
AES256XTSIP-refdesign-intel-en.docx

30-Aug-23

AES256XTS IP Reference Design

1 Introduction ... 1

2 Hardware Overview ... 1

2.1 Avl2Reg .. 2

2.2 AsyncAvlReg .. 2

2.3 UserReg ... 3

2.3.1 Encryption key setting .. 6

2.3.2 Tweakable key setting .. 7

2.3.3 parameter setting ... 8

2.3.4 Encryption .. 9

2.3.5 Decryption .. 10

3 CPU Firmware .. 11

3.1 Set encryption key .. 11

3.2 Set tweakable key ... 12

3.3 Set encryption/decryption IV ... 12

3.4 Show Data Memory .. 13

3.5 Fill Plain Data Memory .. 14

3.6 Encrypt ... 15

3.7 Fill Cipher Data Memory ... 16

3.8 Decrypt ... 16

4 Revision History .. 17

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 1

AES256XTS IP Reference Design

Rev1.00 30-Aug-2023

1 Introduction

This document describes the detail of AES256XTSIP reference design. In this reference
design, AES256XTSIP are used to encrypt and decrypt data between two memories in FPGA.
User can fill memory with plain or cipher data patterns, set encryption key, tweakable key,
Initialization Vector (IV) and control test operation via serial console on test PC. More details of
the hardware design and CPU firmware are described as follows.

2 Hardware Overview

Figure 2-1 AES256XTSIP reference design block diagram

In this test environment, two AES256XTSIP, called AES256XTSENC and AES256XTSDEC,
interface with two dual-port RAMs with asymmetric ports, which are DpRam1 and DpRam2, as
shown in Figure 2-1. AES256XTSIP and two RAMs are sub-modules in UserReg module within
Avl2Reg. CPU system is designed to interface with FPGA logic through Avalon-MM bus and
interface with user through serial console in test PC.

For user control interface, there are registers in UserReg to store parameters from user
such as encryption key, tweakable key, Initialization Vector (IV), number of data to encrypt or
decrypt. Input parameters are received from user via serial console.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 2

For user data interface, UserReg is designed to be able to write pattern data or read data in
RAMs following user’s command. DpRam1 is used to store the plain data from user which will
be input data for AES256XTSENC in encryption mode or the decrypted data which is output
data from AES256XTSDEC in decryption mode. DpRam2 is used to store the cipher data from
user which will be input data for AES256XTSDEC in decryption mode or encrypted data which is
output data from AES256XTSENC in encryption mode.

Because CPU system and AES256XTSENC/AES256XTSDEC run in different clock domain,
AsyncAvlReg module inside Avl2Reg is designed as asynchronous circuit to support clock-
crossing operation. Also, AsyncAvlReg converts Avalon-MM bus signal which is standard bus in
CPU system to be register interface. The details of Avl2Reg module are described as follows.

2.1 Avl2Reg

Avl2Reg module is connected to CPU through Avalon-MM bus. The hardware registers are
mapped to CPU memory address, as shown in Table 2-1. The control and status registers for
CPU access are designed in Avl2Reg.

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg is designed to convert the
Avalon-MM signals to be the simple register interface which has 32-bit data bus size (similar to
Avalon-MM data bus size). Additionally, as shown in Figure 2-1, there are two clock domains
applied in this block, i.e., CpuClk which is used to interface with CPU through Avalon-MM bus
and UserClk which is user clock domain for AES256XTSENC/AES256XTSDEC. AsyncAvlReg
includes asynchronous circuit between CpuClk and UserClk.

UserReg includes the register file of the parameters and the status signals of test logics,
including dual-port rams and AES256XTSIP. Both data interface and control interface of
AES256XTSIP are connected to UserReg. More details of AsyncAvlReg and UserReg are
described as follows.

2.2 AsyncAvlReg

This module is designed to convert the signal interface of Avalon-MM to be register
interface. Also, it enables two clock domains, CpuClk and UserClk domain, to communicate.

To write register, RegWrEn is asserted to ‘1’ with the valid signal of RegAddr (Register
address in 32-bit unit), RegWrData (write data of the register), and RegWrByteEn (the byte
enable of this access: bit [0] is write enable for RegWrData[7:0], bit [1] is used for
RegWrData[15:8], …, and bit[3] is used for RegWrData[31:24]).

