
AES256SSIP-refdesign-intel-en.docx

29-Aug-23

AES256SS IP Reference Design

1 Introduction ... 1

2 Hardware Overview .. 1

2.1 Avl2Reg .. 2

2.2 AsyncAvlReg .. 2

2.3 UserReg ... 3

2.3.1 Key setting ... 6

2.3.2 Encryption .. 7

2.3.3 Decryption .. 8

3 CPU Firmware .. 9

3.1 Set encryption/decryption key ... 9

3.2 Show Data Memory .. 11

3.3 Fill Plain Data Memory .. 12

3.4 Fill Cipher Data Memory ... 12

3.5 Encrypt ... 13

3.6 Decrypt ... 13

4 Revision History .. 14

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 1

AES256SS IP Reference Design

Rev1.02 29-Aug-2023

1 Introduction

This document describes the detail of AES256SSIP reference design. In this reference
design, AES256SSIP are used to encrypt and decrypt data between two memories in FPGA.
User can fill memory with plain or cipher data patterns, set encryption/decryption key and control
test operation via serial console on test PC. More details of the hardware design and CPU
firmware are described as follows.

2 Hardware Overview

Figure 2-1 AES256SSIP reference design block diagram

In this test environment, AES256SSENC and AES256SSDEC interface with two dual-port
RAMs with asymmetric ports, which are DpRam1 and DpRam2, as shown in Figure 2-1.
AES256SSIP is sub-modules in UserReg module within Avl2Reg. CPU system is designed to
interface with FPGA logic through Avalon-MM bus and interface with user through serial console
in test PC.

For user control interface, there are registers in UserReg to store parameters from user
such as encryption/decryption key, number of data to encrypt or decrypt. Input parameters are
received from user via serial console.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 2

For user data interface, UserReg is designed to be able to write pattern data or read data in
RAMs following user’s command. DpRam1 is used to store the plain data from user which will
be input data for AES256SSENC in encryption mode or the decrypted data which is output data
from AES256SSDEC in decryption mode. DpRam2 is used to store the cipher data from user
which will be input data for AES256SSDEC in decryption mode or encrypted data which is output
data from AES256SSENC in encryption mode.

Because CPU system and AES256SSENC/AES256SSDEC run in different clock domain,
AsyncAvlReg module inside Avl2Reg is designed as asynchronous circuit to support clock-
crossing operation. Also, AsyncAvlReg converts Avalon-MM bus signal which is standard bus in
CPU system to be register interface. The details of Avl2Reg module are described as follows.

2.1 Avl2Reg

Avl2Reg module is connected to CPU through Avalon-MM bus. The hardware registers are
mapped to CPU memory address, as shown in Table 2-1. The control and status registers for
CPU access are designed in Avl2Reg.

Avl2Reg consists of AsyncAvlReg, DpRam and UserReg. Avl2Reg selects the path for
Avalon-MM signals during transmission to AsyncAvlReg or stored in DpRam. When CPU access
to hardware, SAvlAddress [13:9] are used to decode that CPU accesses dual-port ram (DpRam)
or AsyncAvlReg. If CPU accesses DpRam (SAvlAddress [13:9]=“00001” or “00010”), DpRam will
be write or read data at Address SAvlAddress[8:0]. Otherwise, Avl2Reg will be transmission to
AsyncAvlReg. Additionally, as shown in Figure 2-1, there are two clock domains applied in this
block, i.e., CpuClk which is used to interface with CPU through Avalon-MM bus and UserClk
which is user clock domain for AES256SSENC/AES256SSDEC. AsyncAvlReg includes
asynchronous circuit between CpuClk and UserClk.

UserReg includes the register file of the parameters and the status signals of test logics,
including AES256SSIP. Both data interface and control interface of AES256SSIP are connected
to UserReg. More details of AsyncAvlReg and UserReg are described as follows.

