

NVMe-IP Introduction for Intel Ver2.3EA

The Very Best Solution for Data Recording Application!

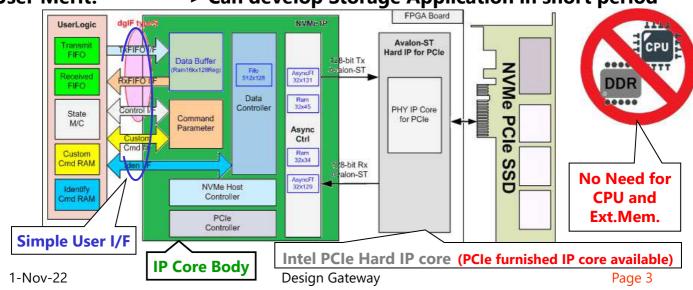
1-Nov-22

Design Gateway

Page 1

Agenda

- NVMe-IP Introduction
 - Summary, Lineup, Merit
 - High Performance and Compact Size
 - Easy User Interface
 - Rich Features
 - Development Environment/Reference Design
- Optional product (exFAT-IP core)
- Application



What's NVMe-IP

Supports latest PCIE Gen4 protocol

- What's NVMe-IP? -> Directly connect NVMe SSD with FPGA
- Advantage
- Application
- User Merit?
- -> Best for ultra high speed data recording system-> Can develop Storage Application in short period

-> No need for CPU, its F/W, External Memory

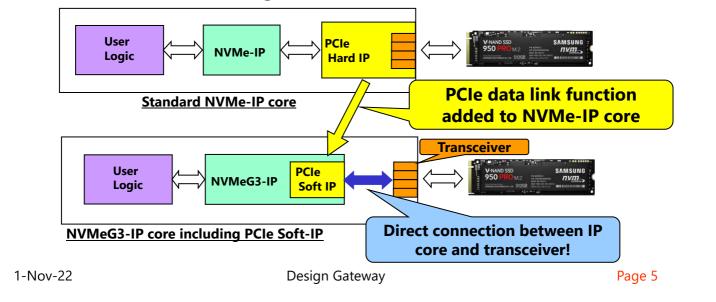
NVMe-IP Lineup

- Multiple lineup for various functions
 - NVMe-IP with... PCIe Soft-IP, external switch, multi-user ...

Core type	Description
Standard NVMe-IP core	Standard core using Avalon-ST PCIe Hard IP in FPGA
NVMeG3-IP core	PCIe Soft-IP furnished in NVMe-IP, 4-Lane PCIe Gen3
NVMeSW-IP core	Multiple SSD connection via external PCIe switch
raNVMe-IP core	Supports random read or write access
muNVMe-IP core 🛛 👹	Multiple user (port) with individual access

NVMe-IP core lineup

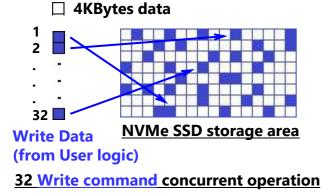
(Ask DesignGateway for more detail of NVMeSW-IP core.)

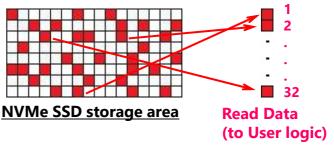


PCIe Soft-IP furnished IP core

NVMeG3-IP core

- Can operate without Avalon-ST PCIe Hard IP
- Includes data link layer and connect with transceiver by PCIe Gen3
- More SSD connection regardless of PCIe Hard IP count in FPGA.





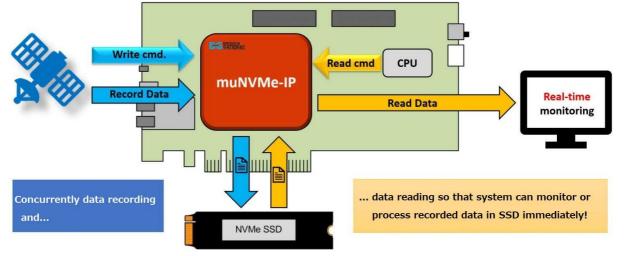
D•G

raNVMe-IP for random access

- User can select either Write or Read operation
- Executes 32 commands at maximum concurrently with different (random) address.
- Write or read data per one command is fixed to 4KBytes.

