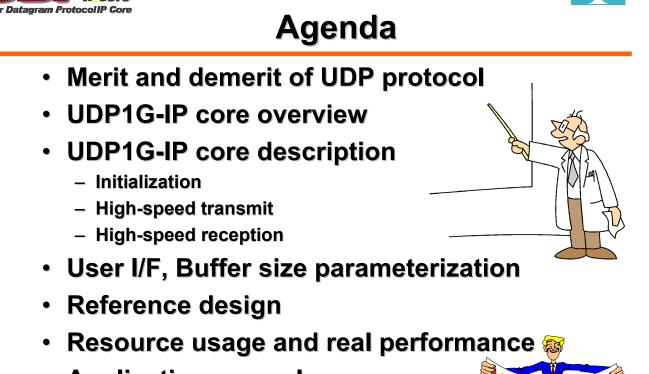


Datagram ProtocollP Core UDP1G-IP Introduction (Intel)


Super UDP Speed by hard-wired IP-Core

7-Dec-17

Design Gateway

Page 1

Application example

Merit and demerit of UDP protocol

- Merit
 - High-speed and low-latency by minimum overhead
 - Supports 1-to-N multicast and 1-to-All broadcast
 - Suitable for real-time application such as VOD system

• Demerit

- No ACK/retransmit, so data reliability is not guaranteed
- If reliability is necessary, application layer must support it

7-Dec-17

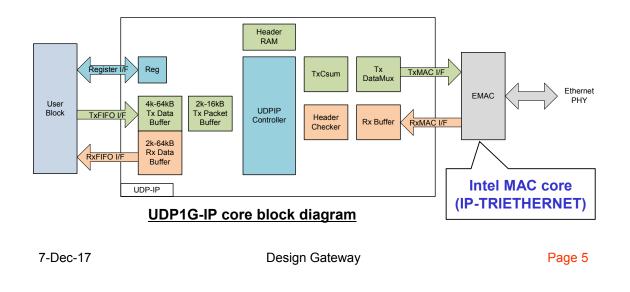
Design Gateway

Page 3

D•G

- Problem in performance and latency
 - CPU resource consumption by UDP packet building
 - Check-sum calculation
 - Concatenate header and transmit data

- Bandwidth is not stable due to firmware process
- The problem gets even worse with full duplex
 - CPU needs to process time sharing between Tx&Rx
 - Bandwidth and latency further drops
 - Fatal problem for real time application


UDP1G-IP core can provide ideal solution!

- Fully hard-wired UDP control for both Tx and Rx
- Inserts between user logic and Intel TEMAC module
- Supports Full Duplex communication

Arria 10

UDP1G-IP core Advantage 1

Fully hard-wired UDP protocol control

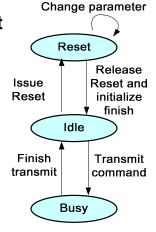
- Possible to build CPU-less network system
- Zero load for CPU
- Support all of Tx only, Rx only, and full-duplex
 - More than 110MByte/sec real performance
- Can even keep some data reliability
 - Tx: Calculate check sum and build header automatically
 - Rx: Discard received Packet if check sum does not match

- Selectable data buffer size
 - Selectable buffer size of memory usage vs. performance
- Compatible with Intel MAC core (IP-TRIETHERNET)
 - Direct connection between UDP1G-IP and MAC

Reference design on Intel evaluation board

- Full Quartus project for standard Intel board
- Free sof-file for evaluation before purchase
- All source code (except IP-core) in design project

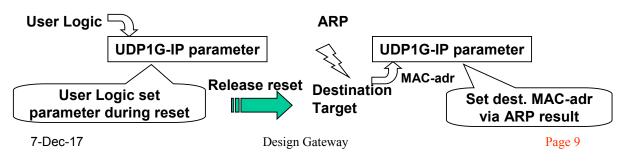
7-Dec-17


Design Gateway

Page 7

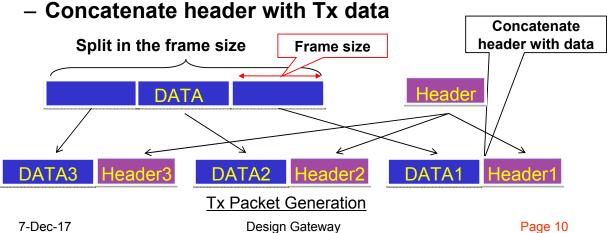
UDP1G-IP core Operation

- Set parameter (IP-adr&MAC-adr, etc) during Reset
- Release Reset then initialize including ARP
- Idle state after initialization finish, wait command
- Tx operation starts by user command
- Rx operates at any time except Reset state (Accepts all Rx packet if parameter match)
- Tx and Rx operates individually (full duplex)
- If want change parameter, move to Reset state (transfer/packet length can change except Busy)



