
dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 1

muNVMe-IP reference design manual
Rev1.0 15-Nov-23

1 Overview ..2
2 Hardware overview ...4

2.1 TestGen ..6
2.2 NVMe ... 11

2.2.1 muNVMe-IP ..12

2.2.2 Avalon-ST PCIe Hard IP..12
2.2.3 Two-port RAM ...13

2.3 CPU and Peripherals ...14
2.3.1 AsyncAvlReg ..15

2.3.2 UserReg ...17

3 CPU Firmware ..20
3.1 Test firmware (munvmeiptest.c) ...20

3.1.1 Identify Command ...20
3.1.2 Write/Read Command ...21

3.1.3 SMART Command ..21

3.1.4 Flush Command ...22
3.1.5 Shutdown Command...22

3.2 Function list in Test firmware ..23
4 Example Test Result ...26

5 Revision History ..27

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 2

1 Overview

The NVMe-IP provides a single user interface for sending one command at a time. The next
command can be requested only after the completion of current one. Consequently, it is not
possible for the user to simultaneously transmit both Write and Read commands to the SSD.
However, the muNVMe-IP has been specifically designed to support this feature by offering two
user interfaces for concurrent command transmission to the same SSD.

Figure 1-1 NVMe-IP and muNVMe-IP comparison

Commands on these two user interfaces can be set by the same or values, allowing for
combinations like Write-Write, Write-Read, and Read-Read commands. When executing the
same command, the write or read performance for each user is about half value compared to
using a single user interface. Meanwhile, the performance of mixed Write-Read commands
depends on the characteristics of the SSD.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 3

Figure 1-2 muNVMe-IP and rmNVMe-IP comparison

Additionally, Design Gateway offers another NVMe-IP model known as rmNVMe-IP. The
rmNVMe-IP features two user interfaces: User#0 for Read commands and User#1 for Write
commands. To accommodate multiple commands with random access, each command has a
fixed data size of 4 KB. In contrast, the muNVMe-IP permits a single command per user interface
and allows up to two commands with selectable data sizes to be requested. Consequently,
rmNVMe-IP is recommended for systems requiring random access, while muNVMe-IP is
preferred option for systems necessitating high-performance data transfer with sequential
access.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 4

2 Hardware overview

Figure 2-1 muNVMe-IP demo hardware

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 5

The block diagram presented in Figure 2-1 provides an overview of the submodules in the
reference design. These submodules can be categorized into several functional groups.

1) Test Function: This group includes TestGen, which connects to the user interface of

muNVMe-IP.
2) NVMe Function: Within this group, it includes CtmRAM, IdenRAM, U0-U1toIPFf, IPtoU0-U1Ff,

muNVMe-IP, and PCIe Hard IP. These submodules handle NVMe and PCIe protocols.
3) CPU System: The CPU system includes the CPU and Avl2Reg, which facilitates

communication between the CPU and the user. It is responsible for receiving test parameters
from the user and displaying test results. In the final system, the CPU system can be replaced
by a simple logic module designed to assign test parameters.

TestGen connects to the user interface of muNVMe-IP and is responsible for two main tasks. First
is to generate a test data stream during Write command operation and store it at U0-U1toIPFf.
Second is to verify the read data stream stored at IPtoU0-U1Ff during Read command operation.
Each TestGen module is connected to a single user interface of muNVMe-IP, which means two
TestGen modules are integrated and operate independently. Users have the flexibility to configure
the maximum data transfer rate with each TestGen, helping to balance the data bandwidth
between the two user interfaces.

The NVMe includes muNVMe-IP and PCIe hard IP for direct access to an NVMe SSD, without the
need for a PCIe switch. CtmRAM and IdenRAM are used to store health data from SMART
command and SSD information obtained from Identify command, respectively. Two FIFOs
foreach user interface (U<i>toIFFf and IPtoU<i>Ff; i=0-1) illustrate the data interface of
muNVMe-IP, simplifying control logic.

The CPU and Avl2Reg are designed for user interface via JTAG UART. User can set commands
and the test parameters through the console, and the console provides real-time monitoring of the
test hardware’s current status. The CPU firmware is implemented to provide an example
sequence for executing commands on the two user interfaces.

In Figure 2-1, three clock domains are displayed: CpuClk, UserClk, and PCIeClk.

