
dg_munvmeip_refdesign_en

2023/06/28

muNVMe-IP reference design manual
Rev1.0 28-Jun-23

1 Overview ... 2
2 Hardware overview .. 4

2.1 TestGen .. 6
2.2 NVMe .. 9

2.2.1 muNVMe-IP .. 10
2.2.2 Integrated Block for PCIe ... 10
2.2.3 Dual port RAM .. 10

2.3 CPU and Peripherals .. 11
2.3.1 AsyncAxiReg .. 12
2.3.2 UserReg ... 14

3 CPU Firmware .. 17
3.1 Test firmware (munvmeiptest.c) .. 17

3.1.1 Identify Command .. 17
3.1.2 Write/Read Command .. 18
3.1.3 SMART Command ... 18
3.1.4 Flush Command ... 19
3.1.5 Shutdown Command .. 19

3.2 Function list in Test firmware ... 20
4 Example Test Result ... 23
5 Revision History .. 24

dg_munvmeip_refdesign_en

2023/06/28 Page 2

muNVMe-IP reference design manual
Rev1.0 28-Jun-23

1 Overview

NVMe-IP has one user interface for sending one command in each time. The next command can
be requested after the first command is done. Therefore, user cannot send Write and Read
command to access two SSD areas at the same time. To be the solution, muNVMe-IP
(multiple-user NVMe-IP) is designed to have two user interfaces for sending up to two commands
at the same time.

Figure 1-1 NVMe-IP and muNVMe-IP comparison

Using two-user interface of muNVMe-IP, user can send two Write commands, two Read
command, or one Write command and one Read command to access the same SSD. When
running Write+Write or Read+Read command, the performance of each user is about the
performance of one user divided by two. For example, when write performance of one user is
equal to 2200 Mbyte/s, the write performance per user of two-user Write test is equal to 1100
Mbyte/s. While running the mixed command (Write with Read command), the performance
depends on each SSD characteristic.

Ref: NVM-IP reference design document
https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf

https://dgway.com/products/IP/NVMe-IP/dg_nvmeip_refdesign_en.pdf

dg_munvmeip_refdesign_en

2023/06/28 Page 3

Figure 1-2 muNVMe-IP and raNVMe-IP comparison

Design Gateway has another solution for supporting multiple-user system – raNVMe-IP with
raArbiter. In multiple-user reference design by raNVMe-IP, four user interfaces are implemented.
According to raNVMe-IP specification, up to 32 Write commands or Read commands can be
requested at the same time by 4 KB data per command. However, all 32 commands must be the
same command (Write or Read command). Mixed Write-Read command is not supported without
customization. While muNVMe-IP supports mixed Write-Read command with 128 KB per
command. Therefore, when running with some SSDs that write/read performance of 128 KB size
is better than 4 KB size, muNVMe-IP achieves better performance than raNVMe-IP with
multiple-user design.

Ref: raNVMe-IP with multiple-user reference design document
https://dgway.com/products/IP/NVMe-IP/dg_ranvmemult_refdesign_xilinx.pdf

https://dgway.com/products/IP/NVMe-IP/dg_ranvmemult_refdesign_xilinx.pdf

dg_munvmeip_refdesign_en

2023/06/28 Page 4

2 Hardware overview

Figure 2-1 muNVMe-IP demo hardware

dg_munvmeip_refdesign_en

2023/06/28 Page 5

Following the function of each module, all hardware modules inside the test system are divided to
three parts, i.e., test function (TestGen), NVMe function (CtmRAM, IdenRAM, UxtoIPFf, IPtoUxFf,
muNVMe-IP, and PCIe block), and CPU system (CPU and LAxi2Reg).

TestGen is the test logic to generate test data stream for muNVMe-IP via UxtoIPFf and read data
stream output from muNVMe-IP via IPtoUxFf for verification. NVMe includes the muNVMe-IP and
the PCIe hard IP (Integrated Block for PCI Express) for accessing NVMe SSD directly without
PCIe switch. CPU and LAxi2Reg are designed to interface with user via Serial interface. User can
set command and the test parameters on Serial console. Also, the current status of the test
hardware is monitored by user on Serial console. The CPU firmware is implemented to control the
flow for operating each command.