State Diagram

Set parameter to UDP1G-IP


- User logic can set parameter during UDP1G-IP reset
- Set IP address, MAC address, and Port number
- Release reset after parameter setting finish
- UDP1G-IP executes ARP after reset release
 - Issue ARP to destination target
 - Get MAC-adr of the target via ARP result

High-Speed Tx

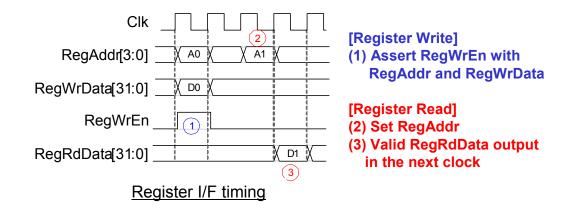
- Tx Packet Generation
 - User Logic writes Tx data to TxFIFO
 - Split Tx data in the frame size
 - Calculate check sum and set to the header

High-Speed Rx

- Rx packet header check
 - Verify all of MAC, IP, and UDP header
 - Supports multicast and broadcast
- Check sum calculation and verification
 - Calculate check sum in received packet
 - Verify calculated value with header value
 - When mismatch, packet data is discarded

Page 11

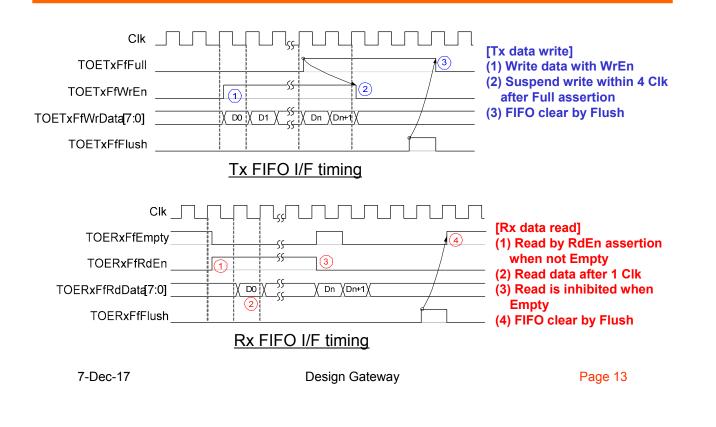
7-Dec-17



• 3 types of Register I/F, Tx FIFO I/F, and Rx FIFO I/F

Design Gateway

- Register I/F for initial parameter setting and Tx/Rx command
- Tx FIFO I/F and Rx FIFO I/F is standard FIFO interface

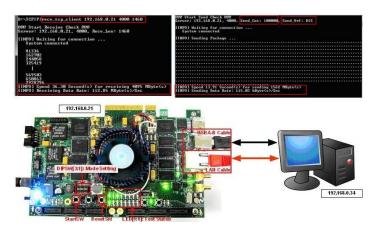


User Interface (Data)

Buffer Capacity

Parameterized 3 types of data buffer

- (1) Tx Data Buffer: 4KByte 64KByte
- (2) Tx Packet Buffer: 2KByte 16KByte
- (3) Rx Data Buffer: 2KByte 64KByte
- User can optimize resource usage and performance


Generic Name	Range	Description
TxBufBitWidth	12-16	Set Tx data buffer size in address bit width
		When set to 12, size is 4KByte, when 16, 64KByte for example.
TxPacBitWidth	11-14	Set Tx packet buffer size in address bit width
		When set to 11, size is 2KByte, when 14, 16KByte for example
RxBufBitWidth	11-16	Set Rx data buffer size in address bit width
		When set to 11, size is 2KByte, when 16, 64KByte for example.

Buffer size is selectable by parameterization

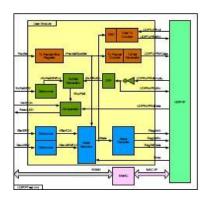
Design Gateway

- SOF file for evaluation with Intel standard board
 - Support both Half-Duplex and Full-Duplex operation
 - Measure transfer speed performance and data reliability

Design Gateway

Evaluation environment for Intel board

7-Dec-17



Reference Design Overview

- Quartus design project for real operation
 - All source code (except IP-core) included in full project
 - Both half-duplex and full-duplex design in IP-core package

