AES256 IP Core Data Sheet

Features1
General Description
Functional Description
1. AES256ENC
1.1. Key setting4
1.2. Encryption control
2. AES256DEC
2.1. Key setting
2.2. Decryption control
Verification Methods7
Recommended Design Experience
Ordering Information7
Revision History7

AES256 IP Core

August 29, 2023

Product Specification

Rev1.04

Design Gateway Co.,Ltd

E-mail: ip-sales@design-gateway.com URL: design-gateway.com

Provided with Core						
Documentation	User Guide, Design Guide					
Design File Formats	Encrypted HDL					
Instantiation Templates	VHDL					
Reference Designs &	Vivado Project					
Application Notes	See Reference design manua					
Additional Items	Demo on ZCU106					
ç	Support					

Features

- Support AES ECB mode standard.
- Support 256-bit key size.
- Support input data width128-bit.
- Throughput rate at 8.53 Mbits/MHz.
- Speed up to 4.26 Gbps @500MHz.
- 128-bit data calculation time is constant at 15 clock cycles

Table 1: Example Implementation Statistics for Encryption

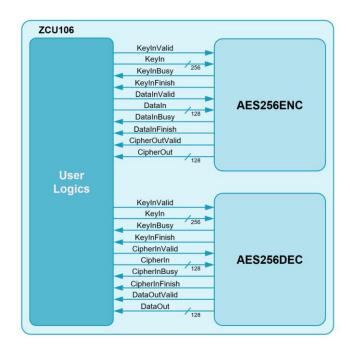
Family	Example Device	Fmax (MHz)	CLB Regs	CLB LUTs	CLB ¹	ЮВ	BRAMTile	Design Tools
Zynq-Ultrascale+	xczu7ev-ffvc1156-2-e	500	299	1315	212	-	-	Vivado2021.1
Kintex-UltraScale+ ²	xcku5p-ffvb676-2-e	525	283	1310	237	-	-	Vivado2021.1
Virtex-Ultrascale+ ²	xcvu9p-flga2104-2L-e	525	411	1462	237	-	-	Vivado2021.1

Table 2: Example Implementation Statistics for Decryption

Family	Example Device	Fmax (MHz)	CLB Regs	CLB LUTs	CLB ¹	ЮВ	BRAMTile	Design Tools
Zynq-Ultrascale+	xczu7ev-ffvc1156-2-e	500	291	1578	271	-	-	Vivado2021.1
Kintex-UltraScale+ ²	xcku5p-ffvb676-2-e	525	275	1585	267	-	-	Vivado2021.1
Virtex-Ultrascale+ ²	xcvu9p-flga2104-2L-e	525	307	1607	285	-	-	Vivado2021.1

Notes:

1) Actual logic resource dependent on percentage of unrelated logic


2) The results were obtained from implementation in the same environment, but have not been tested on the actual board.

Family	Example Device	Fmax (MHz)	CLB Regs	CLB LUTs	Slice ¹	ЮВ	BRAMTile	Design Tools
Versal AI Core ²	xcvc1902-vsva2197-2MP-e-S	440	289	1670	287	-	-	Vivado2021.1

Table 3: Example Implementation Statistics for Encryption (Versal)

Table 4: Example Implementation Statistics for Decryption (Versal)

Family	Example Device	Fmax (MHz)	CLB Regs	CLB LUTs	Slice ¹	ЮВ	BRAMTile	Design Tools
Versal AI Core ²	xcvc1902-vsva2197-2MP-e-S	440	329	1443	264	-	-	Vivado2021.1

Figure 1: Block Diagram

General Description

AES256 IP Core (AES256IP) implement the advanced encryption standard (AES) algorithm which is widely used in many applications like file encryption, processor security, and secure file transfer protocol.

AES is a symmetric block cipher algorithm of the Rijndael family. Please find more details in the Federal Information Processing Standards Publication (FIPS PUB) 197.