The data interface of muNVMe-IP connects with six memory blocks, i.e., CtmRAM, IdenRAM, two
UxtoIPFfs, and two IPtoUxFf for storing the data from each command in each user. CtmRAM
stores returned data from SMART command while IdenRAM stores returned data from Identify
command. UxtoIPFf stores data of Write command while IPtoUxFf stores data of Read command.
TestGen always writes data with UxtoIPFf or reads data with IPtoUxFf when the FIFO is ready.
Thus, the data is always ready for transferring with muNVMe-IP to check the best transfer
performance.

There are three clock domains displayed in Figure 2-1, i.e., CpuClk, UserClk, and PCIeClk.
CpuClk is the clock domain of CPU and its peripherals. This clock must be stable clock and can
be different clock domain from other hardwares. UserClk is the user clock domain for running the
user interface of muNVMe-IP, RAM, FIFO, and TestGen. According to muNVMe-IP datasheet,
clock frequency of UserClk must be more than or equal to PCIeClk. This reference design uses
275/280 MHz for PCIe Gen3. PCIeClk is the clock output from PCIe hard IP to synchronous with
data stream of 128-bit AXI4 stream bus that is equal to 250 MHz when configured to 4-lane PCIe
Gen3.

More details of the hardware are described as follows.

dg_munvmeip_refdesign_en

2023/06/28 Page 6

2.1 TestGen

Figure 2-2 TestGen interface

TestGen module handles the data interface of muNVMe-IP for transferring the data in Write
and Read command. In Write command, TestGen sends 128-bit test data to muNVMe-IP via
UxtoIPFf. In Read command, the test data is fed from IPtoUxFf to compare with the expected
value for data verification. Data bandwidth of TestGen is matched to muNVMe-IP by running
at the same clock and the same data bus size. Control logic always asserts Write enable or
Read enable to ‘1’ for writing or reading the FIFO when FIFO is ready. Thus, UxtoIPFf and
IPtoUxFf are available for transferring data with muNVMe-IP and then the test logic shows the
best performance to write and read data with the SSD through muNVMe-IP.

Register file in the TestGen receives test parameters from user, i.e., total transfer size,
transfer direction, verification enable, and test pattern selector. The details of hardware logic
of TestGen are shown in Figure 2-3.

Figure 2-3 TestGen hardware

dg_munvmeip_refdesign_en

2023/06/28 Page 7

As shown in the right side of Figure 2-3, flow control signals of FIFO are WrFfAFull and
RdFfEmpty. When FIFO is almost full in write operation (WrFfAFull=’1’), WrFfWrEn is
de-asserted to ‘0’ to pause sending data to FIFO. For read operation, when FIFO has data
(RdFfEmpty=‘0’), the logic reads data from FIFO to compare with the expected data by
asserting RdFfRdEn to ‘1’.

Two counters – Data counter and Address counter are designed in TestGen. Data counter
(rDataCnt) counts the amount of transferred data in Write command and Read command.
When total amount of transferred data is equal to the end size, set by user, write enable or
read enable of FIFO is de-asserted to ‘0’. Also, the Data counter (rDataCnt) are fed to be the
write data for Write command or the expected data for Read command. TestGen supports to
generate five patterns of test data, i.e., all-zero, all-one, 32-bit incremental data, 32-bit
decremental data, and LFSR counter, selected by Pattern Selector. When creating all-zero or
all-one pattern, every bit of data is fixed zero or one, respectively. While other patterns consist
of two data parts to create unique test data in every 512-byte data, as shown in Figure 2-4.

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

512-byte data consists of 64-bit header in Dword#0 and Dword#1 and the test data in
remaining words of 512-byte data (Dword#2 – Dword#127). The header is created by the
address counter (rTrnAddr) which shows the address in 512-byte unit. The initial value of
rTrnAddr is set by user and it is increased when finishing transferring 512-byte data.
Remaining Dwords (DW#2 – DW#127) depends on pattern selector which may be 32-bit
incremental data, 32-bit decremental data, or LFSR counter. 32-bit incremental data is
implemented by using rDataCnt. The decremental data can be designed by connecting NOT
logic to rDataCnt. The LFSR pattern is designed by using LFSR counter. The equation of
LFSR is x^31 + x^21 + x + 1. Data bus size of TestGen is 128-bit, so four 32-bit LFSR data
must be generated within one clock by using look-ahead logic.

When data verification detects incorrect received data in Read command, Fail flag (PattFail)
is asserted to ‘1’. The timing diagram to write data to FIFO is shown as follows.

dg_munvmeip_refdesign_en

2023/06/28 Page 8

WrPattStart

rWrTrans

rDataCnt 0 1

1. rWrTrans is asserted to

‘1’ after WrPattStart=’1'

1

2

2. rWrFfWrEn=‘1’ when

rWrTrans=’1' and WrFfAFull=’0'.