1) CpuClk serves as the clock domain for the CPU system and its peripherals. It may be a stable

clock that operates independently from other hardware.
2) UserClk is the user clock domain utilized for the operation of muNVMe-IP, RAM, FIFO, and

TestGen. As specified in the muNVMe-IP datasheet, the clock frequency of UserClk must be
equal to or greater than that of PCIeClk. In the reference design, UserClk is configured to
operate at frequency of 275 MHz.

3) PCIeClk is the clock output generated by the PCIe hard IP, synchronized with the 128-bit
Avalon-ST interface. The PCIeClk frequency is set to 250 MHz for 4-lane PCIe Gen3.

Further details regarding the hardware are provided below.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 6

2.1 TestGen

Figure 2-2 TestGen interface

Each TestGen module is responsible for managing a single data interface of muNVMe-IP,
facilitating data transfer for both Write and Read commands. During a Write command,
TestGen transmits 128-bit test data to muNVMe-IP via U<i>toIPFf; where i=0-1. Conversely,
for a Read command, TestGen receives test data from IPtoU<i>Ff, i=0-1. This received data
is then compared to the expected value, ensuring data accuracy.

TestGen incorporates a ‘MaxSpeed Control’ to control the maximum speed of data transfer.
This control logic manages the number of cycles in which data transfer is enabled for every
100 clock cycles during both write and read operations. The control logic activates the write
or read enable signal of the FIFO when the FIFO is ready to write or read data, and the
enable signal from the ‘MaxSpeed Control’ is asserted. If the user configures the enable
cycles to the maximum value of 100, it results in optimal performance for writing or reading
data with the SSD through muNVMe-IP.

The ‘Register’ within TestGen accepts user-defined test parameters, including the total
transfer size, transfer direction, verification enable, and test pattern selector. The detailed
hardware logic of TestGen is illustrated in Figure 2-3.

Within Figure 2-3, the user has the flexibility to configure four test parameters: Total transfer
size (TrnLen), Start address (TrnAddr), Test pattern selector (PattSel), and Transfer rate
(TrnRate) to specify the functionality of the TestGen module. This module serves three core
functions. The first part illustrates the maximum speed control, the second part provides
data flow control, and the final part details the generation of test data for use with the FIFO
interface. TrnLen serves to calculate the end position of the operation (rEndSize), which is
employed for comparison with the Data counter.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 7

Figure 2-3 TestGen hardware

In the upper block of Figure 2-3, the ‘MaxSpeed Control’ includes a MaxSpeed Counter and
a decoder. This component asserts the rTrnRateEn signal to 1b for a specified number of
clock cycles within each 100-clock cycle interval. The duration of the rTrnRateEn signal
assertion is determined by the TrnRate input signal. The MaxSpeed Counter operates
during both write and read operations, as indicated by rWrTrans and rRdTrans being set to
1b. The enable signal, rTrnRateEn, serves to control the assertion of both WrFfWrEn and
RdFfRdEn signals, which control data transfer during write and read operations.

In the central block of Figure 2-3, we focus on data flow control. Two signals, WrFfAFull and
RdFfEmpty, are integral to the FIFO interface for flow control. When the FIFO reaches its
capacity (indicated by WrFfAFull=1b) or attains its maximum transfer rate (indicated by
rTrnRateEn=0b), the WrFfWrEn signal is set to 0b, effectively pausing data transfer into the
FIFO. During a read operation, when data is available within the FIFO (indicated by
RdFfEmpty=0b) and data rate does not reach the limitation (indicated by rTrnRateEn=1b),
the system retrieves this data for comparison by setting the RdFfRdEn to 1b. It is important
to note that both write and read operations are completed when the total transferred data
matches the user-defined value. Consequently, the counter logic is designed to track the
amount of data transferred during this command, and upon command completion, both
WrFfWrEn and RdFfRdEn must be de-asserted.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 8

The lower block of Figure 2-3 outlines the methods for generating test data, either for writing
to the FIFO or for data verification. There are five available test patterns: all-zero, all-one,
32-bit incremental data, 32-bit decremental data, and LFSR. These patterns are selected by
the Pattern Selector.

For the all-zero or all-one pattern, every bit of the data is set to zero or one, respectively.
Conversely, the other test patterns are designed by separating the data into two parts to
create unique test data within every 512-byte data, as shown in Figure 2-4.

Figure 2-4 Test pattern format in each 512-byte data for Increment/Decrement/LFSR pattern

Each 512-byte data block consists of a 64-bit header in Dword#0 and Dword#1, followed by
the test data in the remaining words of the 512-byte data (Dword#2 – Dword#127). The
header is created using the Address counter block, which operates in 512-byte units. The
initial value of the Address counter is configured by the user and increases after transferring
each 512-byte data.