AES256IP is consisted of AES256ENC module, that is encryption module and AES256DEC module, that is decryption module as shown in Figure 1.

Functional Description

1. AES256ENC

Table 5: Interface signals of AES256ENC

Signal name	Dir	Description				
RstB	In	IP core system reset. Active low.				
Clk	In	IP core system clock.				
	-	Key setting signals				
KeyInValid	In	KeyInValid is a user signal to specify data valid of KeyIn. Assert to '1' to set up KeyIn into AES256ENC.				
Keyln [255:0]	In	KeyIn is 256-bit key data of key setting. KeyIn must be valid when KeyInValid is asserted to '1'.				
KeyInBusy	Out	KeyInBusy specifies busy status of Key setting. Assert to '1' after user set KeyInValid, until the last cycle of operation. KeyInValid or DataInValid will be ignored while KeyInBusy is '1'.				
KeyInFinish	Out	KeyInFinish specifies finish status of Key setting. Assert to '1' at the last cycle of operation.				
Encryption control signals						
DataInValid	In	DataInValid is a user signal to specify data valid of DataIn. Assert to '1' to indicate that DataIn is valid and start encryption process.				
Dataln [127:0]	In	DataIn is 128-bit input data. DataIn must be valid when DataInValid is asserted to '1'.				
DataInBusy	Out	DataInBusy specifies busy status of encryption. Assert to '1' after user set DataInValid, until the last cycle of operation. KeyInValid or DataInValid will be ignored while DataInBusy is '1'.				
DataInFinish	Out	DataInFinish specifies finish status of encryption. Assert to '1' at the last cycle of operation.				
CipherOutValid	Out	CipherOutValid specify data valid for CipherOut. Assert to '1' when encryption finished.				
CipherOut [127:0]	Out	CipherOut is 128-bit data output of encryption. Valid when CipherOutValid is asserted to '1'.				

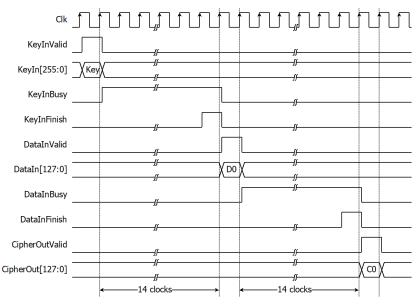
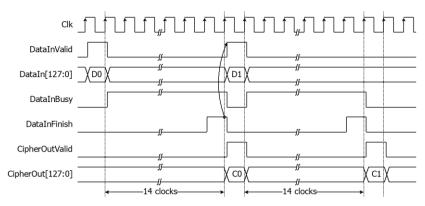


Figure 2: AES256ENC operation timing diagram

AES256ENC operation is as simple as 2 steps to use as below.


1.1. Key setting

Key setting is the first step to use AES256ENC. As shown in Figure 2, AES256ENC is started key setting process when KeyInValid='1' and takes 14 clocks cycles to finish the process (KeyInBusy='0'). After that, this KeyIn is used for every encryption and can be changed via KeyInValid is asserted to '1'.

1.2. Encryption control

As shown in Figure 2. After key setting, AES256ENC starts the process when DataInValid='1'. DataInBusy is set to be '1' in next cycle and wait for 14 clock cycles, Process will finish when DataInBusy is set to be '0'. After that, Encrypted data is set to CipherOut [127:0] signal while CipherOutValid signal is set to be '1'.

For the best performance of encryption process, Figure 3 shows the timing diagram of continuous and pipelining encryption. User can used DataInFinish signal to generate DataInValid in the next cycle for start next encrytion.