DGGGG & LEAR	1 (* 1120414) * 1977600 C + 0 10 0 0 1 4 0				
can't Merigatur	ER 6				
inter contract in the second					
DOMESTIC IN DESIGNATION	45 B				
• TOESHITHE &	C C C C C C C C C C C C C C C C C C C				
	49 E Component TORBATATION In				
	50 FI Port (
	St Back r in and Jugior				
	- 11 Prers : in std insic				
	54 Facility 1 in and logant - "D": To Bost-Dame Frame (1600 hyper)				
	55 Rodebal 1 10 att Logici - 'D'i Jaco dano, 'J'i Parative dano				
	58 Verifiers - in and indian 1011 Perceive alloging verification, 11				
	17				
	38 Fachegadd 1 con and inpir vectors 7 downto 0 12				
	10 Rectoply the state will be to				
	50 FachepWrData : out stil Logic martor 31 Bowato 0 17				
	42 BackeyVallBerg 1 bit did begins				
	c:				
	43 Faithed to the ped inght;				
	84 RecTation a set and legits				
	85 FacTulate : out and Logic vector 7 downs 0 ;;				
	48 ResTator + est and inglo				
	47 BarToValid r cut std Logier				
	68 BarToleanzy 1 In and Logics				
	No Machelik : in sud inght:				
	72 Residentify of the Artic_Topics				
	The Replandation of an et al. Largic_wattact (7 downton 0) r				
	72 Facilitation is the send implicit				
	78 Rectornated a in sta_ingtor				
	75 Installer a part and install				
	71. Consilite a set stat ingini 78. Facturillers : out stat ingini				
	The Treatment of the State				
ineractiv III rise # Desg	AL DA Desirest THEATINGS				

Quartus/Qsys project in package

Reference design block diagram

Page 15

- Quartus project is attached to UDP1G-IP package
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

7-Dec-17

Design Gateway

Page 17

Resource Usage

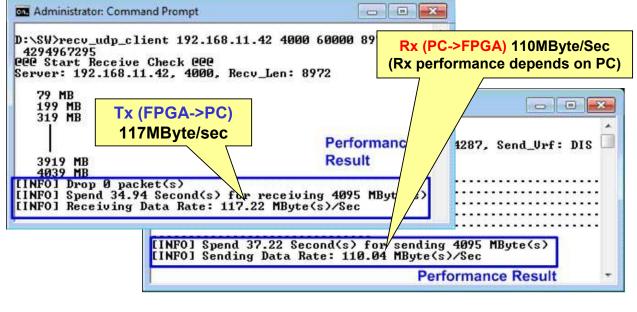
• UDP1G-IP core standalone resource usage – Condition = Maximum buffer setting

(TxDataBuf=RxDataBuf=64KB, TxPacketBuf=16KB)

		5	
1	200		7
			1
20			1

Example Device	Fmax (MHz)	ALMs	Regist ers	Block Memory bit	Design Tools
EP4SGX230KF40C2	125	1,125	1,553	1,181,696	Quartusll 14.0
5CEFA7F31I7	125	1,048	1,698	1,181,696	Quartusll 15.1
5AGXFB3H4F35C5	125	1,047	1,686	1,181,696	Quartusll 14.0
10AS066N3F40E2SGE2	125	996	1,635	1,181,696	Quartusll 16.0
	EP4SGX230KF40C2 5CEFA7F31I7 5AGXFB3H4F35C5	Example Device (MHz) EP4SGX230KF40C2 125 5CEFA7F31I7 125 5AGXFB3H4F35C5 125	Example Device (MHz) EP4SGX230KF40C2 125 1,125 5CEFA7F31I7 125 1,048 5AGXFB3H4F35C5 125 1,047	EXample Device (MHz) ers EP4SGX230KF40C2 125 1,125 1,553 5CEFA7F31I7 125 1,048 1,698 5AGXFB3H4F35C5 125 1,047 1,686	EXample Device (MHz) ers Memory bit EP4SGX230KF40C2 125 1,125 1,553 1,181,696 5CEFA7F31I7 125 1,048 1,698 1,181,696 5AGXFB3H4F35C5 125 1,047 1,686 1,181,696

UDP1G-IP core standalone compilation result


This result is based on maximum buffer size setting. User can save memory resource by smaller buffer size setting

Transfer Performance

Real performance in data Tx and data Rx

Design Gateway

7-Dec-17

User Datagram ProtocollP Core

Page 19

UDP1G-IP Application

Video-on-Demand via Broadcast

- Stream video transmission in real time
- Requires minimum overhead and latency
- UDP1G-IP provides best solution

Real time Online game

- Full duplex of game data download and user operation data upload
- Very low latency required for realistic game
- UDP1G-IP can cover full duplex within minimum latency

• Detailed documents available on the web site

- http://www.dgway.com/UDP-IP_A_E.html

- Contact
 - Design Gateway Co,. Ltd.
 - E-mail :

ip-sales@design-gateway.com

- FAX : +66-2-261-2290

7-Dec-17

DG DESIGN

Page 21

(§ All SHI

Revision History

Design Gateway

Rev.	Date	Description		
1.0E 6-Mar-2017 English vers		English version initial release		
1.01E	7-Dec-2017	Fixed incorrect expression		

<text><text><text><text><text><text><text><text><list-item><list-item><section-header><section-header>