32 Read command concurrent operation

raNVMe-IP concurrent command operation image



Multiple user (multiple port) support

muNVMe-IP core

- Multiple user port R/W accessible to single SSD individually
- Suitable for simultaneous recording and reading application

Design Gateway

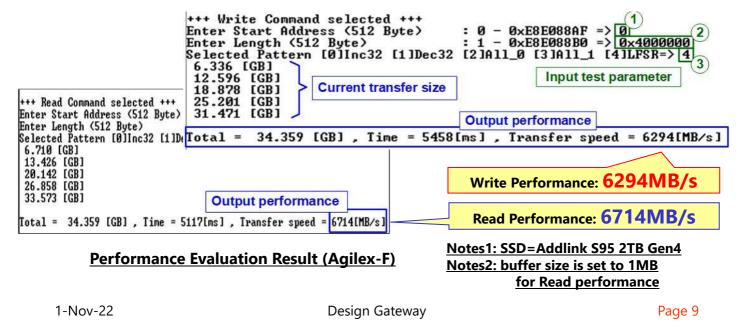
Simultaneous data recording and reading system by muNVMe-IP core

```
2022/11/1
```


o I F

tyne S

Page 7


NVMe-IP Merit

1. High Performance and Compact size

- Write=6294MB/s, Read=6714MB/s (measured by Agilex-F)
- Support PCIe GEN4/3 (Gen4 operation confirmed on Agilex-F board)
- Core size: 1820ALM, 3680DFF (for Arria10SX case)
- 2. Interface: Simple and easy connection
 - User I/F control is parameter with pulse, data is simple FIFO
 - Use Block Mem. for data buffer (external DDR memory not required)
- 3. Rich Features: Custom command in addition to Read/Write
 - Supports SMART/FLUSH/Shutdown custom command
 - Supports both legacy 512byte and 4Kbyte Sector format
- 4. Environment: Full reference design project
 - Full Quartus project with real board operation in the package

- Automatic PCIe SSD access by pure hard-wired logic
 - Intelligent state machine for complete read/write command execution
 - Minimum over head and best performance by synchronized circuit

- Optimized size with minimum resource consumption
 - Implements dedicated and optimized logic for NVMe SSD control
- Block memory for data buffer
- Internal block memory can minimize access overhead

Family	Example Device	Fma (MH:		gic utilization (ALMs)	Re	gisters	Me	Block emory bit ¹	Design Tools
ArriaV GX	5AGXFB3H4F35C4	212	2	1835		3637	2	,162,688	Quartusll 16.0
Stratix V GX	5SGXMA7N2F45C2	350)	1813		3682	2	,162,688	QuartusII 16.0
Arria10 SX	10AS066N3F40E2SGE2	300)	1820		3680	2	,162,688	QuartusII 16.0
Family	Example Device	Buf Mode	Fmax (MHz)	Logic utilizat (ALMs)	ion	Registe	rs	Block Memory bi	Design Tools
Agilex F-Series	AGFB014R24A2E3VR0	1 MB	375	4939	5	10,48	5	8,496,896	Quartus 22.3
		256 KB	375	3970		9,191	2	2,205,440	

NVMe-IP (standard) Core standalone resource usage

Merit1: Compact Size (PCIe Soft-IP furnished)

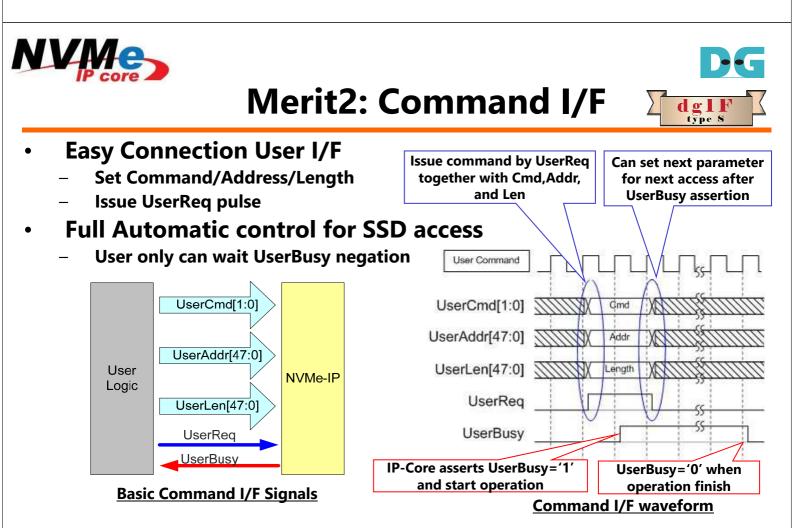
• Resource usage of PCIe Soft-IP furnished IP core

