1]=’0’ or
‘1’).

3) Display recommended parameter (similar to Step 3 of Send data test).
4) Open connection following connection mode (similar to Step 4 of Send data test).
5) Wait until connection is closed by another device (PC). Connon status

(USER_CMD_INTREG[2]) is monitored until it is equal to ‘0’. During monitoring Connon,
CPU reads current amount of received data from user logic (USER_RXLEN_INTREG)
and displays the results on the console every second.

6) Wait until all data are read by user logic completely by checking FIFO status
(USER_FFSTS_INTREG[15:0]=0).

7) Compare total amount of received data in user logic (USER_RXLEN_INTREG) with the
set value. If all data is completely received, CPU checks verification result by reading
USER_CMD_INTREG[1] (‘0’: normal, ‘1’: error). If some errors are detected, the error
message is displayed.

8) Calculate performance and show test result on the console.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 30

3.1.5 Full duplex test

This menu is designed to run full duplex test by transferring data between FPGA and another
device (PC) in both directions by using the same port number at the same time. Four inputs
are received from user, i.e., total data size for both transfer directions, packet size for FPGA
sending logic, data verification mode for FPGA receiving logic, and connection mode (active
open/close for client operation or passive open/close for server operation).

The transfer size set on FPGA must be matched to the size set on test application
(tcp_client_txrx_40G). Connection mode on FPGA must be set to passive (server operation).

The test runs in forever loop until the user cancels operation. The operation can be cancelled
by entering any keys on FPGA console and then entering Ctrl+C on PC console. The
sequence of this test is as follows.
1) Receive total data size, packet size, data verification mode, and connection mode from

the user and verify that all inputs are valid.
2) Display the recommended parameters of test application run on PC from the current

system parameters.
3) Set UserReg registers, i.e., transfer size (USER_TXLEN_INTREG), reset flag to clear the

initial value of test pattern (USER_RST_INTREG[0]=’1’), and command register to start
data pattern generator with data verification mode (USER_CMD_INTREG=1 or 3).

4) Open connection following the connection mode value (similar to Step 4 of Send data
test).

5) Set packet size to TOE25G-IP registers (TOE_PKL_INTREG=user input) and calculate
total transfer size in each loop. Maximum size of one loop is 4 GB. The operation of each
loop is as follows.

i) Set transfer size of this loop to TOE_TDL_INTREG. Transfer size is fixed to maximum
size (4GB) which is also aligned to packet size, except the last loop. The transfer size of
the last loop is equal to the remaining size.

ii) Set send command to TOE25G-IP register (TOE_CMD_INTREG=0).
iii) Wait until send command is completed by monitoring busy flag (TOE_CMD_INTREG[0]

=’0’). During monitoring busy flag, CPU reads current amount of transmitted data and
received data from user logic (USER_TXLEN_INTREG and USER_RXLEN_INTREG)
and displays the results on the console every second.

6) Close connection following connection mode value.
a. For active close, CPU waits until total amount of received data is equal to the set value

from user. Then, set USER_CMD_INTREG=3 to close connection. Next, CPU waits
until connection is closed by monitoring ConnOn (USER_CMD_INTREG[2]=’0’).

b. For passive close, CPU waits until the connection is closed by another device (PC or
FPGA). Connon status (USER_CMD_INTREG[2]) is monitored until it is equal to ’0’.

7) Check the result and the error (similar to Step 6-7 of Receive data test).
8) Calculate performance and show the test result on the console. Go back to step 3 to

repeat the test in forever loop.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 31

3.1.6 Ping reply test

When Test PC runs Ping command to check round-trip time, ICMP Echo request packet is
created by Test PC. Next, it waits until ICMP Echo reply is received to measure the latency
time. This menu is designed to configure the hardware to receive ICMP Echo request. If the
request packet is valid, ICMP Echo reply is created to be the response packet. Packet
structure of ICMP protocol for echo request/reply type is shown in Figure 3-2.

Figure 3-2 Packet structure for ICMP request/reply packet

The type value of the Echo request packet is equal to 8 while the type value of the Echo
reply is equal to 0. More information about Ping command is described from following
website.
http://en.wikipedia.org/wiki/Ping_(networking_utility)

Figure 3-3 ICMP Echo request packet filtering

http://en.wikipedia.org/wiki/Ping_(networking_utility)

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 32

The sequence to run Ping reply is described as follows.
1) Set the filtering parameters of UserRxMAC to receive only ICMP Echo request packet by

using init_filter function, as described in topic 3.2. The filtering data of ICMP Echo request
packet contains the following fields (blue color in Figure 3-3).