The content of the remaining Dwords (DW#2 – DW#127) depend on the pattern selector,
which could be 32-bit incremental data, 32-bit decremental data, or the LFSR pattern. The
32-bit incremental data is designed using the Data counter, while the decremental data can
be created by connecting NOT logic to the incremental data. The LFSR pattern is generated
using the LFSR counter, using the equation x^31 + x^21 + x + 1. To generate 128-bit test
data, four 32-bit LFSR data are produced within a single clock cycle using look-ahead logic.

This Test data is used either as write data for the FIFO or for comparison with the data read
from the FIFO. When data verification fails, the Fail flag is asserted to 1b.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 9

Figure 2-5 Timing diagram of Write operation in TestGen

1) The operation starts when WrPattStart is asserted to 1b. This signal is asserted for a

single clock cycle. Following this, rWrTrans is set to 1b to indicate that a Write operation is
in progress. It is de-asserted upon the completion of the operation.

2) While rWrTrans is maintained at 1b, rTrnRateCnt increments from 1 to 100. The initial
value of rTrnRateCnt is 100. rTrnRateEn is asserted to 1b if both rWrTrans=1b and
rTrnRateCnt=100.

3) When both rWrTrans and rTrnRateEn are set to 1b and the FIFO is not full
(WrFfAFull=0b), rWrFfWrEn is set to 1b for writing the test data to the FIFO.

4) The data counter (rDataCnt) increments when rWrFfWrEn is set to 1b. Therefore, it can
be monitored to keep track of the total amount of data transmitted to the FIFO.

5) In this example, TrnRate is set to 40, resulting in a maximum data rate of approximately
40/100, or 40% of the maximum throughput of this logic. rTrnRateEn remains asserted at
1b for 40 cycles within every 100 cycles. After rTrnRateCnt=40, rTrnRateEn is
de-asserted to 0b.

6) If rTrnRateEn is de-asserted to 0b, rWrFfWrEn is also de-asserted to 0b, pausing the data
transmission.

7) When the FIFO is almost full (WrFfAFull=1b), the write process is paused by de-asserting
rWrFfWrEn to 0b. rWrFfWrEn is re-asserted to 1b when WrFfAFull transitions from 1b to
0b.

8) Once the total data count (rDataCnt) equals the total transfer size (rEndSize), both
rWrTrans and rWrFfWrEn are de-asserted to 0b, marking the completion of the Write
command.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 10

Figure 2-6 Timing diagram of Read operation in TestGen

1) The operation starts when RdPattStart is asserted to 1b. This signal is asserted for a

single clock cycle. Following this, rRdTrans is set to 1b to manage rTrnRateEn It is
de-asserted after all data has been completely transferred.

2) While rRdTrans is maintained at 1b, rTrnRateCnt increments from 1 to 100. The initial
value of rTrnRateCnt is 100. rTrnRateEn is asserted to 1b if both rRdTrans=1b and
rTrnRateCnt=100.

3) When rTrnRateEn is asserted to 1b and the FIFO contains data (RdFfEmpty=0b),
RdFfRdEn is set to 1b for reading data from the FIFO.

4) The data counter (rDataCnt) increments after RdFfRdEn is set to 1b for two clock cycles.
This counter can be monitored to keep track of the total amount of data received from the
FIFO.

5) In this example, TrnRate is set to 40, resulting in a maximum data rate of approximately
40/100, or 40% of the maximum throughput of this logic. rTrnRateEn remains asserted at
1b for 40 cycles within every 100 cycles. After rTrnRateCnt=40, rTrnRateEn is
de-asserted to 0b.

6) If rTrnRateEn is de-asserted to 0b, RdFfRdEn is also de-asserted to 0b in the same clock
cycle, effectively pausing data transmission.

7) When the FIFO is empty (RdFfEmpty=1b), the read process is paused by de-asserting
RdFfRdEn to 0b. RdFfRdEn is re-asserted to 1b when RdFfEmpty transitions from 1b to
0b.