To read register, AsyncAvlReg asserts RegRdReq=’1’ with the valid value of RegAddr (the
register address in 32-bit unit). After that, the module waits until RegRdValid is asserted to ‘1’ to
get the read data through RegRdData signal at the same clock.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 3

2.3 UserReg

This module is designed to write/read data in RAMs, control and check status of
AES256XTSENC and AES256XTSDEC corresponding with write register access or read
register request from AsyncAvlReg module. Memory map inside UserReg module is shown in
Table 2-1. Timing diagram of register interface is shown in Figure 2-2.

Table 2-1 Register map Definition

Address
offset

Register Name Rd/Wr Description

0x0000 ADDR_A1_REG Rd/Wr [10:4] – address A of DpRam1 (rAddrA1[10:4]).

0x0004 ADDR_A2_REG Rd/Wr [10:4] – address A of DpRam2 (rAddrA2[10:4]).

0x0010 ENC_DATAINCNT_REG Rd [2] – AES256XTSENC EKeyIn busy flag
(wEncEKeyInBusy).
[1] – AES256XTSENC TKeyIn busy flag
(wEncTKeyInBusy).
[0] – AES256XTSENC busy flag (wEncBusy).

Wr [15:0] – length of plain data for encryption
(rEncDataInCnt[15:0]). rEncStart is asserted to ‘1’ and
encryption process is started.

0x0014 DEC_DATAINCNT_REG Rd [2] – AES256XTSDEC EKeyIn busy flag
(wDecEKeyInBusy).
[1] – AES256XTSDEC TKeyIn busy flag
(wDecTKeyInBusy).
[0] – AES256XTSDEC busy flag (wDecBusy).

Wr [15:0] – length of cipher data for decryption
(rDecDataInCnt[15:0]). rDecStart is asserted to ‘1’ and
decryption process is started.

0x0018 ENC_VER_REG Rd [31:0] – AES256XTSENC IP version (wEncVersion).

0x001C DEC_VER_REG Rd [31:0] – AES256XTSDEC IP version (wDecVersion).

0x0020 ENC_EKEYIN_0_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[31:0]).
When rEncEKeyIn[31:0] is set, rEncEKeyInValid is
asserted to ‘1’ and encryption key setting is started.

0x0024 ENC_EKEYIN_1_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[63:32]).

0x0028 ENC_EKEYIN_2_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[95:64]).

0x002C ENC_EKEYIN_3_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[127:96]).

0x0030 ENC_EKEYIN_4_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[159:128]).

0x0034 ENC_EKEYIN_5_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[191:160]).

0x0038 ENC_EKEYIN_6_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[223:192]).

0x003C ENC_EKEYIN_7_REG Rd/Wr [31:0] – AES256XTSENC Ekey (rEncEKeyIn[255:224]).

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 4

0x0040 DEC_EKEYIN_0_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[31:0]).
When rDecEKeyIn [31:0] is set, rDecEKeyInValid is
asserted to ‘1’ and encryption key setting is started.

0x0044 DEC_EKEYIN_1_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[63:32]).

0x0048 DEC_EKEYIN_2_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[95:64]).

0x004C DEC_EKEYIN_3_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[127:96]).

0x0050 DEC_EKEYIN_4_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[159:128]).

0x0054 DEC_EKEYIN_5_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[191:160]).

0x0058 DEC_EKEYIN_6_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[223:192]).

0x005C DEC_EKEYIN_7_REG Rd/Wr [31:0] – AES256XTSDEC Ekey (rDecEKeyIn[255:224]).

0x0060 ENC_TKEYIN_0_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[31:0]).
When rEncTKeyIn[31:0] is set, rEncTKeyInValid is
asserted to ‘1’ and tweakable key setting is started.

0x0064 ENC_TKEYIN_1_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[63:32]).

0x0068 ENC_TKEYIN_2_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[95:64]).

0x006C ENC_TKEYIN_3_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[127:96]).

0x0070 ENC_TKEYIN_4_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[159:128]).