• Ethernet Type (2 bytes) = 0x0800 (IPv4)

• IP version (1 byte) = 0x45 (Version 4)

• Protocol (1 byte) = 0x01 (ICMP Protocol)

• Destination IP Address (4 bytes) = IP address of FPGA

• ICMP type (1 byte) = 0x08 (Echo Request)

• ICMP code (1 bytes) = 0x00 (Echo Request code)
Note: Figure 3-3 shows only 38-byte of ICMP packet, the actual size of ICMP packet is 42
bytes (Rest of header field is excluded) because the filtering logic in UserRxMAC module
is designed to support up to 38-byte header data.

2) Enable receive data mode of UserRxMac module (RXEMAC_CMD_INTREG[0]=’1’).
3) Wait until there is new packet stored in RxRAM by checking empty flag of RxMacFifo

(RXEMAC_FF_INTREG[15]=’0’).
4) Read and validate the last address of the received packet from RxMacFifo

(RXEMAC_FF_INTREG[8:0]). After that, asserts read acknowledge to flush the current
read data from RxMacFifo (RXEMAC_CMD_INTREG[1]=’1’).

5) Copy the received packet from RxRAM (RXRAM_BASE_ADDR) to receive temporal
buffer (rxbuff_ch) in the firmware.

6) Decode the received packet. Continue the next step if the packet is Echo request packet
and the parameters and checksum are correct. Otherwise, error message is displayed.

7) Prepare Echo reply packet in transmit temporal buffer (txbuff_ch) in the firmware. IP
checksum and ICMP checksum are calculated by CPU to be a part of Echo reply packet
header. After that, copy data from transmit temporal buffer (txbuff_ch) to TxRAM
(TXRAM_BASE_ADDR).

8) Set UserTxEMAC register to start data sending by setting TXMAC_LEN_INTREG=Echo
reply packet length.

9) Go back to step 2 to run the test in forever loop until the user cancel operation by pressing
any key on console.

10) Disable receive data mode (RXEMAC_CMD_INTREG[0]=’0’) before returning to main
menu. Therefore, the slow-port connection is not operated until this menu is re-selected.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 33

3.2 Function list in User application

This topic describes the function list to run the Ping firmware that can be divided into two
groups. The first group is the function list for operating TOE25G-IP and the second is the
function list for running the Ping test.

3.2.1 Function for operating fast-port connection by TOE25G-IP

void exec_port(unsigned int port_ctl, unsigned int mode_active)

Parameters port_ctl: 1-Open port, 0-Close port
mode_active: 1-Active open/close, 0-Passive open/close

Return value None

Description For active mode, write TOE_CMD_INTREG to open or close connection.
After that, call read_conon function to monitor connection status until it
changes from ON to OFF or OFF to ON, depending on port_ctl mode.

void init_param(void)

Parameters None

Return value None

Description Ask the user if the parameters are updated. After that, set the
parameters to TOE25G-IP registers from global parameters. After reset
is de-asserted, it waits until TOE25G-IP busy flag is de-asserted to ‘0’.

int input_param(void)

Parameters None

Return value 0: Valid input, -1: Invalid input

Description Receive network parameters from user, i.e., Mode, Reverse packet
enable, Window threshold, FPGA MAC address, FPGA IP address,
FPGA port number, Target IP address, Target port number, and Target
MAC address (when run in Fixed MAC mode). If the input is valid, the
parameter is updated. Otherwise, the value does not change. After
receiving all parameters, the current value of all parameter is displayed.

unsigned int read_conon(void)

Parameters None

Return value 0: Connection is OFF, 1: Connection is ON.

Description Read value from USER_CMD_INTREG register and return only bit2
value to show connection status.

void show_cursize(void)

Parameters None

Return value None

Description Read USER_TXLEN_INTREG and USER_RXLEN_INTREG and then
display the current amount of transmitted data and received data in Byte,
KByte, or MByte unit.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 34

void show_param(void)

Parameters None

Return value None

Description Display the current value of the network parameters set to TOE25G-IP
such as IP address, MAC address, and port number.

void show_result(void)

Parameters None

Return value None

Description Read USER_TXLEN_INTREG and USER_RXLEN_INTREG to display
total amount of transmitted data and received data. Next, read the global
parameters (timer_val and timer_upper_val) and calculate total time
usage to display in usec, msec, or sec unit. Finally, transfer performance
is calculated and displayed in MB/s unit.