8) Once the total data count (rDataCnt) equals the total transfer size (rEndSize), rRdTrans is
de-asserted to 0b, marking the completion of the Read command.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 11

2.2 NVMe

Figure 2-7 NVMe hardware

In the reference design, each user interface of muNVMe-IP comprises both a control
interface and a data interface. The User#0 control interface is responsible for receiving
commands and parameters from either the Custom command interface or the dgIF typeS,
depending on the type of command. Specifically, the Custom command interface is utilized
when operating SMART or Flush command. While the User#1 control interface employs the
dgIF typeS to execute Write and Read commands.

Besides, the User#0 data interface of muNVMe-IP uses four different interfaces, all with a
data bus width of 128-bit. These interfaces include the Custom command RAM interface,
Identify interface, FIFO input interface (dgIF typeS), and FIFO output interface (dgIF typeS).
The Custom command RAM interface is a bi-directional interface, whereas the remaining
interfaces are unidirectional interfaces. In the reference design, the Custom command RAM
interface is used for one-way data transfer when muNVMe-IP transmits SMART data to
Avl2Reg. For User#1 data interface, the FIFO input and output interfaces (dgIF typeS) are
applied for executing Write and Read commands.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 12

2.2.1 muNVMe-IP

The muNVMe-IP implements the NVMe protocol on the host side for enabling direct access
to an NVMe SSD without PCIe switch connection. It offers two user interfaces, allowing
users to send two command requests concurrently.

The first user, known as the Main user, can issue six commands, including Write, Read,
Identify, Shutdown, SMART, and Flush. On the other hand, the second user, known as the
Sub user, is capable of sending two specific commands: Write and Read.

The muNVMe-IP can be directly connected to the PCIe hard IP. More information on the
muNVMe-IP is available in the detailed datasheet at the following link.
https://dgway.com/products/IP/NVMe-IP/dg_munvme_datasheet_intel/

2.2.2 Avalon-ST PCIe Hard IP

This block represents the hard IP integrated into Intel FPGAs, which is responsible for
implementing the Physical, Data Link, and Transaction Layers of the PCIe specification. For
more comprehensive information, please refer to the following documents.

ArriaV Avalon-ST Interface for PCIe Solutions User Guide
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a5_pci
e_avst.pdf

Stratix V Avalon-ST Interface for PCIe Solutions User Guide
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_s5_pci
e_avst.pdf

Intel Arria10 and Intel Cyclone 10 GX Avalon-ST Interface for PCIe Solutions User Guide
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a10_pc
ie_avst.pdf

https://dgway.com/products/IP/NVMe-IP/dg_munvme_datasheet_intel/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_s5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_s5_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a10_pcie_avst.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_a10_pcie_avst.pdf

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 13

2.2.3 Two-port RAM

Within this reference design, two 2-Port RAMs, CtmRAM and IdenRAM, store the returned
data from Identify command and SMART command, respectively. Specifically, IdenRAM is
designed with an 8 KB capacity, storing the 8 KB data response from the Identify command.

The data bus size for muNVMe-IP and Avl2Reg differ, with muNVMe-IP having a 128-bit
size and Avl2Reg having a 32-bit size. As a result, IdenRAM is configured as an asymmetric
RAM, with different bus sizes for its Write and Read interfaces.

muNVMe-IP is equipped with a double-word enable, enabling it to write only 32-bit data
under certain cases. In the Quartus tool, the RAM settings support write byte enable
functionality, and this double-word enable can be extended to a 4-bit write byte enable, as
shown in Figure 2-8.

Figure 2-8 Word enable to byte write enable connection

Each bit of WrDWEn is extended to be 4-bit of IdenWrEn, so bit[0], [1], [2], and [3] are then
used to drive bit[3:0], [7:4], [11:8], and [15:12] of IdenWrEn, respectively.

On the other hand, CtmRAM is implemented as a 2-Port RAM with two read ports and two
write ports, and with byte write enable. The connection from the double-word enable of
muNVMe-IP to byte enable of CtmRAM is similar to that of IdenRAM. The 2-Port RAM is
utilized to support additional features when the customized Custom command requires data
input. For supporting SMART command, a simple dual-port RAM is sufficient, even though
the data size returned from the SMART command is 512 bytes. However, CtmRAM is
implemented with an 8KB RAM for the customized Custom command.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 14

2.3 CPU and Peripherals

The CPU system uses a 32-bit Avalon-MM bus as the interface to access peripherals such
as the Timer and JTAG UART. The system also integrates an additional peripheral to access
the test logic by assigning a unique base address and address range. To support CPU read
and write operations, the hardware logic must comply with the Avalon-MM bus standard.
Avl2Reg module, as shown in Figure 2-9, is designed to connect the CPU system via the
Avalon-MM interface, in compliance with the standard.