0x0074 ENC_TKEYIN_5_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[191:160]).

0x0078 ENC_TKEYIN_6_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[223:192]).

0x007C ENC_TKEYIN_7_REG Rd/Wr [31:0] – AES256XTSENC Tkey (rEncTKeyIn[255:224]).

0x0080 DEC_TKEYIN_0_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[31:0]).
When rDecTKeyIn [31:0] is set, rDecTKeyInValid is
asserted to ‘1’ and tweakable key setting is started.

0x0084 DEC_TKEYIN_1_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[63:32]).

0x0088 DEC_TKEYIN_2_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[95:64]).

0x008C DEC_TKEYIN_3_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[127:96]).

0x0090 DEC_TKEYIN_4_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[159:128]).

0x0094 DEC_TKEYIN_5_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[191:160]).

0x0098 DEC_TKEYIN_6_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[223:192]).

0x009C DEC_TKEYIN_7_REG Rd/Wr [31:0] – AES256XTSDEC Tkey (rDecTKeyIn[255:224]).

0x00A0 ENC_IVIN_0_REG Rd/Wr [31:0] – AES256XTSENC IV (rEncIvIn[31:0]).

0x00A4 ENC_IVIN_1_REG Rd/Wr [31:0] – AES256XTSENC IV (rEncIvIn[63:32]).

0x00A8 ENC_IVIN_2_REG Rd/Wr [31:0] – AES256XTSENC IV (rEncIvIn[95:64]).

0x00AC ENC_IVIN_3_REG Rd/Wr [31:0] – AES256XTSENC IV (rEncIvIn[127:96]).

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 5

0x00C0 DEC_IVIN_0_REG Rd/Wr [31:0] – AES256XTSDEC IV (rDecIvIn[31:0]).

0x00C4 DEC_IVIN_1_REG Rd/Wr [31:0] – AES256XTSDEC IV (rDecIvIn[63:32]).

0x00C8 DEC_IVIN_2_REG Rd/Wr [31:0] – AES256XTSDEC IV (rDecIvIn[95:64]).

0x00CC DEC_IVIN_3_REG Rd/Wr [31:0] – AES256XTSDEC IV (rDecIvIn[127:96]).

0x2000~
0x3FFF

PLAIN_BASE_ADDR Rd/Wr [31:0] – Plain data in DpRam1 (wRdDataB1).

0x4000~
0x5FFF

CIPHER_BASE_ADDR Rd/Wr [31:0] – Cipher data in DpRam2 (wRdDataB2).

Figure 2-2 Register interface timing diagram

To read register, the multiplexer is designed to select the read data within each address
area. UserRegAddr[10:2] is applied in each register area to select the data. Next, the address
decoder uses UserRegAddr[15:13] to select the read data from each area for returning to CPU.
As shown in Figure 2-2, read data is valid in next two clock cycles. When UserRegRdReq is
active, rUserRegRdReq is asserted to ‘1’. Then rUserRdValid is active with the valid read value
of UserRegAddr.

To write register, UserRegWrEn is asserted to ‘1’ with the valid of UserRegAddr.
UserRegAddr[15:13] is used to decode that CPU accesses dual-port ram (DpRam) or internal
register area. When CPU accesses DpRam (UserRegAddr[15:13]=“001” or “010”),
Use rRe g A d dr [1 2 :2] i s se t t o b e t h e a d d re ss o f Dp Ra m. Fo r e xa mp le , when
UserRegAddr[15:0]=0x2004 and UserRegWrEn=’1’, DpRam1 will be filled with UserRegWrData
at Address 0x01. Otherwise, UserRegWrData is loaded to internal register which has matched
UserRegAddr[10:0] . For example, rAddrA1 is loaded by UserRegWrData when
UserRegAddr=0x0000.

UserRegWrByteEn signal is used when CPU firmware needs to access DpRam by using
64-bit, 32-bit, 16-bit or 8-bit pointer. UserRegWrByteEn[3:0] is mapped to Byte Write Enable port
of DpRam.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 6

In this reference design, there are three main operations which are parameter setting,
encryption and decryption. Each operation is described as follows.