int toe_recv_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following description in topic 3.1.4

int toe_send_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Send data test following description in topic 3.1.3

int toe_txrx_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Full duplex test following described in topic 3.1.5

void wait_ethlink(void)

Parameters None

Return value None

Description Read USER_RST_INTREG[16] and wait until ethernet connection is
established.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 35

3.2.2 Function for operating slow-port connection by CPU (Ping)

unsigned int cal_checksum (unsigned int byte_len, unsigned char *buf)

Parameters byte_len: The length of data in byte unit
buf: Pointer to the first byte data position

Return value 16-bit checksum of the data

Description Calculate the 16-bit checksum value of the data. User must prepare the
array of data in character data type and calculate the length of data.
Then calls the function by using the length of data and character pointer
to the first data in array. The return value is the calculated 16-bit
checksum value of the data.

void init_filter (void)

Parameters None

Return value None

Description Write RXEMAC_CMD_INTREG to pause the storing of received packet
in the slow-port connection. Next, Write RXEMAC_HDVAL_ADDR and
RXEMAC_HDEN_ADDR for filtering an ICMP Echo request packet as
shown in blue color text of Figure 3-3.

void ping_test (void)

Parameters None

Return value None

Description Run Ping reply test following description in topic 3.1.6

unsigned int prepare_rxbuffer (void)

Parameters None

Return value The length of received packet in byte unit.
Return 0 if there is no received packet.

Description Read RXEMAC_FF_INTREG to check whether there is any received
data packet in the slow-port connection or not. If received packet is
stored hardware, read the packet length from RxMacFifo by reading at
RXEMAC_FF_INTREG[8:0]. After that, flush the current data from
RxMacFifo by writing RXEMAC_CMD_INTREG[1]=’1’. Next, copy the
data from the hardware (RXRAM_BASE_ADDR) to the character array
variable in CPU. Finally, return the read length in byte unit.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 36

3.3 Test Software on PC

3.3.1 Tcpdatatest for half duplex

Figure 3-4 “tcpdatatest” application usage

“tcpdatatest” is designed to run on PC for sending or receiving TCP data via Ethernet as
server or client mode. PC of this demo should run in client mode. User sets parameters to
select transfer direction and the mode. Six parameters are required as follows.
1) Mode: c –PC runs in Client mode and FPGA runs in Server mode
2) Dir: t – transmit mode (PC sends data to FPGA)

r – receive mode (PC receives data from FPGA)
3) ServerIP: IP address of FPGA when PC runs in Client mode (default is 192.168.25.42)
4) ServerPort: Port number of FPGA when PC runs in Client mode (default is 4000)
5) ByteLen: Total transfer size in byte unit. This input is used in transmit mode only and

ignored in receive mode. In receive mode, the application is closed when the connection
is terminated. In transmit mode, ByteLen must be equal to the total transfer size, set in
receive data test menu of FPGA.

6) Pattern:
0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate incremental data in transmit mode or enable data verification in receive
mode.

Note: Window Scale is the optional parameter which is not used in the demo.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 37

Transmit data mode
Following sequence is the sequence when test application runs in transmit mode.
1) Get parameters from the user and verify that all inputs are valid.
2) Create the socket and set socket options.
3) Create the new connection by using server IP address and server port number.
4) Allocate 1 MB memory to be send buffer.
5) Skip this step if the dummy pattern is selected. Otherwise, generate the incremental test

pattern to send buffer.
6) Send data out and read total sent data from the function.
7) Calculate remaining transfer size.
8) Print total transfer size every second.
9) Repeat step 5) – 8) until the remaining transfer size is 0.

10) Calculate total performance and print the result on the console.
11) Close the socket and free the memory.

Receive data mode
Following sequence is the sequence when test application runs in receive mode.
1) Follow the step 1) – 3) of Transmit data mode.
2) Allocate memory to be receive buffer.
3) Read data from the receive buffer and increase total amount of received data.
4) This step is skipped if data verification is disabled. Otherwise, received data is verified by

the incremental pattern. Error message is printed out when data is not correct.
5) Print total amount of received data every second.
6) Repeat step 3) – 5) until the connection is closed.
7) Calculate total performance and print the result on the console.
8) Close socket and free the memory.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 38

3.3.2 tcp_client_txrx_40G” application

Figure 3-5 “tcp_client_txrx_40G” application usage

“tcp_client_txrx_40G” application is designed to run on PC for sending and receiving TCP
data through Ethernet by using the same port number at the same time. The application is
run in Client mode, so user needs to input server parameters (the network parameters of
TOE25G-IP). As shown in Figure 3-5, there are four parameters to run the application,
described as follow.