WrFfAFull

rWrFfWrEn[0]

2 3 4 rEndSize rEndSize+1

4

4. rWrFfWrEn is deasserted to ‘0’

when WrFfAFull=’1'.

3

3. rDataCnt is increment

when rWrFfWrEn=’1'

5

5. rWrTrans and rWrFfWrEn are deasserted to

‘0’ when rDataCnt=rEndSize and rWrFfWrEn=’1'.

Figure 2-5 Timing diagram of Write operation in TestGen

1) WrPattStart is asserted to ‘1’ for one clock cycle when user sets the register to start write

operation. In the next clock, rWrTrans is asserted to ‘1’ to enable the control logic for
generating write enable to FIFO.

2) Write enable to FIFO (rWrFfWrEn) is asserted to ‘1’ when two conditions are met. First,
rWrTrans must be asserted to ‘1’ to show the Write command is operating. Second, the
FIFO must not be full by monitoring WrFfAFull=’0’.

3) The write enable is fed to count total amount of data by rDataCnt in the Write command.
4) If FIFO is almost full (WrFfAFull=’1’), the write process is paused by de-asserting

rWrFfWrEn to ‘0’.
5) When rDataCnt is equal to the set value (rEndSize), rWrTrans is de-asserted to ‘0’. At the

same time, rWrFfWrEn is also de-asserted to ‘0’ to finish generating data.

For read operation, read enable of FIFO is controlled by empty flag of FIFO. Comparing to
write enable, the read enable is not stopped by total amount of data and not started by start
flag. The read enable is asserted to ‘1’ when FIFO is not empty. The data counter and the
address counter are increased when the read enable is asserted to ‘1’ to count total amount of
data and generate the header of expect value.

dg_munvmeip_refdesign_en

2023/06/28 Page 9

2.2 NVMe

Figure 2-6 NVMe hardware

Figure 2-6 shows how to integrate muNVMe-IP in the reference design. Each user interface of
muNVMe-IP consists of control interface and data interface. The control interface of User#0
receives the command and the parameters via custom command interface or dgIF typeS,
depending on the command. Custom command interface is used when operating SMART
command or Flush command. While User#1 control interface has only dgIF typeS to support
Write command and Read command.

The data interface of User#0 has four interfaces, i.e., custom command RAM interface,
Identify interface, FIFO input interface (dgIF typeS), and FIFO output interface (dgIF typeS).
While User#1 data interface has FIFO interface that is dgIF typeS. Data bus width of all data
interface is 128 bits. The custom command RAM interface is bi-directional interface while the
other interfaces are one directional interface. In the reference design, the custom command
RAM interface is used for transferring one direction only for forwarding SMART data to
LAxi2Reg.

dg_munvmeip_refdesign_en

2023/06/28 Page 10

2.2.1 muNVMe-IP

The muNVMe-IP implements NVMe protocol of the host side to access one NVMe SSD
directly without PCIe switch connection. The muNVMe-IP supports two users. The first user
(Main user) supports six commands, i.e., Write, Read, Identify, Shutdown, SMART, and Flush.
The second user (Sub user) supports two commands - Write and Read. muNVMe-IP can
connect to the PCIe hard IP directly. More details of muNVMe-IP are described in datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_munvme_ip_data_sheet_en.pdf

2.2.2 Integrated Block for PCIe

This block is the hard IP in Xilinx device which implements Physical, Data Link, and
Transaction Layers of PCIe specification. More details are described in Xilinx document.
PG213: UltraScale+ Devices Integrated Block for PCI Express

2.2.3 Dual port RAM

Two dual port RAMs, CtmRAM and IdenRAM, store data from Identify command and SMART
command, respectively. IdenRAM has 8-Kbyte size to store 8-Kbyte data, output from Identify
command. muNVMe-IP and LAxi2Reg have the different data bus size, 128 bits on
muNVMe-IP but 32 bits on LAxi2Reg. Therefore, IdenRAM is asymmetric RAM that has the
different bus size on Write interface and Read interface. Also, muNVMe-IP has double word
enable to write only 32-bit data in some cases. The RAM setting on Xilinx IP tool supports the
write byte enable. The small logic to convert double word enable to be write byte enable is
designed as shown in Figure 2-7.