Figure 2-9 CPU and peripherals hardware

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg converts Avalon-MM signals
into a simple Register interface with a 32-bit data bus size, similar to the Avalon-MM data
bus size. It also includes asynchronous logic to handle clock domain crossing between the
CpuClk and UserClk domains.

UserReg includes the register file of the parameters and the status signals of other modules
in the test system, including the CtmRAM, IdenRAM, muNVMe-IP, and TestGen. More
details of AsyncAvlReg and UserReg are explained below.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 15

2.3.1 AsyncAvlReg

Figure 2-10 AsyncAvlReg Interface

The Avalon-MM bus interface signal can be grouped into three categories: Write channel
(blue), Read channel (red), and Shared control channel (black). More details about the
Avalon-MM interface specification can be found in the following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_a
valon_spec.pdf

According to Avalon-MM specification, a single command (write or read) can be executed at
a time. AsyncAvlReg’s logic is divided into three groups: Write control logic, Read control
logic, and Flow control logic. The flow control logic asserts SAvlWaitReq to hold the next
request from the Avalon-MM interface if the current request has not finished. Write control
and Write data I/F of the Avalon-MM bus are latched and transferred to the Write register
interface with clock domain crossing registers. Similarly, Read control I/F are latched and
transferred to be Read register interface. Afterward, the data returned from Register Read
I/F is transferred to Avalon-MM bus with using clock domain crossing registers. The Address
I/F of Avalon-MM is also latched and transferred to the Address register interface.

The Register interface is compatible with the single-port RAM interface for write transactions.
However, the read transaction of the Register interface is slightly modified from RAM
interface by adding RdReq and RdValid signals to control the read latency time. Since the
address of the Register interface is shared for write and read transactions, the user cannot
write and read the register at the same time. The timing diagram of the Register interface is
shown in Figure 2-11.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 16

Figure 2-11 Register interface timing diagram

1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units),
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte
enable consists of four bits that indicate the validity of the byte data. For example, bit[0],
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid,
respectively.

2) To read register, AsyncAvlReg sets the RegRdReq signal to 1b with a valid value for
RegAddr. The 32-bit data is returned after the read request is received. The slave detects
the RegRdReq signal being set to start the read transaction. In the read operation, the
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address
can then be used to select the returned data using multiple layers of multiplexers.

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b.
After that, AsyncAvlReg forwards the read value to the SAvlRead interface.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 17

2.3.2 UserReg

Figure 2-12 UserReg Interface

The UserReg module comprises an Address decoder, a Register File, and a Register Mux.
The Address decoder is responsible for decoding the address requested by AsyncAvlReg
and selecting the active register for both write and read transactions. The assigned address
range in UserReg is divided into six distinct areas, as illustrated in Figure 2-12.
1) 0x0000 – 0x01FF: Mapped to User#0 of muNVMe-IP and TestGen#0.
2) 0x0200 – 0x03FF: Mapped to User#1 of muNVMe-IP and TestGen#1.
3) 0x2000 – 0x3FFF: Reserved for read access to IdenRAM. This area is read-access only.
4) 0x4000 – 0x5FFF: Mapped for write and read data via Custom command RAM interface.

This area supports both write and read access. However, the demo shows only read
access when executing the SMART command.

5) 0x6000 – 0x7FFF: Mapped to the Custom command interface.
6) 0x8000 – 0xFFFF: Mapped to other interfaces such as shared parameters for both

User#0 and User#1 of muNVMe-IP, PCIe status, and IP version.

The Address decoder decodes the upper bits of RegAddr to select the active hardware
(muNVMe-IP, TestGen#0-#1, IdenRAM, or CtmRAM). The Register File within UserReg
features a 32-bit bus size, eliminating the need for write byte enable (RegWrByteEn) in the
test system when the CPU utilizes a 32-bit pointer to set the hardware register.