2.2 AsyncAvlReg

AsyncAvlReg is designed to convert the Avalon-MM signals to be the simple register
interface which has 32-bit data bus size (similar to Avalon-MM data bus size). Also, it enables
two clock domains, CpuClk and UserClk domain, to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register
address in 32-bit unit), RegWrData (write data of the register), and RegWrByteEn (the byte
enable of this access: bit [0] is write enable for RegWrData[7:0], bit [1] is used for
RegWrData[15:8], …, and bit[3] is used for RegWrData[31:24]).

To read register, AsyncAvlReg asserts RegRdReq=’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to
get the read data through RegRdData signal at the same clock.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 3

2.3 UserReg

This module is designed to write/read data in RAMs, control and check status of
AES256SSENC/AES256SSDEC corresponding with write register access or read register
request from AsyncAvlReg module. Memory map of data, control and status signals inside
UserReg module is shown in Table 2-1. Timing diagram of register interface is shown in Figure
2-2.

Table 2-1 Register map Definition

Address offset
Register Name
(Label in AESIPTest.c)

Rd/Wr Description

0x0000 ADDR_A1_REG Rd/Wr [6:0] – address A of DpRam1 (rAddrA1[6:0]).

0x0004 ADDR_A2_REG Rd/Wr [6:0] – address A of DpRam2 (rAddrA2[6:0]).

0x0008 ENC_CNT_REG Rd [8] – AES256SSENC KeyIn busy flag
(wEncKeyInBusy).

[7] – AES256SSENC DataIn busy flag
(wEncDataInBusy).

[6:0] – Current remaining data to encrypt
(rEncCnt[6:0]).

Wr [6:0] – Number of data to encrypt (rEncCnt[6:0]).

0x000C DEC_CNT_REG Rd [8] – AES256SSENC KeyIn busy flag
(wDecKeyInBusy).

[7] – AES256SSDEC CipherIn busy flag
(wDecCipherInBusy).

[6:0] – Current remaining data to decrypt
(rDecCnt[6:0]).

Wr [6:0] – Number of data to decrypt(rDecCnt[6:0]).

0x0018 ENC_VER_REG Rd [31:0] – AES256SSENC IP version
(wEncVersion).

0x001C DEC_VER_REG Rd [31:0] – AES256SSDEC IP version
(wDecVersion).

0x0020 ENC_KEYIN_0_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[31:0]).
When rEncKeyIn[31:0] is set, rEncKeyInValid is
asserted to ‘1’ and key setting is started.

0x0024 ENC_KEYIN_1_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[63:32]).

0x0028 ENC_KEYIN_2_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[95:64]).

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 4

0x002C ENC_KEYIN_3_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[127:96]).

0x0030 ENC_KEYIN_4_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[159:128]).

0x0034 ENC_KEYIN_5_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[191:160]).

0x0038 ENC_KEYIN_6_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[223:192]).

0x003C ENC_KEYIN_7_REG Rd/Wr [31:0] – Encryption key (rEncKeyIn[255:224]).

0x0040 DEC_KEYIN_0_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[31:0]).
When rDecKeyIn[31:0] is set, rDecKeyInValid is
asserted to ‘1’ and key setting is started.

0x0044 DEC_KEYIN_1_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[63:32]).

0x0048 DEC_KEYIN_2_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[95:64]).

0x004C DEC_KEYIN_3_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[127:96]).

0x0050 DEC_KEYIN_4_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[159:128]).

0x0054 DEC_KEYIN_5_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[191:160]).

0x0058 DEC_KEYIN_6_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[223:192]).

0x005C DEC_KEYIN_7_REG Rd/Wr [31:0] – Decryption key (rDecKeyIn[255:224]).

0x0800~0x0FFF PLAIN_BASE_ADDR Rd/Wr [31:0] – Plain data in DpRam1 (wRdDataB1).

0x1000~0x17FF CIPHER_BASE_ADDR Rd/Wr [31:0] – Cipher data in DpRam2 (wRdDataB2).