Figure 2-7 Byte write enable conversion logic

Bit[0] of WrDWEn with WrEn signal are the inputs to AND logic. The output of AND logic is fed
to bit[3:0] of IdenRAM byte write enable. Bit[1], [2], and [3] of WrDWEn are applied to be
bit[7:4], [11:8], and [15:12] of IdenRAM write byte enable, respectively.

Comparing with IdenRAM, CtmRAM is implemented by true dual-port RAM with byte write
enable. The small logic to convert double word enable of custom interface to be byte write
enable must be used, similar to IdenRAM. True dual-port RAM is used to support the
additional features when the customized custom command needs the data input. To support
SMART command, using simple dual port RAM is enough. The data size returned from
SMART command is 512 bytes.

https://dgway.com/products/IP/NVMe-IP/dg_munvme_ip_data_sheet_en.pdf

dg_munvmeip_refdesign_en

2023/06/28 Page 11

2.3 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. The test system of muNVMe-IP is connected with CPU as a peripheral
on 32-bit AXI4-Lite bus for CPU controlling and monitoring. CPU assigns the different base
address and the address range to each peripheral for accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. So, the hardware logic must be designed to support AXI4-Lite bus standard for
CPU writing and reading. LAxi2Reg module is designed to connect with the CPU system as
shown in Figure 2-8.

Figure 2-8 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size, similar to
AXI4-Lite data bus size. Besides, AsyncAxiReg includes asynchronous logic to support clock
domain crossing between CpuClk and UserClk.

UserReg includes the register file of the parameters and the status signals of other modules in
the test system, i.e., CtmRAM, IdenRAM, muNVMe-IP, and TestGen. More details of
AsyncAxiReg and UserReg are described as follows.

dg_munvmeip_refdesign_en

2023/06/28 Page 12

2.3.1 AsyncAxiReg

Figure 2-9 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. The
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-9. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface. While
the returned data from Register Read I/F is transferred to AXI4-Lite bus by using clock
domain crossing registers. In register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the address from LAxiAw for write access or LAxiAr for read
access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-10.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_munvmeip_refdesign_en

2023/06/28 Page 13

Figure 2-10 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data is returned after receiving the read request. The slave detects RegRdReq
asserted to start the read transaction. In read operation, the address value (RegAddr)
does not change until RegRdValid is asserted to ‘1’. Therefore, the address can be used
for selecting the returned data by using multiple levels of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_munvmeip_refdesign_en

2023/06/28 Page 14

2.3.2 UserReg

Figure 2-11 UserReg Interface

The logic inside UserReg consists of Address decoder, RegFile, and RegMux. The address
decoder decodes the address which is requested from AsyncAxiReg and then selects the
active register for write or read transaction. The address range assigned in UserReg is split
into six areas, as shown in Figure 2-11.
1) 0x0000 – 0x01FF: mapped to User#0 and TestGen#0
2) 0x0200 – 0x03FF: mapped to User#1 and TestGen#1
3) 0x2000 – 0x3FFF: mapped to read data from IdenRAM. This area is read-access only.
4) 0x4000 – 0x5FFF: mapped to write or read data with custom command RAM interface.

This area supports write-access and read-access but the demo shows only read access
by running SMART command.

5) 0x6000 – 0x7FFF: mapped to Custom command interface
6) 0x8000 – 0xFFFF: mapped to other interfaces such as shared parameters for all Users,

PCIe status, and IP version.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware that is
muNVMe-IP, TestGen#0, TestGen#1, IdenRAM, or CtmRAM. The register file inside UserReg
is 32-bit bus size. Therefore, write byte enable (RegWrByteEn) is not applied in the test
system and the CPU uses 32-bit pointer to set the hardware register.

To read register, multi-level multiplexers (mux) select the data to return to CPU by using the
address. The lower bit of RegAddr is fed to the submodule to select the active data from each
submodule. While the upper bit is applied in UserReg to select the returned data from each
submodule. Totally, the latency time of read data is equal to two clock cycles. Therefore,
RegRdValid is created by RegRdReq with asserting two D Flip-flops. More details of the
address mapping within UserReg module are shown in Table 2-1.

dg_munvmeip_refdesign_en

2023/06/28 Page 15

Table 2-1 Register map defintion

Address Register Name Description

Rd/Wr (Label in the “munvmeiptest.c”)