Family	Example Device		FmaxLogic utilization(MHz)(ALMs)		Block Memory	Design Tools	
Arria10 GX	10AX115S2F45I1SG	300	8560	10984	140 M20Ks	QuartusII 18.0	

NVMeG3-IP core (PCIe Soft-IP furnished) standalone resource usage

Limitation point of NVMeG3-IP core

PCIe Gen3 only, not support other speed (Gen1/2)

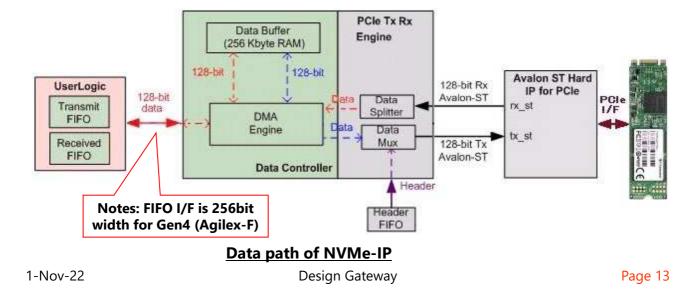

- 4-Lane only, not support other lane count (1/2/8/16)

(Ask other lane count as core customization)

2022/11/1

Design Gateway

Page 11



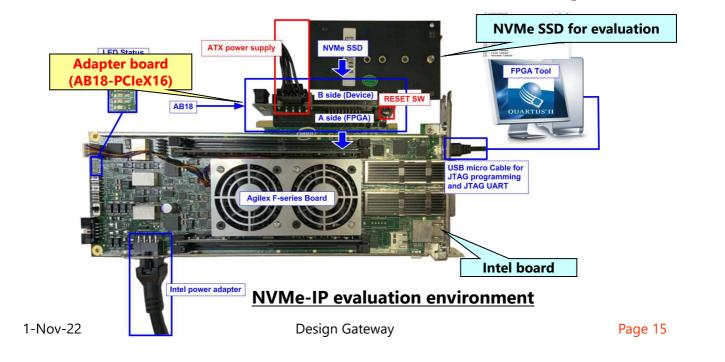
- Simple 128/256bit FIFO for each of read and write
 - General FIFO of standard Intel library
 - Data buffer using 256KByte Block memory in NVMe-IP

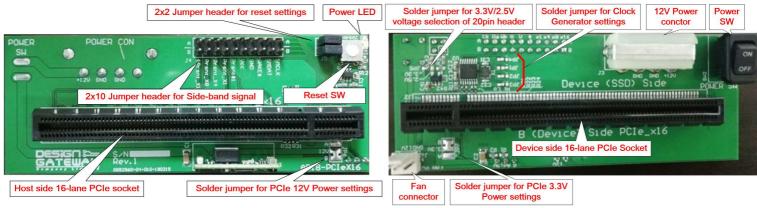
(*1) NVMe-IP for Gen4 can select 1MB buffer size to increase performance

Merit 3: Rich Features

- SMART command for SSD health condition check
 - Can monitor internal temperature, total write size, etc.
- FLUSH command to force cache flush operation
 - User can adjust trade-off between performance and data evacuation
- Safe Shutdown before SSD power down
 - IP-core executes safe shutdown by user request
- Supports both 512bytes and 4Kbytes sector format
 - IP-core automatically selects sector format via Identify command

<< SMART Log Information >>	
Temperature	: 32 Degree Celsius
Total Data Read	: 47469 GB
Total Data Written	: 65373 GB
Power On Cycles	: 3991 Times
Power On Hours	: 79 Hours
Unsafe Shutdowns	: 220 Times


SMART command result example


Merit4: Environment

- Real operation check with Intel evaluation board
- Free sof-file for evaluation before IP-core purchase