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 5

Figure 2-2 Register interface timing diagram

To write register, UserRegWrEn is asserted to ‘1’ with the valid of UserRegAddr.
UserRegAddr[15:11] are used to decode that CPU accesses dual-port ram (DpRam) or internal
register area. If CPU accesses or internal register area (UserRegAddr[15:11]=“00000”),
UserRegWrData is loaded to internal register which has matched UserRegAddr[10:0]. For
example, rAddrA1 is loaded by UserRegWrData when UserRegAddr=0x0000.

To read register, one multiplexer is designed to select the read data within each address
area. UserRegAddr[10:2] is applied in each Register area to select the data. Next, the address
decoder uses UserRegAddr[15:11] to select the read data from each area for returning to CPU.
As shown in Figure 2-2, read data is valid in next two clock cycles. When UserRegRdReq is
active, rUserRegRdReq is asserted to ‘1’. Then rUserRdValid is active with the valid read value
of UserRegAddr.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 6

In this reference design, there are three main operations which are key setting, encryption
and decryption. Each operation is described as follows.

2.3.1 Key setting

For encryption key setting, rEncKeyIn is set by writing register UserRegAddr=0x0020-
0x003F as shown in Table 2-1. When ENC_KEYIN_0_REG is written (UserRegAddr=0x0020),
rEncKeyIn[31:0] is set. Then rEncKeyInValid is asserted to ‘1’ as shown in Figure 2-3. The
encryption key setting takes 14 clocks cycles to finish.

Figure 2-3 Timing diagram of encryption key setting process

For decryption key setting, rDecKeyIn is set by writing register UserRegAddr=0x0040-
0x005F as shown in Table 2-1. When DEC_KEYIN_0_REG is written (UserRegAddr=0x0040),
rDecKeyIn[31:0] is set. Then rDecKeyInValid is asserted to ‘1’ and decryption key setting
process is started as shown in Figure 2-4. The decryption key setting takes 14 clocks cycles to
finish.

Figure 2-4 Timing diagram of decryption key setting process

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 7

2.3.2 Encryption

For encryption process, 128-bit plain data, which will be input data for AES256SSENC,
are stored in DpRam1. Before starting encryption process, address A of DpRam1 (rAddrA1) is
set to 0x00 to access the first plain data. As shown in Figure 2-5, when UserRegAddr=0x0008
(ENC_CNT_REG) is written, UserRegWrData is loaded to rEncCnt as the number of data to
encrypt, and rRamRdA1 is asserted to ‘1’ when rEncCnt>0. Then rAddrA1 is increased by 1 to
access next plain data in. rEncDataInValid is delayed two clock cycle from rRamRdA1. When
rEncCnt=0, no remaining data to encrypt and rRamRdA1 is cleared to ‘0’ in the next cycle.

Cipher data from AES256SSENC is stored in DpRam2. Before starting encryption
process, address A of DpRam2 (rAddrA2) is set to 0x00 for writing the first output cipher data.
When wEncCipherOut is active, wEncCipherOut is loaded to DpRam2. Then rAddrA2 is
increased by 1 prepared for next cipher output.

Figure 2-5 Timing diagram of encryption process

Note: DpRam1/DpRam2 are designed for 2 clock latency of read.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 8

2.3.3 Decryption

For decryption process, 128-bit cipher data, which will be input data for AES256SSDEC,
are stored in DpRam2. Before starting decryption process, address A of DpRam2 (rAddrA2) is
set to 0x00 to access the first cipher data. As shown in Figure 2-6, when UserRegAddr=0x000C
(DEC_CNT_REG) is written, UserRegWrData is loaded to rDecCnt as the number of data to
decrypt, and rRamRdA2 is asserted to ‘1’ when rDecCnt>0. Then rAddrA2 is increased by 1 to
access next cipher data in. rDecCipherInValid is delayed two clock cycle from rRamRdA2. When
rDecCnt=0, no remaining data to decrypt and rRamRdA2 is cleared to ‘0’ in the next cycle.