0x0000 – 0x01FF: Signal Interface of User#0 (muNVMe-IP) and TestGen#0

0x0000 – 0x00FF: Control signals of User#0 and TestGen#0 (Write access only)

BA+0x0000 User#0 Address (Low) Reg [31:0]: Input to be bit[31:0] of User#0 start address as 512-byte unit

(U0Addr[31:0] of muNVMe-IP) (U0ADRL_INTREG)

BA+0x0004 User#0 Address (High) Reg [15:0]: Input to be bit[47:32] of User#0 start address as 512-byte unit

(U0Addr[47:32] of muNVMe-IP) (U0ADRH_INTREG)

BA+0x0008 User#0 Length (Low) Reg [31:0]: Input to be bit[31:0] of User#0 transfer length as 512-byte unit

(U0Len[31:0] of muNVMe-IP) (U0LENL_INTREG)

BA+0x000C User#0 Length (High) Reg [15:0]: Input to be bit[47:32] of User#0 transfer length as 512-byte unit

(U0Len[47:32] of muNVMe-IP) (U0LENH_INTREG)

BA+0x0010 User#0 Command Reg [2:0]: Input to be User#0 command (U0Cmd of muNVMe-IP)

000b: Identify, 001b: Shutdown, 010b: Write SSD, 011b: Read SSD,

100b: SMART, 110b: Flush, 101b/111b: Reserved

When this register is written, the command request is sent to

muNVMe-IP via User#0 I/F to start the operation.

(U0CMD_INTREG)

BA+0x0014 User#0 Test Pattern Reg [2:0]: Select test pattern of TestGen#0

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1,

100b-LFSR

(U0PATTSEL_INTREG)

0x0100 – 0x01FF: Status signals of User#0 and TestGen#0 (Read access only)

BA+0x0100 User#0 Status Reg [0]: User#0 Busy of muNVMe-IP (‘0’: Idle, ‘1’: Busy)

[1]: U0Error of muNVMe-IP (‘0’: Normal, ‘1’: Error)

[2]: Data verification fail in TestGen#0 (‘0’: Normal, ‘1’: Error)

(U0STS_INTREG)

BA+0x0104 User#0 Error Type Reg [31:0]: Mapped to U0ErrorType[31:0] of muNVMe-IP to show error

status (U0ERRTYPE_INTREG)

BA+0x0108 User#0 Completion Status Reg [15:0]: Mapped to U0AdmCompStatus[15:0] of muNVMe-IP

[31:16]: Mapped to U0IOCompStatus[15:0] of muNVMe-IP (U0COMPSTS_INTREG)

BA+0x0110 User#0 Test pin (Low) Reg [31:0]: Mapped to U0TestPin[31:0] of muNVMe-IP

(U0TESTPINL_INTREG)

BA+0x0114 User#0 Test pin (High) Reg [15:0]: Mapped to U0TestPin[47:32] of muNVMe-IP

(U0TESTPINH_INTREG)

BA+0x0130-

BA+0x013C

User#0 Expected value Word0-3 Reg 128-bit of the expected data at the 1st failure data in TestGen#0 when

operating Read command

0x0130: Bit[31:0], 0x0134: Bit[63:32], …, 0x013C: Bit[127:96]

(U0EXPPATW0-W3_INTREG)

BA+0x0150-

BA+0x015C

User#0 Read value Word0-3 Reg 128-bit of the read data at the 1st failure data in TestGen#0 when

operating Read command

0x0150: Bit[31:0], 0x0154: Bit[63:32], …, 0x015C: Bit[127:96]

(U0RDPATW0-W3_INTREG)

BA+0x0170 User#0 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure data in

TestGen#0 when operating Read command (U0RDFAILNOL_INTREG)

BA+0x0174 User#0 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure data in

TestGen#0 when operating Read command (U0RDFAILNOH_INTREG)

BA+0x0178 User#0 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen#0 module

(U0CURTESTSIZEL_INTREG)

BA+0x017C User#0 Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size of TestGen#0 module

(U0CURTESTSIZEH_INTREG)

dg_munvmeip_refdesign_en

2023/06/28 Page 16

Address Register Name Description

Rd/Wr (Label in the “munvmeiptest.c”)

0x0200 – 0x03FF: Signal Interface of User#1 (muNVMe-IP) and TestGen#1

0x0200 – 0x02FF: Control signals of User#1 and TestGen#1 (Write access only)

BA+0x0200-

BA+0x0217

Control signals of User#1/TestGen#1

(U1ADRL_INTREG –

U1PATTSEL_INTREG)

Similar to 0x0000 – 0x0017 which are the registers of User#0 and

TestGen#0, these are mapped to User#1 and TestGen#1 instead.

