

tCAMIP reference design by Search Replace function

1	Introdu	ction	1
		are overview	
		arch Replace module	
		Search Table	
	2.1.2	Initial State Machine	4
	2.1.3	Replace Table	5
	2.1.4	tCAMIP searching process	6
3	Test Lo	ogic	7
		on History	

tCAMIP reference design by Search Replace function

Rev1.00 1-Sep-2023

1 Introduction

This document describes the detail of tCAMIP reference design. In this reference design, tCAMIP are used for search/replace function. More details of the hardware design are described as follows.

2 Hardware overview

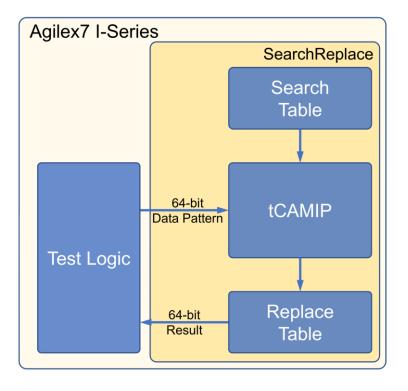


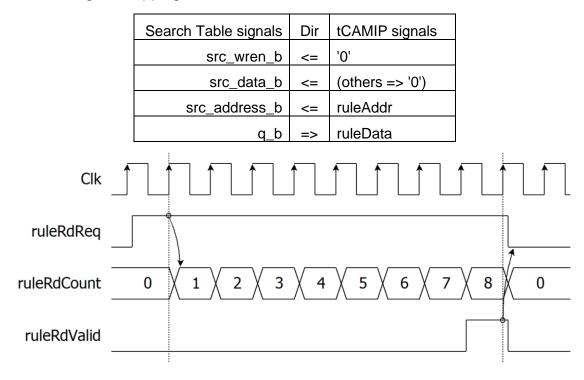
Figure 2-1 Reference design block diagram

In this test environment, the SearchReplace module comprises a tCAMIP along with two simple dual-port RAMs functioning as a search table and a replace table, respectively. The system incorporates Test Logic to control the operation of the entire system. LEDs are employed to indicate the working status.

2.1 Search Replace module

Search Replace module is designed to search 64-bit dataIn in Search Table. When dataIn is matched in Search Table, dataOut is assigned with replace word from Replace Table. But if dataIn is not matched in Search Table (resultData=0), the dataIn is assigned to dataOut instead.

2.1.1 Search Table


Search Table is dual port RAM, 8K address x 9-bit width. This table is assigned to be rule table for tCAMIP.

Port A is reserved for future used.

Port B is connected with tCAMIP as shown in Table 2-1.

ruleCount(3) is designed to generate 1 clock cycle pulse delay from ruleRdReq signal and is assigned to be ruleRdValid signal. Figure 2-2 show timing diagram of ruleRdValid generation.

Table 2-1 Port B signal mapping of search table

Figure 2-2 Timing diagram of ruleRdValid generation

Each 8-byte ASCII code of search word is assigned as 8×9 -bit rule. The "don't care" byte is assigned as [x], 0×100 value. Table 2-2 shows sample conversion from search word to rule table. Search Table is initialed values with file "search.mif".

Rule No.	Search word	Address	A+0	A+1	A+2	A+3	A+4	A+5	A+6	A+7
0001	white	0000	'w', 077	'h', 068	ʻi', 069	ʻť, 074	'e', 065	' ', 020	[x], 100	[x], 100
0002	White	0008	057	068	069	074	065	020	100	100
0003	nurse	0010	06E	075	072	073	065	020	100	100
0004	worse	0018	077	06F	072	073	065	020	100	100
0005	horse	0020	068	06F	072	073	065	020	100	100
0006	Horse	0028	048	06F	072	073	065	020	100	100
0007	Worse	0030	057	06F	072	073	065	020	100	100
0008	noise	0038	06E	06F	069	073	065	020	100	100
0009	three	0040	074	068	072	065	065	020	100	100
000A	city	0048	063	069	074	079	020	100	100	100
000B	duty	0050	064	075	074	079	020	100	100	100
000C	City	0058	043	069	074	079	020	100	100	100
000D	Duty	0060	044	075	074	079	020	100	100	100
000E	busy	0068	062	075	073	079	020	100	100	100
000F	easy	0070	065	061	073	079	020	100	100	100
0010	Busy	0078	042	075	073	079	020	100	100	100
0011	bury	0080	062	075	072	079	020	100	100	100

Table 2-2 Sam	ple of search wo	ord conversion to	rule table memory
			ruio lubio momory

Note: All numbers are hex number.