Decrypted data from AES256SSDEC is stored in DpRam1. Before starting decryption
process, address A of DpRam1 (rAddrA1) is set to 0x00 for writing the first output plain data.
When wDecDataOut is active, wDecDataOut is loaded to DpRam1. Then rAddrA1 is increased
by 1 prepared for next plain output.

Figure 2-6 Timing diagram of decryption process

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 9

3 CPU Firmware

After system boot up, CPU initializes its peripherals such as UART and Timer and shows IP
version of AES256SSENC and AES256SSDEC. Then main menu is displayed. Main function
runs in an infinite loop to show the main menu and get keyboard input from user. User can select
each menu via serial console that will call the related functions. After functions finished running,
the main menu is displayed again. More details of the sequence in each menu are described as
follows.

3.1 Set encryption/decryption key

This menu is used to set encryption/decryption key. The sequence of the firmware is as
follows.

1) Call change_key_set function to change encryption/decryption key set. User can input
“enter” key to skip input encryption key and not change current enc_key_set or to skip
input decryption key and change dec_key_set similar to enc_key_set.

2) Call set_enc_key function and set_dec_key function inside change_key_set function to
set enc_key_set and dec_key_set to mapped registers.

change_key_set function, set_enc_key function and set_dec_key function is described in
Table 3-1, Table 3-2 and Table 3-3, respectively.

Table 3-1 change_key_set function

void change_key_set(unsigned int *enc_key_set, unsigned int *dec_key_set)

Parameter enc_key_set: pointer of array storing 256-bit encryption key

dec_key_set: pointer of array storing 256-bit decryption key

Return value None

Description This function displays current encryption key on the console. Receive input
new encryption key in hexadecimal format or “enter” key to skip. User’s input
will be ignored if it is not hexadecimal format. The encryption/decryption key
is stored in enc_key_set/dec_key_set. Then set_enc_key function and
set_dec_key function is called, respectively.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 10

Table 3-2 set_enc_key set function

void set_enc_key(unsigned int *enc_key_set)

Parameter enc_key_set: pointer of array storing 256-bit encryption key

Return value None

Description This function sets 256-bit encryption key to mapped registers which are
ENC_KEYIN_7_REG, ENC_KEYIN_6_REG, ENC_KEYIN_5_REG,
ENC_KEYIN_4_REG, ENC_KEYIN_3_REG, ENC_KEYIN_2_REG,
ENC_KEYIN_1_REG and ENC_KEYIN_0_REG.When ENC_KEYIN_0_REG
is set, rEncKeyInValid is asserted to ‘1’. Monitor AES256SSENC status until
the key setting is completed. (*ENC_CNT_REG=0)

Table 3-3 set_dec_key set function

void set_dec_key(unsigned int *dec_key_set)

Parameter dec_key_set: pointer of array storing 256-bit decryption key

Return value None

Description This function sets 256-bit decryption key to mapped registers which are
DEC_KEYIN_7_REG, DEC_KEYIN_6_REG, DEC_KEYIN_5_REG,
DEC_KEYIN_4_REG, DEC_KEYIN_3_REG, DEC_KEYIN_2_REG,
DEC_KEYIN_1_REG and DEC_KEYIN_0_REG. When DEC_KEYIN_0_REG
is set, rDecKeyInValid is asserted to ‘1’. Monitor AES256SSDEC status until
the key setting is completed. (*DEC_CNT_REG=0)

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 11

3.2 Show Data Memory

This menu is used to show data in memory. User can set the number of 128-bit data to
show on console. The sequence of the firmware is as follows.

1) Receive the number of 128-bit data in decimal format or “enter” key to use default
value. If user input ‘0’, the number of 128-bit data to show will be default value. The
number of 128-bit data to show is stored in length128.

2) Call show_data function to show data in memory with length128 as its parameter.
show_data function is described in Table 3-4.