2. AES256DEC

Table 6: Interface signals of AES256DEC

Signal name	Dir	Description
RstB	In	IP core system reset. Active low.
Clk	In	IP core system clock.
	•	Key setting signals
KeyInValid	In	KeyInValid is a user signal to specify data valid of KeyIn. Assert to '1' to indicate that KeyIn is valid and start key setting.
Keyln [255:0]	In	KeyIn is 256-bit key data of key setting. KeyIn must be valid when KeyInValid is asserted to '1'.
KeyInBusy	Out	KeyInBusy specifies busy status of Key setting. Assert to '1' after user set KeyInValid, until the last cycle of operation. KeyInValid or CipherInValid will be ignored while KeyInBusy is '1'.
KeyInFinish	Out	KeyInFinish specifies finish status of Key setting. Assert to '1' at the last cycle of operation.
		Decryption control signals
CipherInValid	In	CipherInValid is a user signal to specify data valid of CipherIn. Assert to '1' to indicate that CipherIn is valid and start decryption process.
CipherIn [127:0]	In	CipherIn is 128-bit encrypted input data. CipherIn must be valid when CipherInValid is asserted to '1'.
CipherInBusy	Out	CipherInBusy specifies busy status of decryption. Assert to '1' after user set CipherInValid, until the last cycle of operation. KeyInValid or CipherInValid will be ignored while CipherInBusy is '1'.
CipherInFinish	Out	CipherInFinish specifies finish status of decryption. Assert to '1' at the last cycle of operation.
DataOutValid	Out	DataOutValid specify data valid for DataOut. Assert to '1' when decryption finished.
DataOut [127:0]	Out	DataOut is 128-bit data output of decryption. Valid when DataOutValid is asserted to '1'.

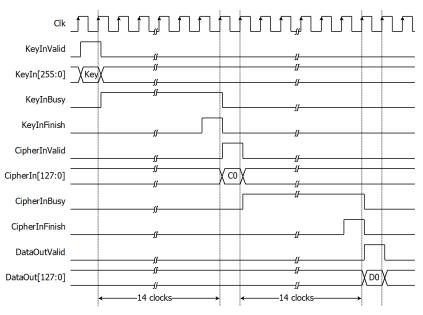
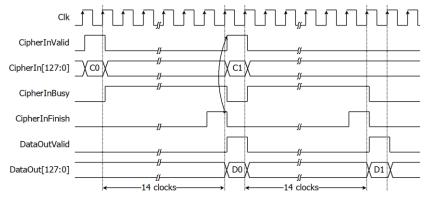


Figure 4: AES256DEC operation timing diagram

AES256DEC operation is as simple as 2 steps to use as below.


2.1. Key setting

Key setting is the first step to use AES256DEC. As shown in Figure 4, AES256DEC is started key setting process when KeyInValid='1' and takes 14 clocks cycles to finish the process (KeyInBusy='0'). After that, this KeyIn is used for every decryption and can be changed via KeyInValid is asserted to '1'.

2.2. Decryption control

As shown in Figure 4. After key setting, AES256DEC starts the process when CipherInValid='1'. CipherInBusy is set to be '1' in next cycle and wait for 10 clock cycles, Process will finish when CipherInBusy is set to be '0'. After that, decrypted data is set to DataOut[127:0] signal while DataOutValid signal is set to be '1'.

For the best performance of decryption process, Figure 5 shows timing diagram of continuous and pipelining decryption. User can used CipherInFinish signal to generate CipherInValid in the next cycle for start next decryption.

Verification Methods

AES256 IP Core functionality were verified on real board design by using ZCU106 Evaluation Board.

Recommended Design Experience

The user must be familiar with HDL design methodology to integrate this IP into system.

Ordering Information

This product is available directly from Design Gateway Co., Ltd. Please contact Design Gateway Co., Ltd. For pricing and additional information about this product using the contact information on the front page of this datasheet.

Revision History

Revision	Date	Description			
1.00	1/Aug/2022	New release			
1.02	29/Aug/2022	New design to improve performance			
1.03	27/Sep/2022	Update pictures and description			
1.04	15/Feb/2023	Add more resource information			