1) ServerIP : IP address of FPGA
2) ServerPort : Port number of FPGA
3) ByteLen : Total transfer size in byte unit. This is total amount of transmitted data
 and received data. This value must be equal to the transfer size set on
 FPGA for running full-duplex test.
4) Verification :
0 – Generate dummy data for sending function and disable data verification for receiving

function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate incremental data for sending function and enable data verification for receiving

function.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 39

The sequence of test application is as follows.
1) Get parameters from the user and verify that the input is valid.
2) Create the socket and set socket options.
3) Create the new connection by using server IP address and server port number.
4) Allocate 64 KB memory for send and receive buffer.
5) Generate incremental test pattern to send buffer when the test pattern is enabled. Skip

this step if dummy pattern is selected.
6) Send data out, read total send data from the function, and calculate remaining send size.
7) Read data from the receive buffer and increase total amount of received data.
8) Skip this step if data verification is disabled. Otherwise, data is verified by incremental

pattern. Error message is printed out when data is not correct.
9) Print total amount of transmitted data and received data every second.
10) Repeat step 5) – 9) until total amount of transmitted data and received data are equal to

ByteLen, set by user.
11) Calculate performance and print the result on the console.
12) Close the socket.
13) Sleep for 1 second to wait until the hardware completes the current test loop.
14) Run step 3) – 13) in forever loop. If verification is failed, the application is stopped.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 40

4 CPU Firmware and Test software of DHCP demo

Similar to the Ping firmware, the DHCP firmware is also modified from the standard TOE25G-IP to
operate the slow-port operation. The slow-port connection implements to support the DHCP
operation for dynamic IP address assignment (by DHCP server). More details of the DHCP
firmware are described as follows.

4.1 Firmware sequence

The boot-up sequence of DHCP test is different from the standard reference design and the
Ping firmware because the IP address is assigned by DHCP server (run on Test PC), not by
user. Thus, DHCP operation is run to get IP address before starting TOE25G-IP
initialization.

After FPGA boot-up, 25G Ethernet link status (EMAC_STS_INTREG[0]) is polling. The CPU
waits until Ethernet link is established. Next, the recommended DHCP parameters is
displayed and user selects to use the recommended DHCP parameters or to change the
parameters. The completion message of DHCP operation is displayed after the firmware
obtains the IP address by DHCP operation. Next, the message to start the IP initialization is
displayed and user selects the initialization mode of TOE25G-IP to be Client, Server, or
Fixed-MAC. To run the test with PC, it is recommended to set initialization mode to be Client
mode to get the MAC address of the target device by sending ARP request. After that, the
default parameters for TOE25G-IP initialization are displayed on the console. User enters
the keys to start TOE25G-IP initialization by using default parameters or updated
parameters, as shown in Figure 4-1.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 41

Figure 4-1 Boot menu of DHCP demo

There are seven steps to complete initialization process as follows.
1) Recommended DHCP parameters is displayed after booting the system.
2) User inputs ‘x’ to initial DHCP operation by using default parameters. Other keys are set

for changing some parameters. More details for changing some parameters are
described in Release IP address menu.

3) CPU completes the DHCP operation and displays the obtained parameters from server.
4) CPU receives the initialization mode and then displays default parameters of the selected

mode on the console.
5) User inputs ‘x’ to complete IP initialization process by using default parameters. Other

keys are set for changing some parameters. More details for changing some parameters
are described in Reset IP menu.

6) CPU waits until TOE25G-IP finishes initialization process (TOE_CMD_INTREG[0]=’0’).
7) Main menu is displayed. There are five test operations for user selection.

The test menus for running the fast port connection (menu[0] – menu[4]) have the same
operation as Ping demo. Please see more details from topic 3.1.1 - 3.1.5. However, there is
slightly modified in Reset IP menu to exclude the assignment of FPGA IP address and FPGA
MAC address. Both parameters are assigned by DHCP server in this test. Therefore, only
Release IP address menu is described in more details as follows.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 42

DHCP overview
After this menu is selected, the IP address that is assigned by DHCP will be released. After
that, the boot menu to start IP address assignment by DHCP is rerun. Therefore, this menu
is implemented for two functions, obtaining the IP address and releasing the IP address by
using slow-port connection to transmit and receive DHCP packet. The operation is handled
by CPU.