To read registers, multi-level multiplexers (mux) are used to select the data to be returned to
the CPU based on the address. The lower bits of RegAddr are directed to the submodule to
select the active data from each submodule, while the upper bits in UserReg are used to
select the returned data from each submodule. Consequently, the latency time for reading
data equals two clock cycles. Therefore, RegRdValid is created by RegRdReq, with two D
Flip-flops asserted. Further details of the address mapping within the UserReg module are
shown in Table 2-1.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 18

Table 2-1 Register map defintion

Address Register Name Description

Rd/Wr (Label in the “munvmeiptest.c”)

0x0000 – 0x01FF: Signal Interface of User#0 (muNVMe-IP) and TestGen#0

0x0000 – 0x00FF: Control signals of User#0 and TestGen#0 (Write access only)

BA+0x0000 User#0 Address (Low) Reg [31:0]: Input to be bit[31:0] of User#0 start address as 512-byte unit

(U0Addr[31:0] of muNVMe-IP) (U0ADRL_INTREG)

BA+0x0004 User#0 Address (High) Reg [15:0]: Input to be bit[47:32] of User#0 start address as 512-byte unit

(U0Addr[47:32] of muNVMe-IP) (U0ADRH_INTREG)

BA+0x0008 User#0 Length (Low) Reg [31:0]: Input to be bit[31:0] of User#0 transfer length as 512-byte unit

(U0Len[31:0] of muNVMe-IP) (U0LENL_INTREG)

BA+0x000C User#0 Length (High) Reg [15:0]: Input to be bit[47:32] of User#0 transfer length as 512-byte unit

(U0Len[47:32] of muNVMe-IP) (U0LENH_INTREG)

BA+0x0010 User#0 Command Reg [2:0]: Input to be User#0 command (U0Cmd of muNVMe-IP)

000b: Identify, 001b: Shutdown, 010b: Write SSD, 011b: Read SSD,

100b: SMART, 110b: Flush, 101b/111b: Reserved

When this register is written, the command request is sent to

muNVMe-IP via User#0 I/F to start the command execution.

(U0CMD_INTREG)

BA+0x0014 User#0 Test Pattern Reg [2:0]: Select test pattern of TestGen#0

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1,

100b-LFSR

(U0PATTSEL_INTREG)

BA+0x0018 User#0 Transfer Rate Reg [6:0]: Transfer Rate in percentage unit of TestGen#0.

Valid from 1 – 100. For example, when this value=40, the maximum

data rate equals to 40% of 275 x 128-bit (4400 MB/s), or 1760 MB/s.

(U0TRNRATE_INTREG)

0x0100 – 0x01FF: Status signals of User#0 and TestGen#0 (Read access only)

BA+0x0100 User#0 Status Reg [0]: User#0 Busy of muNVMe-IP (0b: Idle, 1b: Busy)

[1]: U0Error of muNVMe-IP (0b: Normal, 1b: Error)

[2]: Data verification fail in TestGen#0 (0b: Normal, 1b: Error)

(U0STS_INTREG)

BA+0x0104 User#0 Error Type Reg [31:0]: Mapped to U0ErrorType[31:0] of muNVMe-IP to show error

status (U0ERRTYPE_INTREG)

BA+0x0108 User#0 Completion Status Reg [15:0]: Mapped to U0AdmCompStatus[15:0] of muNVMe-IP

[31:16]: Mapped to U0IOCompStatus[15:0] of muNVMe-IP (U0COMPSTS_INTREG)

BA+0x0110 User#0 Test pin (Low) Reg [31:0]: Mapped to U0TestPin[31:0] of muNVMe-IP

(U0TESTPINL_INTREG)

BA+0x0114 User#0 Test pin (High) Reg [15:0]: Mapped to U0TestPin[47:32] of muNVMe-IP

(U0TESTPINH_INTREG)

BA+0x0140-

BA+0x014F

User#0 Expected value Word0-3 Reg The 128-bit expected data of the 1st failure in TestGen#0 when

executing a Read command.

0x0140: Bit[31:0], 0x0144: Bit[63:32], …, 0x014C: Bit[127:96]

(U0EXPPATW0-W3_INTREG)

BA+0x0160-

BA+0x016F

User#0 Read value Word0-3 Reg The 128-bit read data of the 1st failure in TestGen#0 when executing

a Read command

0x0160: Bit[31:0], 0x0164: Bit[63:32], …, 0x016C: Bit[127:96]

(U0RDPATW0-W3_INTREG)

BA+0x0180 User#0 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure in TestGen#0

when executing a Read command (U0RDFAILNOL_INTREG)

BA+0x0184 User#0 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure in TestGen#0

when executing a Read command (U0RDFAILNOH_INTREG)

BA+0x0188 User#0 Current test byte (Low) Reg [31:0]: Bit[31:0] of the current test data size in TestGen#0 module

(U0CURTESTSIZEL_INTREG)

