

UDP1G-IP Introduction (Xilinx)

Ver1.01E

Super UDP Speed by hard-wired IP-Core

7-Dec-17 Design Gateway Page 1

Agenda

- Merit and demerit of UDP protocol
- UDP1G-IP core overview
- UDP1G-IP core description
 - Initialization
 - High-speed transmit
 - High-speed reception
- User I/F, Buffer size parameterization
- Reference design
- Resource usage and real performance
- Application example

Merit and demerit of UDP protocol

Merit

- High-speed and low-latency by minimum overhead
- Supports 1-to-N multicast and 1-to-All broadcast
- Suitable for real-time application such as VOD system

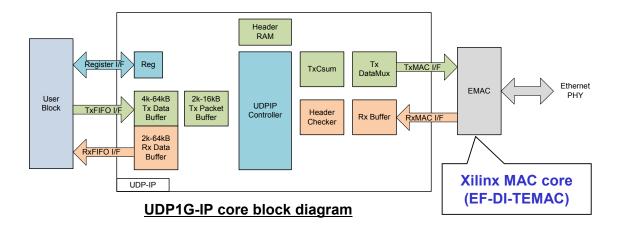
Demerit

- No ACK/retransmit, so data reliability is not guaranteed
- If reliability is necessary, application layer must support it

7-Dec-17 Design Gateway Page 3

UDP implementation problem by CPU

- Problem in performance and latency
 - CPU resource consumption by UDP packet building
 - Check-sum calculation
 - Concatenate header and transmit data
 - Bandwidth is not stable due to firmware process
- The problem gets even worse with full duplex
 - CPU needs to process time sharing between Tx&Rx
 - Bandwidth and latency further drops
 - Fatal problem for real time application



UDP1G-IP core Overview

- Fully hard-wired UDP control for both Tx and Rx
- Inserts between user logic and Xilinx TEMAC module
- Supports Full Duplex communication

7-Dec-17 Design Gateway Page 5

ÜDP1G-IP core Advantage 1

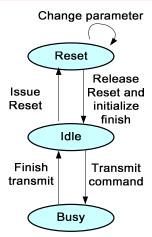
- Fully hard-wired UDP protocol control
 - Possible to build CPU-less network system
 - Zero load for CPU

- More than 110MByte/sec real performance
- Can even keep some data reliability
 - Tx: Calculate check sum and build header automatically
 - Rx: Discard received Packet if check sum does not match

£ XILINX

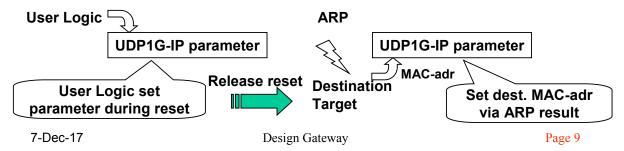
ÜDP1G-IP core Advantage 2

- Selectable data buffer size
 - Selectable buffer size of memory usage vs. performance
- Compatible with Xilinx MAC core (EF-DI-TEMAC)
 - Direct connection between UDP1G-IP and TEMAC
- Reference design on Xilinx evaluation board
 - Full Vivado project for standard Xilinx board
 - Free bit-file for evaluation before purchase
 - All source code (except IP-core) in design project


7-Dec-17 Design Gateway Page 7

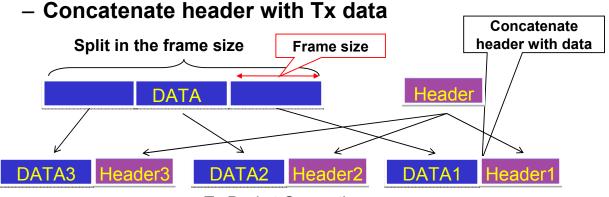
UDP1G-IP core Operation

- Set parameter (IP-adr&MAC-adr, etc) during Reset
- Release Reset then initialize including ARP
- Idle state after initialization finish, wait command
- Tx operation starts by user command
- Rx operates at any time except Reset state (Accepts all Rx packet if parameter match)
- Tx and Rx operates individually (full duplex)
- If want change parameter, move to Reset state (transfer/packet length can change except Busy)


State Diagram

UDP1G-IP Initialization

- Set parameter to UDP1G-IP
 - User logic can set parameter during UDP1G-IP reset
 - Set IP address, MAC address, and Port number
 - Release reset after parameter setting finish
- UDP1G-IP executes ARP after reset release
 - Issue ARP to destination target
 - Get MAC-adr of the target via ARP result



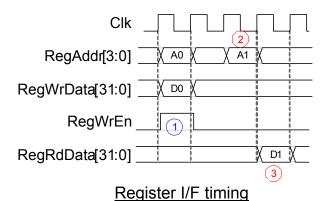
High-Speed Tx

- Tx Packet Generation
 - User Logic writes Tx data to TxFIFO
 - Split Tx data in the frame size
 - Calculate check sum and set to the header

Tx Packet Generation

High-Speed Rx

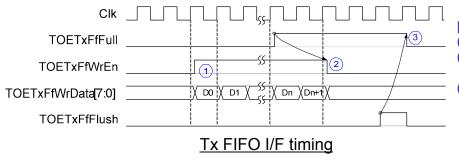
- Rx packet header check
 - Verify all of MAC, IP, and UDP header
 - Supports multicast and broadcast
- Check sum calculation and verification
 - Calculate check sum in received packet
 - Verify calculated value with header value
 - When mismatch, packet data is discarded