There are two DHCP packets to obtain the IP address, i.e., DHCP discover packet and
DHCP request packet. While there is only one DHCP packet transmitted to release the IP
address - DHCP release packet. Thus, CPU firmware needs to generate these DHCP
packets. On the contrary, there are three types of DHCP packet that implements in receiving
path for DHCP operation, i.e., DHCP offer, DHCP ACK, and DHCP NAK. Packet structure of
DHCP protocol is shown in Figure 4-2.

Figure 4-2 DHCP packet structure

The DHCP operation uses the UDP over IP protocol in order to communicate with other
devices. The operation to request IP address from the server is shown in Figure 4-3.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 43

Figure 4-3 Request IP address by DHCP

The operation begins with the client device (FPGA) broadcasting the DHCP discover packet.
After that, any DHCP servers (PC) that are in the same sub-network response the discover
packet by returning DHCP offer packet. In this state, the DHCP server offers the dynamic IP
address for client (FPGA IP address). After receiving the offer packet, the client sends
DHCP request packet to the server. Finally, the DHCP server returns DHCP ACK packet if
the offered IP address is allocated for client device. Otherwise, the server returns DHCP
NAK packet to reject the request from client device.

For releasing the IP address, the client device simply sends DHCP release packet with
some identification. After that, the DHCP server de-allocates the IP address of the client
device without sending any packets. More details about DHCP protocol, please refers to the
following website.
https://tools.ietf.org/html/rfc2131

To receive DHCP packet, the filtering logic is configured by setting the value as shown in
Figure 4-4.

Figure 4-4 DHCP packet filtering

https://tools.ietf.org/html/rfc2131

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 44

Request IP address by DHCP

The sequence to run DHCP to get IP address from DHCP server (coded in dhcp_init_ipaddr
function) is described as follows.
1) Display the latest (default) DHCP parameters on the console.
2) Receive user command to use the latest DHCP parameters or to update them before

starting DHCP operating. Skip the step 3 if not updating the latest DHCP parameters.
3) Receive input parameters from user and check if input is valid or not. When the input is

invalid, the parameter is not updated.
4) Set the filtering parameters of UserRxMAC to receive only DHCP packet by using

init_filter function, as described in topic 4.2. The filtering data of DHCP packet contains
the following fields (blue color in Figure 4-4).

• Ethernet Type (2 bytes) = 0x0800 (IPv4)

• IP version (1 byte) = 0x45 (Version 4)

• Protocol (1 byte) = 0x11 (UDP Protocol)

• Destination IP Address (4 bytes) = IP address of FPGA

• Source port (2 byte) = 0x0043 (DHCP server port)

• Destination port (2 bytes) = 0x0044 (DHCP client port)
Note: Figure 4-4 shows only 38-byte of DHCP packet, the actual size of DHCP packet is
larger than 38 bytes because the filtering logic in UserRxMAC module is designed to
support up to 38-byte header data.

5) Enable receive data mode of UserRxMac module (RXEMAC_CMD_INTREG[0]=’1’).
6) Start the timer for packet recovery of the DHCP discover packet.
7) Prepare DHCP discover packet in the transmit temporal buffer (txbuff_ch) which is a

global variable in CPU. Calculate length of the packet and set MAC/IP addresses of the
DHCP discover packet. After that, use “write_udpip” function to create UDP/IP header,
copy data from the transmit temporal buffer (txbuff_ch) to TxRAM (TXRAM_BASE_AD),
and start data transmission of TxEMAC by setting TXMAC_LEN_INTREG=packet length.

8) Wait until the DHCP offer packet is stored in RxRAM by using “prepare_rxbuffer” function
(checking the empty flag of RxMacFifo). If the timeout is found before receiving the offer
packet, resend the DHCP discover packet by stopping the timer and then returning to
step 6. Otherwise, continue to the next step for decoding the received packet.

9) The “prepare_rxbuffer” reads the last address of received packet from RxMacFifo and
then copies the received data from RxRAM to receive temporal buffer (rxbuff_ch) in the
firmware. After that, the received packet is decoded. Continue the next step if the
received packet is the DHCP offer packet and the parameters including checksum are
correct. Otherwise, return to step 8) to wait for the next received packet.

10) Reset the timer for packet recovery of the DHCP request packet. Next, initialize the
retransmission counter for the DHCP request process.