2.3.1 Encryption key setting

For AES256XTSENC encryption key setting, rEncEKeyIn is set by writing register
UserRegAddr=0x0020-0x003F as shown in Table 2-1. When ENC_EKEYIN_0_REG is written
(UserRegAddr=0x0020), rEncEKeyIn[31:0] is set. Then rEncEKeyInValid is asserted to ‘1’ as
shown in Figure 2-3. AES256XTSENC encryption key setting takes 14 clocks cycles to finish.

Figure 2-3 Timing diagram of AES256XTSENC encryption key setting process

For AES256XTSDEC encryption key setting, rDecEKeyIn is set by writing register
UserRegAddr=0x0040-0x005F as shown in Table 2-1. When DEC_EKEYIN_0_REG is written
(UserRegAddr=0x0040), rDecEKeyIn[31:0] is set. Then rDecEKeyInValid is asserted to ‘1’ as
shown in Figure 2-4. AES256XTSDEC encryption key setting takes 14 clocks cycles to finish.

Figure 2-4 Timing diagram of AES256XTSDEC decryption key setting process

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 7

2.3.2 Tweakable key setting

For AES256XTSENC tweakable key setting, rEncTKeyIn is set by writing register
UserRegAddr=0x0060-0x007F as shown in Table 2-1. When ENC_TKEYIN_0_REG is written
(UserRegAddr=0x0060), rEncTKeyIn[31:0] is set. Then rEncTKeyInValid is asserted to ‘1’ as
shown in Figure 2-3. AES256XTSENC tweakable key setting takes 14 clocks cycles to finish.

Figure 2-5 Timing diagram of AES256XTSENC tweakable key setting process

For AES256XTSDEC tweakable key setting, rDecTKeyIn is set by writing register
UserRegAddr=0x0080-0x009F as shown in Table 2-1. When DEC_TKEYIN_0_REG is written
(UserRegAddr=0x0080), rDecTKeyIn[31:0] is set. Then rDecTKeyInValid is asserted to ‘1’ as
shown in Figure 2-4. AES256XTSDEC tweakable key setting takes 14 clocks cycles to finish.

Figure 2-6 Timing diagram of AES256XTSDEC tweakable key setting process

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 8

2.3.3 parameter setting

For encryption process, encryption IV is set by writ ing ENC_IVIN_0_REG to
ENC_IVIN_3_REG. plain data, which will be input data for AES256XTSENC, are stored in
DpRam1. Before starting encryption process, address A of DpRam1 (rAddrA1) is set to 0x00 to
access the first plain data. Encrypted data from AES256XTSENC is stored in DpRam2. Before
starting encryption process, address A of DpRam2 (rAddrA2) is set to 0x00 for writing the first
output encrypted data. For setting length of plain data, rEncDataInCnt, ENC_DATAINCNT_REG
is written and then rEncStart is asserted to ‘1’ to start encryption as shown in Figure 2-7.

Figure 2-7 Timing diagram example of encryption parameter setting

For decryption process, decryption IV is set by writ ing DEC_IVIN_0_REG to
DEC_IVIN_3_REG. cipher data, which will be input data for AES256XTSDEC, are stored in
DpRam2. Before starting decryption process, address A of DpRam2 (rAddrA2) is set to 0x00 to
access the first cipher data. Decrypted data from AES256XTSDEC is stored in DpRam1. Before
starting decryption process, address A of DpRam1 (rAddrA1) is set to 0x00 for writing the first
output decrypted data. For setting length of cipher data, rDecDataInCnt, DEC_DATAINCNT_REG
is written and then rDecStart is asserted to ‘1’ to start decryption as shown in Figure 2-8.

Figure 2-8 Timing diagram example of decryption parameter setting

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 9

2.3.4 Encryption

For encryption process, 128-bit plain data, which will be input data for AES256XTSENC,
are stored in DpRam1. Before starting encryption process, address A of DpRam1 (rAddrA1) is
set to 0x00 to access the first plain data. DpRam1 has wRdEnA1 as the read enable signal of
the ram and wRdEnA1 is asserted to ‘1’ when rEncStart=‘1’ or wEncDataInRd=‘1’. As shown in
Figure 2-9, when wRdEnA1 is active, rAddrA1 is increased by 1 to access next 128-bit plain
data.