However, U1CMD_INTREG can be assigned by two values for two

commands only – 010b: Write SSD and 011b: Read SSD.

0x0300 – 0x03FF: Status signals of User#1 and TestGen#1 (Read access only)

BA+0x0300-

BA+0x037F

Status signals of User#1/TestGen#1

(U1STS_INTREG –

U1CURTESTSIZEH_INTREG)

Similar to 0x0100 – 0x017F which are the registers of User#0 and

TestGen#0, these are mapped to User#1 and TestGen#1 instead.

However, U1COMPSTS_INTREG[31:16] is applied to map to

U1IOCompStatus[15:0] of muNVMe-IP while bit[15:0] is reserved.

0x2000 – 0x3FFF: IdenRAM (Read access only)

BA+0x2000-

BA+0x2FFF

Identify Controller Data 4Kbyte Identify Controller Data Structure

(IDENCTRL_CHARREG)

BA+0x3000-

BA+0x3FFF

Identify Namespace Data 4Kbyte Identify Namespace Data Structure

(IDENNAME_CHARREG)

0x4000 – 0x5FFF: CtmRAM (Write/Read access)

BA+0x4000-

BA+0x5FFF

Custom command Ram Connect to 8K byte CtmRAM interface for storing 512-byte data that

is output from SMART Command. (CTMRAM_CHARREG)

0x6000 – 0x7FFF: Custom Command Interface

BA+0x6000-

BA+0x603F

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of muNVMe-IP.

0x200: DW0, 0x204: DW1, …, 0x23C: DW15 Wr (CTMSUBMQ_STRUCT)

BA+0x6100-

BA+0x610F

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from muNVMe-IP.

0x300: DW0, 0x304: DW1, …, 0x30C: DW3

Rd (CTMCOMPQ_STRUCT)

0x8000 – 0xFFFF: Other Interfaces

BA+0x8000 NVMe Timeout Reg [31:0]: Mapped to TimeOutSet[31:0] of muNVMe-IP

Wr (NVMTIMEOUT_INTREG)

BA+0x8100 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup)

[3:2]: PCIe link speed from PCIe hard IP

(00b: Not linkup, 01b: PCIe Gen1, 10b: PCIe Gen2, 11b: PCIe Gen3)

[7:4]: PCIe link width status from PCIe hard IP

(0001b: 1-lane, 0010b: 2-lane, 0100b: 4-lane, 1000b: 8-lane)

[13:8]: Current LTSSM State of PCIe hard IP. Please see more

details of LTSSM value in Integrated Block for PCIe datasheet

Rd (PCIESTS_INTREG)

BA+0x8110 NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of muNVMe-IP

Rd (NVMCAP_INTREG)

BA+0x8120 Total disk size (Low) Reg [31:0]: Mapped to LBASize[31:0] of muNVMe-IP

 Rd (LBASIZEL_INTREG)

BA+0x8124 Total disk size (High) Reg [15:0]: Mapped to LBASize[47:32] of muNVMe-IP

[31]: Mapped to LBAMode of muNVMe-IP Rd (LBASIZEH_INTREG)

BA+0x8200 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of muNVMe-IP

Rd (IPVERSION_INTREG)

dg_munvmeip_refdesign_en

2023/06/28 Page 17

3 CPU Firmware

3.1 Test firmware (munvmeiptest.c)

After system boot-up, CPU starts the initialization sequence as follows.
1) CPU initializes UART and Timer parameters.
2) CPU waits until PCIe connection links up (PCIESTS_INTREG[0]=‘1’).
3) CPU waits until muNVMe-IP completes initialization process (U0/1STS_INTREG[0]=‘0’). If

some errors are found, the process stops with displaying the error message.
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading

PCIESTS_INTREG[7:2].
5) CPU displays the main menu. There are five menus for running six commands of

muNVMe-IP, i.e., Identify, Write, Read, SMART, Flush, and Shutdown.
More details of the sequence in each command in CPU firmware are described as follows.

3.1.1 Identify Command

This command can be requested by User#0 I/F. The sequence of the firmware when user
selects Identify command is below.
1) Set U0CMD_INTREG=000b to send Identify command request on User#0 I/F of

muNVMe-IP. After that, busy flag of User#0 I/F (U0STS_INTREG[0]) changes from ‘0’ to
‘1’.