Table 3-4 show_data function

void show_data(unsigned int length128)

Parameter length128: number of 128-bit data to show

Return value None

Description This function shows data in both DpRam1 and DpRam2 corresponding to
length. CPU firmware reads data in DpRam1, starting at PLAIN_BASE_ADDR,
and shows on console. Also, CPU firmware reads data in DpRam2, starting
at CIPHER_BASE_ADDR, and shows on console. If length is too large,
length will be set to the size of memory.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 12

3.3 Fill Plain Data Memory

This menu is used to fill DpRam1 with plain data pattern. The sequence of the firmware is
as follows.

1) Call fill_data function to choose data pattern and fill DpRam1 with selected pattern. The
input parameter of fill_data is PLAIN_BASE_ADDR which is base address for DpRam1.
fill_data function is described in Table 3-5.

2) Call show_data function to show data in both DpRam1 and DpRam2 corresponding to
default number of showing data (DEFAULT_SHOW_AFTER_FILL).

Table 3-5 fill_data function

void fill_data(unsigned int base_addr)

Parameter base_addr: base address to access memory

Return value None

Description This function fills the selected pattern in memory corresponding to base_addr.
Before filling memory, the function shows data pattern choices on serial
console and waits for user’s input. For invalid choice, the console will display
the error message and wait until user input new valid choice. Then selected
data pattern is f i l led into memory by writ ing register from address
base_addr+0x0000 to base_addr+0x07FF.

According to Table 3-5, there are four data pattern choices to fill memory that are zero
pattern, 8-bit counter pattern, 16-bit pattern and 32-bit pattern. For zero pattern, user can select
this choice to clear data memory. It makes user see the output of encryption/decryption more
clearly.

3.4 Fill Cipher Data Memory

This menu is used to fill DpRam2 with cipher data pattern. The sequence of the firmware is
as follows.

1) Call fill_data function to choose data pattern and fill DpRam2 with selected pattern. The
input parameter of fill_data is CIPHER_BASE_ADDR which is base address for
DpRam2.

2) Call show_data function to show data in both DpRam1 and DpRam2 corresponding to
default number of showing data (DEFAULT_SHOW_AFTER_FILL).

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 13

3.5 Encrypt

This menu is used to set the number of 128-bit plain data to encrypt and start encryption
process. The sequence of the firmware is as follows.

1) Receive the number of 128-bit plain data in decimal format or “enter” key to use default
value. If user input ‘0’, the number of 128-bit data to encrypt will be default value. The
number of 128-bit data to encrypt is stored in length128.

2) Call aes_command function to set the starting address, number of data to encrypt and
check status. ENC_CNT_REG and length128 are input parameters. aes_command
function is described in Table 3-6.

3) Call show_data function to show data memory.

Table 3-6 aes_command function

void aes_command(unsigned int *CMD_REG, unsigned int length128)

Parameter CMD_REG: register for setting the number of 128-bit data to operate and
checking status

length128: the number of 128-bit data to operate

Return value None

Description This function resets the starting address of DpRam1 and DpRam2 by writing
register ADDR_A1_REG and ADDR_A2_REG, respectively. Then CMD_REG
is written with length128 to set the number of 128-bit data to operate. Also,
CMD_REG is monitored to check whether operation finish. When operation
finished, *CMD_REG=0 which means no remaining data to operate
(*CMD_REG[6:0]=0) and AES256SSIP is not busy. (*CMD_REG[7]= ‘0’)

3.6 Decrypt

This menu is used to set the number of 128-bit cipher data to decrypt and start decryption
process. The sequence of the firmware is as follows.

1) Receive the number of 128-bit cipher data in decimal format or “enter” key to use
default value. If user input ‘0’, the number of 128-bit data to decrypt will be default
value. The number of 128-bit data to decrypt is stored in length128.

2) Call aes_command function to set the starting address, number of data to decrypt and
check status. DEC_CNT_REG and length128 are input parameters.

3) Call show_data function to show data memory.

AES256SSIP-refdesign-intel-en.docx

29-Aug-23 Page 14

4 Revision History

Revision Date Description

1.00 1-Sep-2022 Initial version release

1.02 27-Oct-2022 Update description for new design