Before starting encryption process, address A of DpRam2 (rAddrA2) is set to 0x00 for
writing the first encrypted data. When wEncDataOutValid is active, wEncDataOut is loaded to
DpRam2. Then rAddrA2 is increased by 1 prepared for next encrypted output as shown in
Figure 2-9.

Figure 2-9 : Example of a 35-byte data encryption timing diagram

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 10

2.3.5 Decryption

For decryption process, 128-bit cipher data, which will be input data for AES256XTSDEC,
are stored inDpRam2. Before starting decryption process, address A of DpRam2 (rAddrA2) is
set to 0x00 to access the first cipher data. DpRam2 has wRdEnA2 as the read enable signal of
the ram and wRdEnA2 is asserted to ‘1’ when rDecStart=‘1’ or wDecDataInRd=‘1’. As shown in
Figure 2-10, when wRdEnA2 is active, rAddrA2 is increased by 1 to access next 128-bit cipher
data.

Before starting decryption process, address A of DpRam1 (rAddrA1) is set to 0x00 for
writing the first decrypted data. When wDecDataOutValid is active, wDecDataOut is loaded to
DpRam1. Then rAddrA1 is increased by 1 prepared for next decrypted output as shown in
Figure 2-10.

Figure 2-10 Example of a 35-byte data decryption timing diagram

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 11

3 CPU Firmware

After system boot-up, CPU initializes its peripherals such as UART and Timer and shows IP
version of AES256XTSIP. Then main menu is displayed. Main function runs in an infinite loop to
show the main menu and get keyboard input from user. User can select each menu via serial
console that will call the related functions. After functions finished running, the main menu is
displayed again. More details of the sequence in each menu are described as follows.

3.1 Set encryption key

This menu is used to set encryption key for encryption module and decryption module.
set_key_or_iv function is called to change Ekey set. User can input “enter” key to skip input
Ekey and not change current key for encryption module or to skip input Ekey and change key
s im i la r t o enc ryp t ion modu le fo r dec ryp t ion modu le . ENC_EKEYIN_ 0_ RE G ,
DEC_EKEYIN_0_REG, 64-character, “rEncEKeyIn”, “rDecEKeyIn” are input parameters.
set_key_or_iv function is described in Table 3-1.

Table 3-1 set_key_or_iv function

void set_key_or_iv(unsigned int *enc_addr, unsigned int *dec_addr, unsigned int length_hex,
char *enc_label, char *dec_label)

Parameter enc_addr: register for set key or iv of encryption module

dec_addr: register for set key or iv of decryption module

length_hex: length character of key or iv

enc_label: name of signal for encryption module

dec_label: name of signal for decryption module

Return value None

Description This function displays current key or iv on the console. Receive input new key
or iv in hexadecimal format or “enter” key to skip. User’s input will be ignored
if it is not hexadecimal format. Then the function monitors busy status until
busy status is not active. Then set the registers.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 12

3.2 Set tweakable key

This menu is used to set tweakable key for encryption module and decryption module.
set_key_or_iv function is called to change Tkey set. User can input “enter” key to skip input Tkey
and not change current key for encryption module or to skip input Tkey and change key similar
to encryption module for decryption module. ENC_TKEYIN_0_REG, DEC_TKEYIN_0_REG, 64-
character, “rEncTKeyIn”, “rDecTKeyIn” are input parameters.

3.3 Set encryption/decryption IV

This menu is used to set Initialization Vector (IV) for encryption module and decryption
module. set_key_or_iv function is called to change iv set. User can input “enter” key to skip input
iv and not change current key for encryption module or to skip input iv and change key similar to
encryption module for decryption module. ENC_IVIN_0_REG, DEC_IVIN_0_REG, 32-character,
“rEncIvIn”, “rDecIvIn” are input parameters.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 13

3.4 Show Data Memory

This menu is used to show data in memory. User can set the number of data to show on
console in byte unit. The sequence of the firmware is as follows.

1) Receive the length of data in decimal format or “enter” key to use default value. The
length of data to show is stored in length.

2) Call show_data function to show data in memory with PLAIN_BASE_ADDR and length
as input parameters. show_data function is described in Table 3-2.