BA+0x018C User#0 Current test byte (High) Reg [24:0]: Bit[56:32] of the current test data size in TestGen#0 module

(U0CURTESTSIZEH_INTREG)

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 19

Address Register Name Description

Rd/Wr (Label in the “munvmeiptest.c”)

0x0200 – 0x03FF: Signal Interface of User#1 (muNVMe-IP) and TestGen#1

0x0200 – 0x02FF: Control signals of User#1 and TestGen#1 (Write access only)

BA+0x0200-

BA+0x021B

Control signals of

User#1/TestGen#1

Similar to the registers in the range 0x0000 – 0x001B, which correspond to

User#0 and TestGen#0, these registers are allocated for User#1 and

TestGen#1. However, U1CMD_INTREG can only be assigned by two

values: 010b for Write SSD and 011b for Read SSD commands.

(U1ADRL_INTREG –

U1TRNRATE_INTREG)

0x0300 – 0x03FF: Status signals of User#1 and TestGen#1 (Read access only)

BA+0x0300-

BA+0x038F

Status signals of

User#1/TestGen#1

Similar to the registers in the range 0x0100 – 0x018F, which correspond to

User#0 and TestGen#0, these registers are allocated for User#1 and

TestGen#1. However, there are specific status signals available exclusively

for User#0 and are not accessible to User#1. These signals include

U0COMPSTS_INTREG[15:0], U0TESTPINL_INTREG[31:16], and

U0TESTPINH_INTREG[15:0].

(U1STS_INTREG –

U1CURTESTSIZEH_INTREG)

0x2000 – 0x3FFF: IdenRAM (Read access only)

BA+0x2000-

BA+0x2FFF

Identify Controller Data 4KB Identify Controller Data Structure

(IDENCTRL_CHARREG)

BA+0x3000-

BA+0x3FFF

Identify Namespace Data 4KB Identify Namespace Data Structure

(IDENNAME_CHARREG)

0x4000 – 0x5FFF: CtmRAM (Write/Read access)

BA+0x4000-

BA+0x5FFF

Custom command Ram Connect to 8KB CtmRAM interface for storing 512-byte data output from

SMART Command. (CTMRAM_CHARREG)

0x6000 – 0x7FFF: Custom Command Interface

BA+0x6000-

BA+0x603F

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of muNVMe-IP.

0x6000: DW0, 0x6004: DW1, …, 0x603C: DW15 Wr (CTMSUBMQ_STRUCT)

BA+0x6100-

BA+0x610F

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from muNVMe-IP.

0x6100: DW0, 0x6104: DW1, …, 0x610C: DW3

Rd (CTMCOMPQ_STRUCT)

0x8000 – 0xFFFF: Other Interfaces

BA+0x8000 NVMe Timeout Reg [31:0]: Mapped to TimeOutSet[31:0] of muNVMe-IP

Wr (NVMTIMEOUT_INTREG)

BA+0x8100 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (0b: No linkup, 1b: linkup)

[3:2]: PCIe link speed of PCIe hard IP.

(00b: Not linkup, 01b: PCIe Gen1, 10b: PCIe Gen2, 11b: PCIe Gen3)

[7:4]: PCIe link width status from PCIe hard IP

(0001b: 1-lane, 0010b: 2-lane, 0100b: 4-lane, 1000b: 8-lane)

[12:8]: Current LTSSM state of PCIe hard IP. Please see more details of

LTSSM value in PCIe hard IP datasheet

Rd (PCIESTS_INTREG)

BA+0x8110 NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of muNVMe-IP

Rd (NVMCAP_INTREG)

BA+0x8120 Total disk size (Low) Reg [31:0]: Mapped to LBASize[31:0] of muNVMe-IP

 Rd (LBASIZEL_INTREG)

BA+0x8124 Total disk size (High) Reg [15:0]: Mapped to LBASize[47:32] of muNVMe-IP

[31]: Mapped to LBAMode of muNVMe-IP Rd (LBASIZEH_INTREG)

BA+0x8200 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of muNVMe-IP

Rd (IPVERSION_INTREG)

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 20

3 CPU Firmware

3.1 Test firmware (munvmeiptest.c)

Upon system boot-up, the CPU executes the following steps to complete the initialization
process.
1) Initialize JTAG UART and Timer settings.
2) Wait for the PCIe connection to become active (PCIESTS_INTREG[0]=1b).
3) Wait until muNVMe-IP completes the initialization process (U0-U1STS_INTREG[0]=0b).