7-Dec-17 Design Gateway Page 11

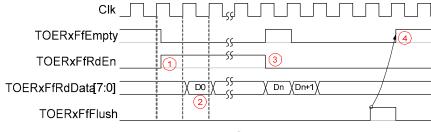
User Interface (Control)

- 3 types of Register I/F, Tx FIFO I/F, and Rx FIFO I/F
 - Register I/F for initial parameter setting and Tx/Rx command
 - Tx FIFO I/F and Rx FIFO I/F is standard FIFO interface

[Register Write]
(1) Assert RegWrEn with
RegAddr and RegWrData


[Register Read]

- (2) Set RegAddr
- (3) Valid RegRdData output in the next clock



User Interface (Data)

[Tx data write]

- (1) Write data with WrEn
- (2) Suspend write within 4 Clk after Full assertion
- (3) FIFO clear by Flush

Rx FIFO I/F timing

7-Dec-17 Design Gateway

[Rx data read]

- (1) Read by RdEn assertion when not Empty
- (2) Read data after 1 Clk
- (3) Read is inhibited when Empty

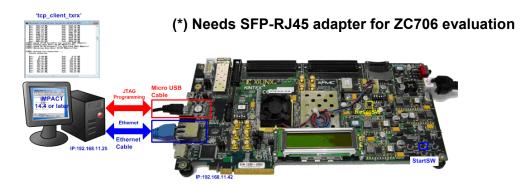
Page 13

(4) FIFO clear by Flush

Buffer Capacity

- Parameterized 3 types of data buffer
 - (1) Tx Data Buffer: 4KByte 64KByte
 - (2) Tx Packet Buffer: 2KByte 16KByte
 - (3) Rx Data Buffer: 2KByte 64KByte
- User can optimize resource usage and performance

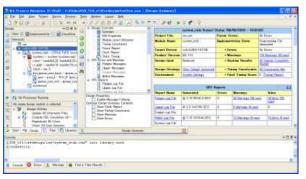
Generic Name	Range	Description		
TxBufBitWidth	12-16	Set Tx data buffer size in address bit width		
		When set to 12, size is 4KByte, when 16, 64KByte for example.		
TxPacBitWidth	11-14	Set Tx packet buffer size in address bit width		
		When set to 11, size is 2KByte, when 14, 16KByte for example		
RxBufBitWidth	11-16	Set Rx data buffer size in address bit width		
		When set to 11, size is 2KByte, when 16, 64KByte for example.		

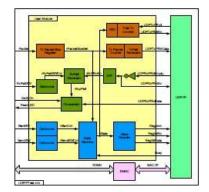

Buffer size is selectable by parameterization

Free Bit File for Evaluation

- Bit file for evaluation with Xilinx standard board
 - Support both Half-Duplex and Full-Duplex operation
 - Measure transfer speed performance and data reliability

Evaluation environment for Xilinx board


7-Dec-17 Design Gateway Page 15



Reference Design Overview

- Vivado design project for real operation
 - All source code (except IP-core) included in full project
 - Both half-duplex and full-duplex design in IP-core package

Reference design block diagram

Effective Development on Ref. Design

- Vivado project is attached to UDP1G-IP package
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

Short-term development is possible without big turn back

7-Dec-17 Design Gateway Page 17

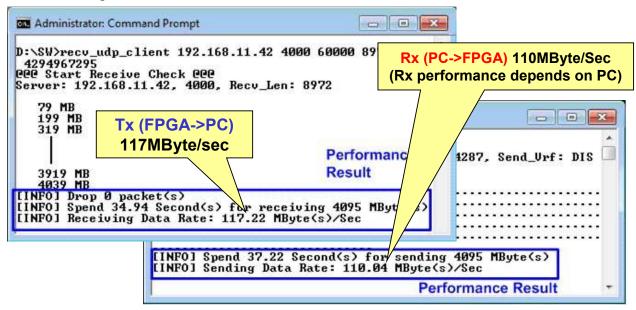
Resource Usage

- UDP1G-IP core standalone resource usage
 - Condition = Maximum buffer setting

(TxDataBuf=RxDataBuf=64KB, TxPacketBuf=16KB)

Family	Example Device	Fmax (MHz)	Slice Regs	Slice LUTs	Slic es ¹	RAMB 36E1	RAMB 18E1
Artix-7	XC7A200T-2FBG676	125	1527	1428	614	36	1
Kintex-7	XC7K325T-2FFG900	125	1527	1425	622	36	1
Virtex-7	XC7VX485T-2FFG1761	125	1527	1425	620	36	1
Zynq-7000	XC7Z045-2FFG900	125	1527	1426	617	36	1

UDP1G-IP core standalone compilation result


This result is based on maximum buffer size setting.
User can save memory resource by smaller buffer size setting

Transfer Performance

Real performance in data Tx and data Rx

7-Dec-17 Design Gateway Page 19

UDP1G-IP Application

- Video-on-Demand via Broadcast
 - Stream video transmission in real time
 - Requires minimum overhead and latency
 - UDP1G-IP provides best solution
- Real time Online game
 - Full duplex of game data download and user operation data upload
 - Very low latency required for realistic game
 - UDP1G-IP can cover full duplex within minimum latency

For more detail

- · Detailed documents available on the web site
 - http://www.dgway.com/UDP-IP_X_E.html
- Contact
 - Design Gateway Co,. Ltd.
 - E-mail:

ip-sales@design-gateway.com

- FAX: +66-2-261-2290

7-Dec-17 Design Gateway

Revision History

Rev.	Date	Description				
1.0E 6-Mar-2017		English version initial release				
1.01E	7-Dec-2017	Fixed incorrect expression				