2.1.2 Initial State Machine

This reference design is provided simple state machine to initialize tCAMIP. Figure 2-3 show timing diagram of Initial State Machine to generate ruleInit signal and check ruleBusy and ruleStatusCode signals. Operation of initialization is described as below.

- When RstB is active ('0'), rState is set to stIdle.
- When RstB is released ('1'), rState is changed to stInitStart.
- At stInitStart, rState is changed to stWaitReady when ruleBusy is active from tCAMIP.
- At stWaitReady, rState is changed to stInitCompleted when ruleBusy is released to zero and ruleStatusCode is 0001b (initial completed).
 - In case that ruleBusy is released to zero but ruleStatusCode is not 0001b, it means tCAMIP initialization is not success. rState is changed to stIdle for restart initial process again.

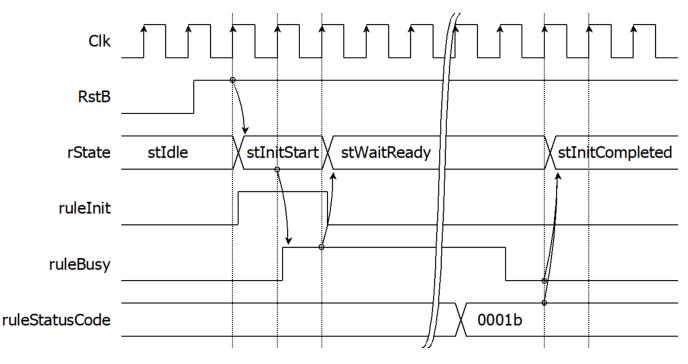


Figure 2-3 Timing diagram of Initial State Machine

2.1.3 Replace Table

Replace Table is dual port RAM, 1K address x 64-bit width. This table is assigned with replace word. The relation between search word, replace word and memory data is shown as in Table 2-4. Replace Table is initialed values with file "replace.mif". For further details and all related parameters, please refer to the file "SampleTable.txt".

According to resultData from tCAMIP is mapping with Rule No., then address of replace word can be calculated by resultData minus 1 (rep_address_b <= resultData - 1). The detailed of signals assignment is shown as below.

Port A is reserved for user logics.

Port B is connected with signals as shown in Table 2-3.

Table 2-3 Port B signal mapping of replace table

Replace Table signals	Dir	tCAMIP signals
rep_wren_b	<=	'0'
rep_data_b	<=	(others => '0')
rep_address_b	<=	resultData - 1
rep_q_b	=>	rep_q_b

Table 2-4 Sample of search word conversion to rule table memory

Rule No.	Search word	Replace word	Address	Replace word (hex)
0001	white	word001	0000	2031303064726F77
0002	White	word002	0001	2032303064726F77
0003	nurse	word003	0002	2033303064726F77
0004	worse	word004	0003	2034303064726F77
0005	horse	word005	0004	2035303064726F77
0006	Horse	word006	0005	2036303064726F77
0007	Worse	word007	0006	2037303064726F77
0008	noise	word008	0007	2038303064726F77
0009	three	word009	0008	2039303064726F77
000A	city	word010	0009	2030313064726F77
000B	duty	word011	000A	2031313064726F77
000C	City	word012	000B	2032313064726F77
000D	Duty	word013	000C	2033313064726F77
000E	busy	word014	000D	2034313064726F77
000F	easy	word015	000E	2035313064726F77
0010	Busy	word016	000F	2036313064726F77

