

# AES256 IP Demo Instruction

| 1 | Enν                               | vironment Setup               | 1  |  |  |
|---|-----------------------------------|-------------------------------|----|--|--|
|   | FPGA development board setup      |                               |    |  |  |
|   | Nios II Command Shell5            |                               |    |  |  |
| 4 | Command detail and testing result |                               |    |  |  |
|   |                                   | Set encryption/decryption key |    |  |  |
|   |                                   | Show Data Memory              |    |  |  |
|   | 4.3                               | Fill Plain Data Memory        | 8  |  |  |
|   |                                   | Fill Cipher Data Memory       |    |  |  |
|   | 4.5                               | Encrypt                       | 10 |  |  |
|   |                                   | Decrypt                       |    |  |  |
|   |                                   | vision History                |    |  |  |



# **AES256IP Demo Instruction**

Rev1.03 31-May-2023

This document describes the instruction to demonstrate the operation of AES256IP on FPGA development boards. In the demonstration, AES256IP are used to encrypt and decrypt data between two memories in FPGA. User can fill memory with plain or cipher data patterns, set encryption/decryption key and control test operation via Nios II Command Shell.

### 1 Environment Setup

To operate AES256IP demo, please prepare following test environment.

- 1) FPGA development board
  - Agilex F-series development kit
  - Arria10 SoC Development board
- 2) Test PC.
- 3) Micro USB cable for JTAG connection connecting between FPGA boards and Test PC.
- 4) Quartus programmer for programming FPGA and Nios II command shell, installed on PC.
- 5) SOF file named "AES256.sof" (To download these files, please visit our web site at www.design-gateway.com)

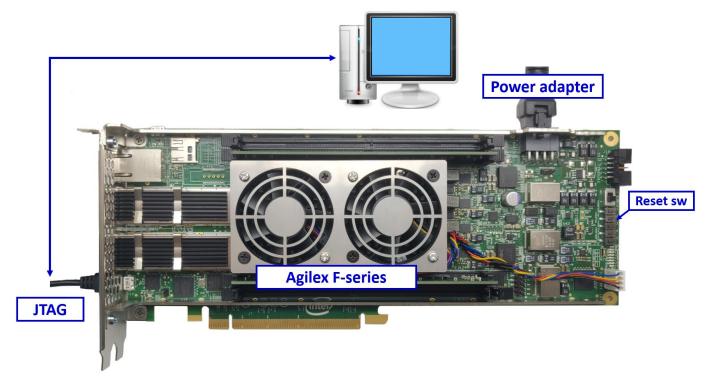



Figure 1-1 AES256IP demo environment on Agilex F-series board



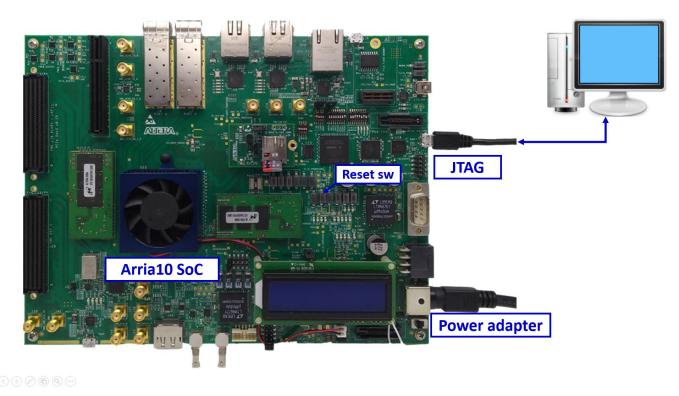



Figure 1-2 AES256IP demo environment on Arria10 SoC board



# 2 FPGA development board setup

- 1) Make sure power switch is off and connect power supply to FPGA development board.
- 2) Connect USB cables between FPGA board and PC via micro-USB ports.
- 3) Turn on power switch for FPGA board.
- 4) Open Quartus Programmer to program FPGA through USB-1 by following step.
  - i) Click "Hardware Setup..." to select
    - AGF FPGA Development Kit [USB-1] for Agilex F-series
    - USB-BlasterII [USB-1] for Arria10 SoC
  - ii) Click "Auto Detect" and select FPGA number.
  - iii) Select FPGA device icon (Agilex or A10SoC).
  - iv) Click "Change File" button, select SOF file in pop-up window and click "open" button.
  - v) Check "program".
  - vi) Click "Start" button to program FPGA.
  - vii) Wait until Progress status is equal to 100%.