11) Prepare DHCP request packet in the transmit temporal buffer, similar to the step 7.
12) Wait until the DHCP request packet is stored in RxRAM by using “prepare_rxbuffer”

function.
a. If timeout is found and total retry times (Retransmission counter=4), terminate DHCP

operation and returning to step 1).
b. If the timeout is found, restart the timer and return to step 11). Also, increase the

retransmission counter.
c. Continue the next step if some packet is received.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 45

13) Similar to step 9), the received packet is decoded.

a. If the received packet is DHCP ACK packet, continue the next step.
b. If the received packet is DHCP NAK packet, terminate the DHCP operation by

returning to step 1).
c. Otherwise, return to step 12) to wait for the next received packet.

14) Display the DHCP completion message and the DHCP parameters that obtains from
DHCP server on the console. Now, the IP address is obtained successfully.

Release IP address by DHCP

The sequence to run DHCP to release IP address from DHCP server (coded in
dhcp_release_ipaddr function) is described as follows.
1) DHCP release packet is prepared by using the same procedure as step 7) of Request IP

address operation.
2) Display the completion message to acknowledge the user that IP address is released.

Next, wait for 2 seconds to delay the re-initialization process of DHCP operation.
3) Call “dhcp_init_ipaddr” function to get the IP address by DHCP.
4) Start TOE25G-IP initialization process, similar to menu [1] Reset TOE25G-IP. The

operation is completed after the TOE25G-IP finishes the initialization process.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 46

4.2 Function list in User application

This topic describes the function list to run the DHCP firmware. Similar to the Ping firmware,
the function list is split into two groups – fast-port connection and slow-port connection. The
details of fast-port connection function are similar to topic 3.2.1. The details of the function for
operating slow-port connection by CPU in DHCP application are described as follows.

There are the basic functions for operating slow-port connection which are similar to Ping
demo, i.e., cal_checksum for checksum calculating and prepare_rxbuffer to scan the received
packet. Please see the details of these functions in topic 3.2.2.

int dhcp_init_ipaddr (void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description The function to request IP address by DHCP, as described in topic 4.1.

void dhcp_release_ipaddr (void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description The function to release IP address by DHCP and then re-initialize the
system, as described in topic 4.1.

void init_filter (void)

Parameters None

Return value None

Description Write RXEMAC_CMD_INTREG to pause the storing of received packet
in the slow-port connection. Next, Write RXEMAC_HDVAL_ADDR and
RXEMAC_HDEN_ADDR for filtering a DHCP packet from DHCP server
as shown in blue color text of Figure 4-4.

unsigned int verify_rx_dhcp (unsigned int *payload_len)

Parameters payload_len: Unsinged int pointer to return the DHCP packet length.

Return value 1: The received packet is DHCP based UDP/IP packet and the packet is
valid.
0: The received data packet is not DHCP packet or the packet is not
valid.

Description Calculate the received DHCP packet length in byte-unit, verify the 16-bit
checksum of IP and UDP packet, and verify the general field of DHCP
reply packet.
Note: The packet is processed by using character array which is
prepared by prepare_rxbuffer function.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 47

void write_udpip (unsigned int payload_len)

Parameters payload_len: the length of the payload data in byte-unit

Return value None

Description Create the UDP/IP packet by using the transmitted payload data (the
global variable) and its length (the input parameter). The parameters
such as UDP port numbers, IP addresses, and Ethernet MAC addresses
are set to prepare the Ethernet packet for DHCP operation. After that,
wait until UserTxMAC is Idle (TXEMAC_LEN_INTREG[0]=’0’) and then
copy the prepared Ethernet packet to TxRAM (TXRAM_BASE_ADDR).
Finally, Start transmitting the packet by setting TXEMAC_LEN_INTREG
= packet length value.

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 48

4.3 Test software on PC (DHCP server application)

“dhcpsrv” application is the software which implements a DHCP Server for Windows based
system. It is used to assign IP addresses to client device. The test environment uses this
software to check DHCP operation of slow-port connection. The application can be
downloaded from the website.
https://www.dhcpserver.de/cms/

The test environment uses 2.5.2 version. There are four objects in the downloaded file.

• dhcpsrv.exe - the DHCP server program.

• dhcpwiz.exe - the DHCP server configuration program.

• wwwroot - the folder of basic web files.

• readme.txt - information about the other files in an archive.

It is recommended to run “dhcpwiz.exe” for configuring the server and writing the script file
with the graphical user interface. More details of configuring the DHCP server or running the
server in advance mode are provided in the contributor website as the above link.

https://www.dhcpserver.de/cms/

dg_toe25gip_twoport_refdesign_xilinx.doc

6-Jul-23 Page 49

5 Revision History

Revision Date Description

1.0 26-May-22 Initial version release