Table 3-2 show_data function

void show_data(unsigned int base_addr, unsigned int length)

Parameter base_addr: base address to access memory

length: length of data to show

Return value None

Description This function shows data in both DpRam1 and DpRam2 corresponding to
length. CPU firmware reads data in DpRam1, starting at PLAIN_BASE_ADDR,
and shows on console. Also, CPU firmware reads data in DpRam2, starting
at CIPHER_BASE_ADDR, and shows on console. If length is too large,
length will be set to the size of memory.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 14

3.5 Fill Plain Data Memory

This menu is used to fill DpRam1 with plain data pattern. The sequence of the firmware is
as follows.

1) Receive the length of plain data in decimal format or “enter” key to set length of data to
default value. If user input less than 16 bytes, the length of data will be 16 bytes. The
number of data to encrypt is stored in enc_data_cnt.

2) Call fill_data function to choose data pattern and fill DpRam1 with selected pattern. The
input parameter of fill_data is PLAIN_BASE_ADDR which is base address for DpRam1
and enc_data_cnt.

3) Call show_data function to show data in both DpRam1 and DpRam2 corresponding to
enc_data_cnt.

According to Table 3-3, there are four data pattern choices to fill memory that are zero
pattern, 8-bit counter pattern, 16-bit counter pattern and 32-bit counter pattern. For zero pattern,
user can select this choice to clear data memory. I t makes user see the output of
encryption/decryption more clearly.

Table 3-3 fill_data function

void fill_data(unsigned int base_addr, unsigned int data_length)

Parameter base_addr: base address to access memory

data_length: length of data to fill data pattern

Return value None

Description This function fills the selected pattern in memory corresponding to base_addr.
Before filling memory, the function shows data pattern choices on serial
console and waits for user’s input. For invalid choice, the console will display
the error message and wait until user input new valid choice. Then selected
data pattern is filled into memory by the length of data (data length) and filled
zeros into the remaining memory from address base_addr+0x0000 to
base_addr+0x1FFF.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 15

3.6 Encrypt

This menu is used to start encryption process with current encryption parameters. The
sequence of the firmware is as follows.

1) Call aes_command function to set the starting address, number of data to encrypt and
check status. ENC_CNT_REG and enc_data_cnt are input parameters. aes_command
function is described in Table 3-7.

2) Print plain data length and call show_data function to show data in memory by the
number of plain data.

Table 3-7 aes_command function

void aes_command(unsigned int *DATACNT_REG, unsigned int data_cnt)

Parameter DATACNT_REG: register for data length

data_cnt: the number of data to operate

Return value None

Description This function sets the starting address of DpRam1 and DpRam2 by writing
register ADDR_A1_REG and ADDR_A2_REG, respect ively. Then
DATACNT_REG is written with data_cnt to set the number of data to operate.
Also, DATACNT_REG is monitored to check whether operation finish. When
operation finished, *DATACNT_REG=0 which means AES256XTSIP is not
busy.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 16

3.7 Fill Cipher Data Memory

This menu is used to fill DpRam2 with cipher data pattern. The sequence of the firmware is
as follows.

1) Receive the length of cipher data in decimal format or “enter” key to set length of data
to default value. If user input less than 16 bytes, the length of data will be 16 bytes. The
number of data to decrypt is stored in dec_data_cnt.

2) Call fill_data function to choose data pattern and fill DpRam2 with selected pattern. The
input parameter of fill_data is CIPHER_BASE_ADDR which is base address for
DpRam2 and dec_data_cnt.

3) Call show_data function to show data in both DpRam1 and DpRam2 corresponding to
dec_data_cnt.

3.8 Decrypt

This menu is used to start decryption process with current decryption parameters. The
sequence of the firmware is as follows.

1) Call aes_command function to set the starting address, number of data to decrypt and
check status. DEC_CNT_REG and dec_data_cnt are input parameters.

2) Print cipher data length and call show_data function to show data in memory by the
number of cipher data.

AES256XTSIP-refdesign-intel-en.docx

30-Aug-23 Page 17

4 Revision History

Revision Date Description

1.00 30-Nov-2022 Initial version release