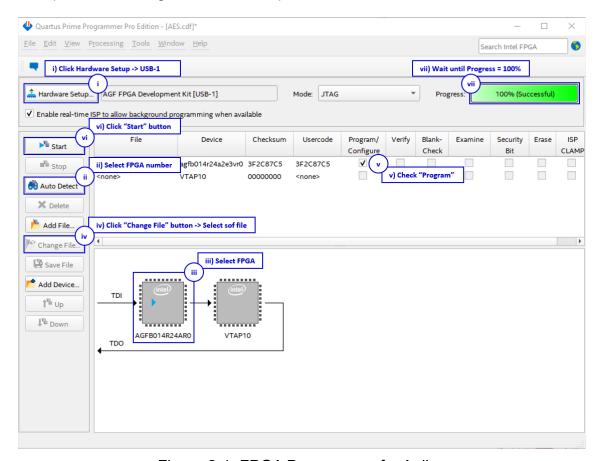



Figure 2-1 FPGA Programmer for Agilex



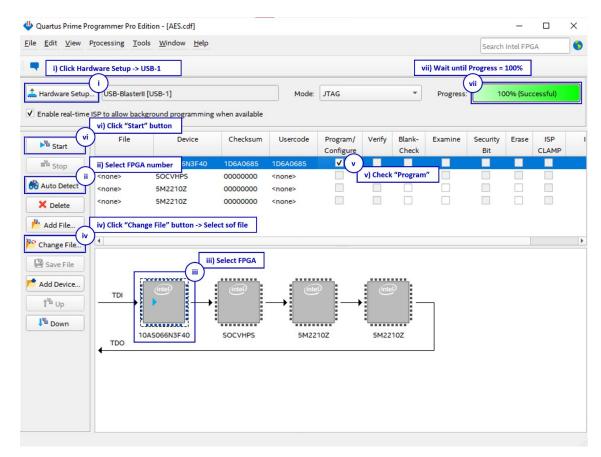



Figure 2-2 FPGA Programmer for A10SoC

For A10SoC after program SOF file complete, Quartus Prime will show popup message of Intel FPGA IP Evaluation Mode Status as shown in Figure 2-3. Please do not press cancel button.

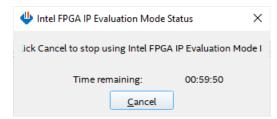



Figure 2-3 Intel FPGA IP Evaluation Mode Status



#### 3 Nios II Command Shell

User can fill RAMs with plain or cipher data patterns, set encryption/decryption key and control test operation via Nios II Command Shell. When configuration is completed, AES256demo command menu will be displayed as shown in Figure 3-1. The detailed information of each menu is described in topic 4.

Figure 3-1 Nios II Command Shell



# 4 Command detail and testing result

### 4.1 Set encryption/decryption key

Step to set encryption key and decryption key as follows

- a) Select "1. Set rEncKeyIn and rDecKeyIn".
- b) Current encryption key will be displayed on Nios II Command Shell as shown in Figure 4-1
- c) Set new encryption key: User is allowed to input new key in hex format or press "enter" to skip setting new key. Then the current encryption key is printed again.
- d) Current decryption key will be displayed on Nios II Command Shell.
- e) Set new decryption key: User is allowed to input new key in hex format or press "enter" to use rEncKeyIn as rDecKeyIn. Then the current decryption key is printed again.

Figure 4-1 Set rEncKeyIn and rDecKeyIn example



#### 4.2 Show Data Memory

To show data in memory, user can select "2. Show Data Memory" and input the desired number of 128-bit data to show. Both plain data and cipher data will be displayed in table-form as shown in Figure 4-2. User can press "enter" key to skip putting the number of data, then Nios II Command Shell will display five rows (default value) of 128-bit plain data and 128-bit cipher data at address 0x0000-0x004F.

```
+++++ AES256 Demo Menu +++++

    Set rEncKeyIn and rDecKeyIn

2. Show Data Memory
3. Fill Plain Data Memory
4. Fill Cipher Data Memory
5. Encrypt Data
6. Decrypt Data
Choice: 2
+++ Show Data Memory +++
Number of 128-bit Data in decimal (enter = 5):
       Plain Data
                          Cipher Data
Addr#
   .F....C .B....8 .7....4 .3....0 .F....C .B....8 .7....4 .3....0
00000000 00000000 00000000 00000000
```

Figure 4-2 Displayed Data when press "enter" key



#### 4.3 Fill Plain Data Memory

Step to fill plain data in memory as follows

- a) Select "3. Fill Plain Data Memory".
- b) There are four pattern to fill memory.
  - a. zero pattern
  - b. 8-bit counter
  - c. 16-bit counter
  - d. 32-bit counter
- c) Whole plain-data memory is filled with selected data pattern.