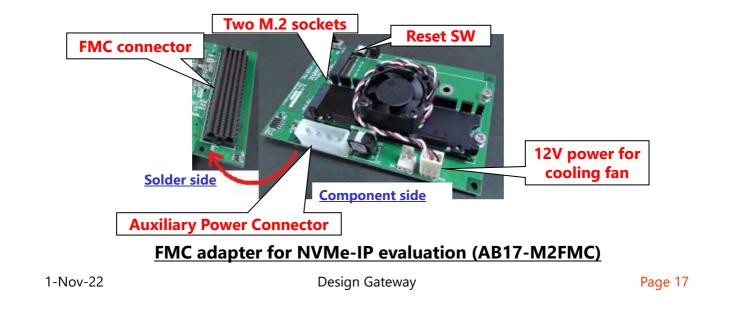
NVMS Merit4: Development Tool#1

- PCIe Adapter board for evaluation (Part#: AB18-PCIeX16)
 - Connect FPGA board to PCIe socket on component side
 - Connect PCIe SSD to PCIe socket on solder side
 - SSD R/W access via adapter board from NVMe-IP in FPGA

Component side

Solder side

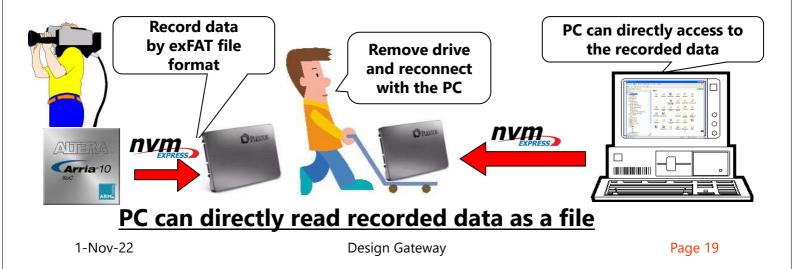
PCIe adapter for NVMe-IP evaluation (AB18-PCIeX16)


Design Gateway

Merit4: Development Tool#2

- FMC Adapter board for evaluation (Part#: AB17-M2FMC)
 - Two M.2 sockets on component side
 - FMC HPC connector for FPGA connection on solder side
 - High capacity power supply (max 5A for 3.3V output per one SSD)

Merit4: Reference Design


- Quartus/Qsys project is attached with NVMe-IP deliverables
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

Short-term development is possible without big turn back

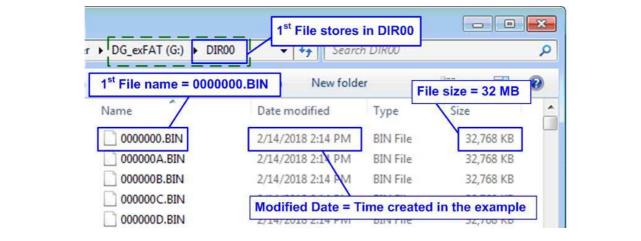
Optional product: exFAT-IP Core Introduction

- Optional products for NVMe-IP core
 - Supports data recording with exFAT file format
- PC can directly access to recorded data as a file
 - FPGA writes data to device, reconnect with PC, then PC can read data

Feature description

- Executes drive format and data write to file by pure hardwired logic.
- IP core automatically generates file name.
- User logic sends file data via FIFO interface.

Limitation


- Drive must be formatted by the IP core, not by the PC.
- Files other than those generated by the IP core cannot be written to the drive.
- File size is determined at format execution and cannot be changed.

Optional product: exFAT-IP (Cont'd 2)

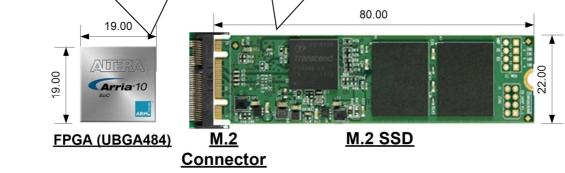
Reference design for real operation available

- Executes test file generation via serial console.
- User can confirm file read compatibility by drive re-plug to the PC.