2) CPU waits until the operation is completed or some errors are found by monitoring
U0STS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. Next, the data from
Identify command of muNVMe-IP is stored in IdenRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from U0ERRTYPE_INTREG[31:0]. Finally,
the process is stopped.

3) After busy flag (U0STS_INTREG[0]) is de-asserted to ‘0’, CPU displays some information
decoded from IdenRAM (IDENCTRL_CHARREG) such as SSD model name and the
information from muNVMe-IP such as SSD capacity (LBASIZEL/H_INTREG).

dg_munvmeip_refdesign_en

2023/06/28 Page 18

3.1.2 Write/Read Command

Write and Read command can be requested by User#0 I/F and User#1 I/F. The sequence of
the firmware when user selects Write/Read command is below.
1) Receive 2-user parameters such as command (Write, Read, or Disable), start address,

transfer length, and test pattern from Serial console. If some inputs are invalid, the
operation is cancelled.
Note: If LBA unit size = 4 Kbyte, start address and transfer length must be aligned to 8.

2) Get all inputs and set to UxADRL/H_INTREG, UxLENL/H_INTREG, and
UxPATTSEL_INTREG.

3) Set UxCMD_INTREG[2:0] = 010b for Write command or 011b for Read command and then
the command request is asserted to the user who runs the Write command or Read
command. After that, busy flag of the active user (UxSTS_INTREG[0]) changes from ‘0’ to
‘1’.

4) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring UxSTS_INTREG[2:0].

Bit[0] is de-asserted to ‘0’ when command of User#x is completed.
Bit[1] is asserted when error is detected in User#x. After that, error message is displayed
on the console to show the error details. Finally, the process is hanged up.
Bit[2] is asserted when data verification is failed in User#x. After that, the verification error
message is displayed. However, CPU is still running until the operation is done or user
inputs any key to cancel operation.

While the command is running, current transfer size of the active user read from
UxCURTESTSIZEL/H_INTREG is displayed every second.

5) After busy flag (UxSTS_INTREG[0]) is de-asserted to ‘0’, CPU displays the test result of
the active user on the console, i.e., total time usage, total transfer size, and transfer speed.

3.1.3 SMART Command

This command can be requested by User#0 I/F. The sequence of the firmware when user
selects SMART command is below.
1) Set 16-Dword of Submission queue entry (CTMSUBMQ_STRUCT) to be SMART

command value.
2) Set U0CMD_INTREG[2:0]=100b to send SMART command request on User#0 I/F of

muNVMe-IP. After that, busy flag of User#0 I/F (U0STS_INTREG[0]) changes from ‘0’ to
‘1’.

3) CPU waits until the operation is completed or some errors are found by monitoring
U0STS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. Next, the data from
SMART command of muNVMe-IP is stored in CtmRAM.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details, decoded from U0ERRTYPE_INTREG[31:0]. Finally, the
process is stopped.

dg_munvmeip_refdesign_en

2023/06/28 Page 19

4) After busy flag (U0STS_INTREG[0]) is de-asserted to ‘0’, CPU displays some information

decoded from CtmRAM (CTMRAM_CHARREG) such as Temperature, Total Data Read,
Total Data Written, Power On Cycles, Power On Hours, and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

3.1.4 Flush Command

This command can be requested by User#0 I/F. The sequence of the firmware when user
selects Flush command is below.
1) Set 16-Dword of Submission queue entry (CTMSUBMQ_STRUCT) to be Flush command

value.
2) Set U0CMD_INTREG[2:0]=110b to send Flush command request on User#0 I/F of

muNVMe-IP. After that, busy flag of User#0 I/F (U0STS_INTREG[0]) changes from ‘0’ to
‘1’.

3) CPU waits until the operation is completed or some errors are found by monitoring
U0STS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. Next, CPU returns to the
main menu.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details, decoded from U0ERRTYPE_INTREG[31:0]. Finally, the
process is stopped.

3.1.5 Shutdown Command
This command can be requested by User#0 I/F. The sequence of the firmware when user
selects Shutdown command is below.
1) Set U0CMD_INTREG[2:0]=001b to send Shutdown command request on User#0 I/F of

muNVMe-IP. After that, busy flag of User#0 I/F (U0STS_INTREG[0]) changes from ‘0’ to
‘1’.