2.1.4 tCAMIP searching process

Figure 2-4 shows timing diagram of searching data path. After tCAMIP initialization is completed by initial process on topic 2.1.2, In every clock cycle, dataIn will be searching by tCAMIP and set resultData as matched Rule No. by latency 7 clock cycles. rep_address_b (resultData – 1) from tCAMIP is used for address of Replace Table, then rep_q_b is out from Replace Table after 2 clock cycles because Replace Table memory is generated with both registers of input address port and output port. rSearchMatch(0) is set to '1' when resultData from tCAMIP is zero (not match). Then rSearchMatch(1) is one clock cycle delay from rSearchMatch(0). To control timing of input dataIn and rep_q_b in the same clock cycle, dataIn8 is 9 clock cycles delay from dataIn signals, then dataIn8 and rep_q_b is valid in the same clock cycle. rLongWord is set to be '1' when previous cycle of dataIn8[63:56] (last byte of word) is 0x20 (space bar character). Then dataOut is register output multiplexer that is assigned with rep_q_b when rLongWord='0' and rSearchMatch(1)='1', else is assigned with dataIn8.

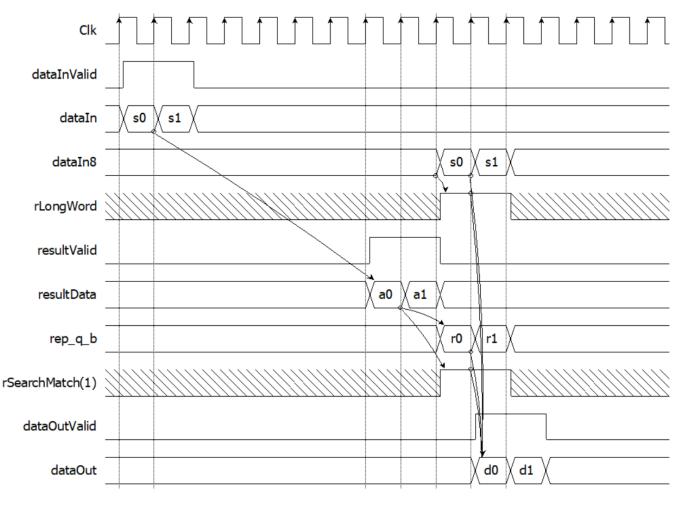


Figure 2-4 Timing diagram of searching data path

3 Test Logic

For testing, the Search Replace module uses Test Logic to generate dataInValid and dataIn for use as input data to Search Replace module, and validate the output of the Search Replace module. Test Logic will display the operation status through LED. The definition of LED is shown in the Table 3-1.

Table 3-1 LED Definition

GPIO LED	ON	OFF
0	Normal operation	Reset is active
1	Ready	Not Ready
2	Error detected	Normal operation
3	dataInValid='1'	dataInValid='0'

Figure 3-1 Example test logic operation timing diagram, after tCAMIP initialization is completed by initial process on topic 2.1.2. Ready signal is asserted to '1', then rCnt[15:0] will be started to count. When rCnt[8:4] is 0x01, dataInValid is asserted to '1' for 16 clock cycles, and dataIn[63:0] is valid by selecting from rPattern data. Then dataOutValid will be active ? clock cycles after dataInValid, So we prepare rResult data pattern and result[63:0] for compare with dataOut[63:0] to show the correct operation of tCAM-IP.

However in case of something wrong, such as dataOut is not same as rResult data pattern, the rError signal is asserted to '1' and will be active LED[2] to show error status.

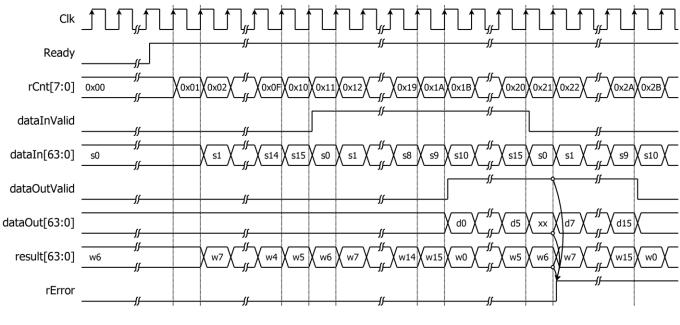


Figure 3-2 Example test logic operation when dataOut not match result

4 Revision History

Revision	Date	Description
1.00	21-Jul-2023	Initial version release