Generate test file, reconnect with PC, and can check file read compatibility

Design Gateway

1-Nov-22

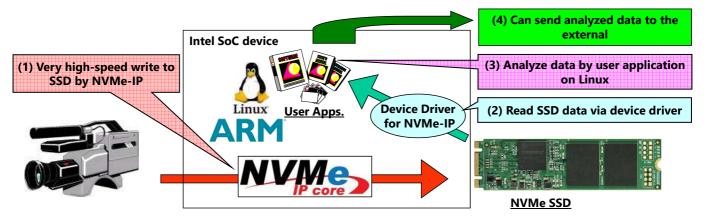


 NVMe-IP Application Example 1

 • Space-Saving FPGA data logging system

 - Latest FPGA+M.2 type SSD

 Include data logging user logic and NVMe-IP in FPGA



System space image by UBGA 484 FPGA and M.2 SSD (unit: mm)

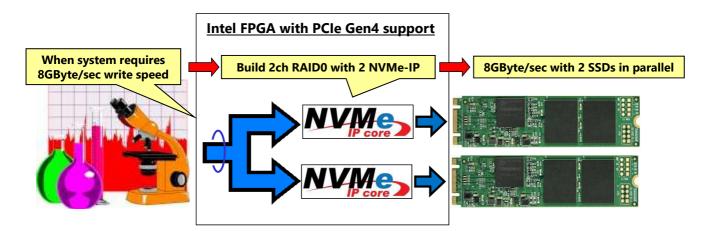
Page 21

- Recording and Analysis system on Linux
 - Mount Linux and user analysis application on SoC device
 - Very high-speed data recording to SSD via NVMe-IP core
 - Data read from SSD via device driver and analyze by user application

Recording and Analysis sytem on Linux (device driver and reference design available)

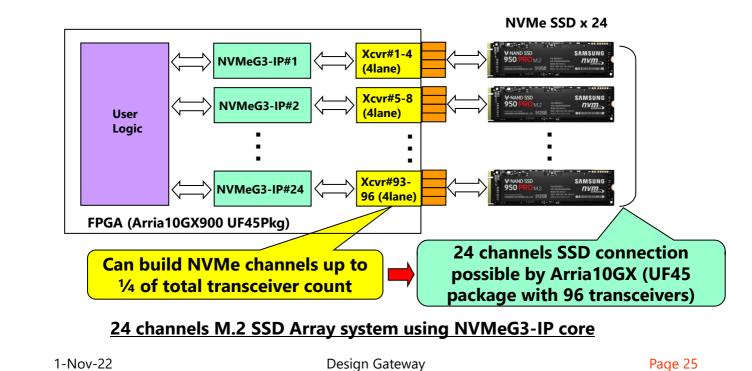
1-Nov-22

Design Gateway


Page 23

Ultra High-Speed Recorder

- Double write speed with multiple SSDs RAID0 configuration


Provide RAID0 reference design with 2 or 4 NVMe SSDs

NVMe RAID system supporting 8GByte/sec recording rate

• Super multi-channel SSD Array by NVMeG3-IP

<image><image><section-header><section-header><section-header><list-item>

Video/Sensor data

1-Nov-22

Design Gateway

Concurrent recording/reading system by muNVMe-IP core

read from SSD is possible

For more detail

DG DESIGN

- Detailed technical information available on the web site.
 - https://dgway.com/NVMe-IP A E.html
- Contact
 - Design Gateway Co,. Ltd.
 - sales@design-gateway.com
 - FAX: +66-2-261-2290

1-Nov-22

Page 27

Revision History

Design Gateway

Rev.	Date	Description
0.1E	4-Aug-16	English Temporary Version (Ver0.1E)
1.0E	10-Aug-16	First release with resource usage information
1.1E	25-Aug-16	Modify page17 because only one x16 DDR4 device can keep NVMe SSD performance
1.2E	21-Dec-16	NVMe-IP core improvement by removing external DDR chip for data buffer
1.3E	23-May-17	Performance improved by internal PCIe bridge in NVMe-IP core
1.4E	6-Jun-17	Data buffer size fixed to 256KByte
1.5E	2-Nov-17	Added Linux driver application and 2ch RAID0 reference design
1.6E	18-Jul-18	Added 4KB sector format, SMART/FLUSH/Shutdown command support
1.7E	9-Jan-19	Add FAT32-IP/exFAT-IP for NVMe-IP optional products
2.0E	3-May-20	Add new product of NVMeG3-IP that includes PCIe Soft IP core inside
2.1E	27-Aug-20	Add new product of raNVMe-IP for random access application
2.2E	3-Jun-21	Support Agilex-F device with PCIe Gen4 speed
2.3EA	29-Oct-22	Added muNVMe-IP line-up