2) CPU waits until the operation is completed or some errors are found by monitoring
U0STS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. After that, the CPU goes
to the next step.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details, decoded from U0ERRTYPE_INTREG[31:0]. Finally, the
process is stopped.

3) After busy flag (U0STS_INTREG[0]) is de-asserted to ‘0’, the SSD and muNVMe-IP
change to inactive status. The CPU cannot receive the new command from user. The user
must power off the test system.

https://nvmexpress.org/resources/specifications/

dg_munvmeip_refdesign_en

2023/06/28 Page 20

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in the muNVMe-IP

Description Run SMART command or Flush command, following in topic 3.1.3
(SMART Command) and 3.1.4 (Flush Command).

unsigned long long get_cursize(unsigned int user)

Parameters user: 0-User#0, 1-User#1

Return value Read value of U0/1CURTESTSIZEH/L_INTREG

Description Read U0/1CURTESTSIZEH/L_INTREG and return read value as
function result.

int get_param(userin_struct* userin)

Parameters userin: Four inputs from user, i.e., command, start address, total length
in 512-byte unit, and test pattern

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Run Identify command, following in topic 3.1.1 (Identify Command).

void print_space(unsigned long long size_input)

Parameters size_input: test size for displaying on the console
Return value None

Description Calculate the number of digits and the number of spaces to display
size_input with alignment on the console.

int setctm_flush(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the muNVMe-IP

Description Set Flush command to CTMSUBMQ_STRUCT and call exec_ctm
function to operate Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the muNVMe -IP

Description Set SMART command to CTMSUBMQ_STRUCT and call exec_ctm
function to operate SMART command. Finally, decode and display
SMART information on the console

dg_munvmeip_refdesign_en

2023/06/28 Page 21

void show_error(unsigned int user)

Parameters user: 0-User#0, 1-User#1

Return value None

Description Read U0/1ERRTYPE_INTREG, decode the error flag, and display error
message following the error flag.

void show_pciestat(void)

Parameters None

Return value None

Description Read PCIESTS_INTREG until the read value from two read times is
stable. After that, display the read value on the console.

void show_result(unsigned int user, unsigned int cmd, unsigned int timeuseh, unsigned
int timeusel)

Parameters user, cmd, timeuseh, timeusel

Return value None

Description Print user channel, command, and total size by calling get_cursize and
show_size function. After that, calculate total time usage from timeuseh
and timeusel and then display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed in MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in Mbyte, Gbyte, or Tbyte unit

void show_smart_hex(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as hexadecimal unit.

void show_smart_raw(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as decimal unit when the input value is less than 4
MB. Otherwise, display overflow message.

void show_smart_unit(unsigned char *char_ptr16B)

Parameters *char_ptr16B

Return value None

Description Display SMART data as GB or TB unit. When the input value is more
than limit (500 PB), the overflow message is displayed instead.

dg_munvmeip_refdesign_en

2023/06/28 Page 22

void show_vererr(unsigned int user)

Parameters user: 0-User#0, 1-User#1

Return value None

Description Read U0/1RDFAILNOL/H_INTREG (error byte address),
U0/1EXPPATW0-W3_INTREG (expected value), and
U0/1RDPATW0-W3_INTREG (read value) to display verification error
details on the console.

void shutdown_dev(void)

Parameters None
Return value None

Description Run Shutdown command, following in topic 3.1.5 (Shutdown Command)

int wrrd_dev(void)

Parameters None
Return value 0: No error, -1: Receive invalid input

Description Run Write command or Read command, following in topic 3.1.2
(Write/Read Command)

dg_munvmeip_refdesign_en

2023/06/28 Page 23

4 Example Test Result

The test results when running demo system by 1-2 users are shown in Figure 4-1. The test
environment uses 280 GB Intel 900P and ZCU106 board (PCIe Gen3).

Figure 4-1 Test Performance of muNVMe-IP demo

Some SSDs can balance the device loading when Write and Read command are requested at the
same time. As shown in Figure 4-1, the result shows the same performance when two users run
the same command or different command. Also, total performance of two users is almost equal to
the performance of one user.

While some SSDs has different characteristic. The load balancing for running Write command and
Read command is different. The test result of these SSDs is different when running two users by
mixed Write/Read command, comparing to using the same commands.

dg_munvmeip_refdesign_en

2023/06/28 Page 24

5 Revision History

Revision Date Description

1.0 14-Jun-22 Initial Release

Copyright: 2022 Design Gateway Co,Ltd.