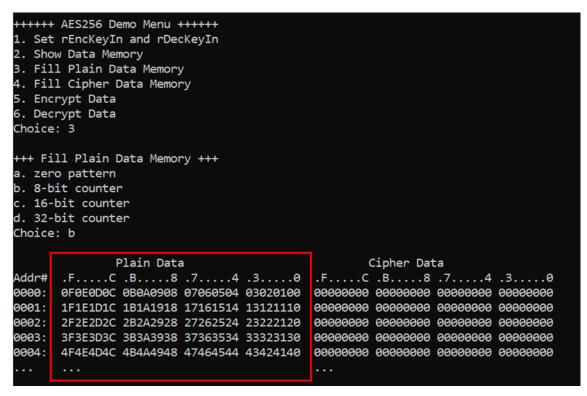



Figure 4-3 Displayed Data when select pattern b



#### 4.4 Fill Cipher Data Memory

Step to fill Cipher data in memory as follows

- a) Select "4. Fill Cipher Data Memory".
- b) There are four pattern to fill memory.
  - a. zero pattern
  - b. 8-bit counter
  - c. 16-bit counter
  - d. 32-bit counter
- c) Whole cipher-data memory is filled with selected data pattern.

```
+++++ AES256 Demo Menu +++++

    Set rEncKeyIn and rDecKeyIn

2. Show Data Memory
3. Fill Plain Data Memory
4. Fill Cipher Data Memory
5. Encrypt Data
Decrypt Data
Choice: 4
+++ Fill Cipher Data Memory +++
a. zero pattern
b. 8-bit counter
c. 16-bit counter
d. 32-bit counter
Choice: c
                                                    Cipher Data
               Plain Data
                                            .F.....C .B.....8 .7.....4 .3.....0
Addr# .F.....C .B.....8 .7.....4 .3.....0
0000: 0F0E0D0C 0B0A0908 07060504 03020100
                                           00070006 00050004 00030002 00010000
0001: 1F1E1D1C 1B1A1918 17161514 13121110
                                            000F000E 000D000C 000B000A 00090008
0002: 2F2E2D2C 2B2A2928 27262524 23222120
                                            00170016 00150014 00130012 00110010
0003: 3F3E3D3C 3B3A3938 37363534 33323130
                                            001F001E 001D001C 001B001A 00190018
0004: 4F4E4D4C 4B4A4948 47464544 43424140
                                            00270026 00250024 00230022 00210020
```

Figure 4-4 Displayed Data when select pattern c



#### 4.5 Encrypt

Select "5. Encrypt" to encrypt plain data in memory. User can input the desired number of plain data to encrypt or press "enter" key to encrypt five 128-bit plain data. When the encryption process is finished, DpRam2 will be filled with cipher data from AES256ENC.

```
+++++ AES256 Demo Menu +++++

    Set rEncKeyIn and rDecKeyIn

2. Show Data Memory
3. Fill Plain Data Memory
4. Fill Cipher Data Memory
5. Encrypt Data
6. Decrypt Data
Choice: 5
+++ Encrypt +++
Number of 128-bit Data in decimal (enter = 5):
              Plain Data
                                                   Cipher Data
Addr# .F....C .B.....8 .7.....4 .3.....0 .F.....C .B.....8 .7.....4 .3.....0
0000: 0F0E0D0C 0B0A0908 07060504 03020100 0BBA89F0 DCAE168A AFECD764 A225AE59
0001: 1F1E1D1C 1B1A1918 17161514 13121110 22588148 85F97E0E 539CC061 3346D8F4
0002: 2F2E2D2C 2B2A2928 27262524 23222120 E9C22525 90A0049E 8DFB21F9 83DFA464
0003: 3F3E3D3C 3B3A3938 37363534 33323130 D0697778 3D8BEAE9 191AD8B6 8043082B
0004: 4F4E4D4C 4B4A4948 47464544 43424140 E156BF4B 26D865EC 6CBFFD4E EC10F657
```

Figure 4-5 Nios II Command Shell after finished encryption process



#### 4.6 Decrypt

Select "6. Decrypt" to decrypt cipher data in memory. User can input the desired number of cipher data to decrypt or press "enter" key to decrypt five 128-bit Cipher data. When the decryption process is finished, DpRam1 will be filled with plain data from AES256DEC.

```
+++++ AES256 Demo Menu +++++

    Set rEncKeyIn and rDecKeyIn

2. Show Data Memory
3. Fill Plain Data Memory
4. Fill Cipher Data Memory
5. Encrypt Data
6. Decrypt Data
Choice: 6
+++ Decrypt +++
Number of 128-bit Data in decimal (enter = 5):
              Plain Data
                                                   Cipher Data
      .F....C .B....8 .7....4 .3....0 .F.....C .B.....8 .7....4 .3....0
Addr#
0000: D619AA4B 94EFE3C8 B6FF3D2A 1F3740B6 00070006 00050004 00030002 00010000
0001: 48C42393 694AE5E1 74FEBE78 C5CF5E18 000F000E 000D000C 000B000A 00090008
0002: A41BA440 FB60C465 9202A7D5 D9C25A6A 00170016 00150014 00130012 00110010
0003: FD7B8A29 2B3FF4B5 27B465BC 9FE88CFE 001F001E 001D001C 001B001A 00190018
0004: 762F890C D1FC54FE A9D13EC8 2F23C4E9
                                           00270026 00250024 00230022 00210020
```

Figure 4-6 Nios II Command Shell after finished decryption process



# 5 Revision History

| Revision | Date        | Description                       |
|----------|-------------|-----------------------------------|
| 1.00     | 10-Sep-2021 | Initial version release           |
| 1.02     | 27-Oct-2022 | Update description for new design |
| 1.03     | 15-Nov-2022 | Correct reference figure number.  |