If any errors occur during this phase, the process is halted, and error message is
displayed.

4) Display the status of the PCIe link, which includes details such as the number of lanes
and the speed. This information is obtained by reading the status in
PCIESTS_INTREG[7:2].

5) Display the main menu, which offers five options to execute six commands of
muNVMe-IP: Identify, Write, Read, SMART, Flush, and Shutdown.

Additional details of the sequence for each command in the CPU firmware are described in
the following sections.

3.1.1 Identify Command

When user selects this option, the Identify command is requested to User#0. After that, the
firmware follows this sequence.
1) Set U0CMD_INTREG[2:0]=000b to send the Identify command request to User#0 I/F.

Subsequently, User#0 busy flag (U0STS_INTREG[0]) changes from 0b to 1b.
2) The CPU enters a waiting state, monitoring U0STS_INTREG[1:0] for the operation status

or any error.

• Bit[0] is de-asserted to 0b when the command is completed. Also, the data response
from Identify command, output from muNVMe-IP, is stored in IdenRAM.

• Bit[1] is asserted when an error is detected. In this case, the error message will be
displayed on the console, revealing error details decoded from
U0ERRTYPE_INTREG[31:0]. The process will then be terminated.

3) Once User#0 busy flag (U0STS_INTREG[0]) is de-asserted to 0b, the CPU proceeds to

display information that has been decoded from LBASIZEH/L_INTREG, which includes
the SSD capacity and LBA unit size. Besides, further information, such as the SSD model,
can be retrieved from the IdenRAM (IDENCTRL_CHARREG).

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 21

3.1.2 Write/Read Command

When the Write/Read command is selected, the firmware follows this sequence.
1) Receive commands for two users (Write, Read, or Disable), start address, transfer length,

test pattern, and transfer rate from the console. If any of these inputs are invalid, the
operation will be cancelled.
Note: If LBA unit size = 4 KB, the start address and transfer length must align to 8.

2) Once all the required inputs are obtained, set them to their respective registers:
U0-U1ADRL/H_INTREG, U0-U1LENL/H_INTREG, U0-U1PATTSEL_INTREG, and
U0-U1TRNRATE_INTREG.

3) Iterate to set the command for each user when the Write or Read command is selected.
Set U<i>CMD_INTREG[2:0] (where i=0 or 1) to 010b or 011b for Write or Read operation.
Following this, the command request is asserted to User#<i> (where i=0 or 1), and the
User#<i> busy flag (U<i>STS_INTREG[2:0]; where i=0 or 1) changes from 0b to 1b.

4) The CPU enters a waiting state, monitoring U0-U1STS_INTREG[2:0] for the operation
status or any errors (excluding verification error).

• Bit[0] is de-asserted to 0b when the command is completed.

• Bit[1] is asserted when an error is detected. In this case, an error message will be
displayed on the console, revealing error details decoded from
U<i>ERRTYPE_INTREG[31:0] (where i=0 or 1). The process will then be terminated.

• Bit[2] is asserted when data verification fails. In this case, a verification error message
will be displayed on the console, but the CPU will continue running until the operation
is completed or until the user inputs any key to cancel the operation.

Additionally, during the command’s execution, the current transfer size, as read from
U0-U1CURTESTSIZEL/H_INTREG, will be displayed every second.

5) Once the busy flag (U0-U1STS_INTREG[0]) is de-asserted to 0b, the CPU proceeds to

calculate and display the test results on the console. These results include the total time
usage, the total transfer size, and the transfer speed.

3.1.3 SMART Command

When user selects this option, the SMART command is requested to User#0. After that, the
firmware follows this sequence.
1) Configure the 16-Dword Submission Queue entry (CTMSUBMQ_STRUCT) with the

SMART command value.
2) Set U0CMD_INTREG[2:0]=100b to send the SMART command request to User#0 I/F.

This action causes User#0 busy flag (U0STS_INTREG[0]) to change from 0b to 1b.
3) The CPU enters a waiting state, monitoring U0STS_INTREG[1:0] for the operation status

or any error.

• Bit[0] is de-asserted to 0b when the command is completed. Also, the data response
from SMART command, output from muNVMe-IP, is stored in CtmRAM.

• Bit[1] is asserted when an error is detected. In this case, the error message will be
displayed on the console, revealing error details decoded from
U0ERRTYPE_INTREG[31:0]. The process will then be terminated.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 22

4) Once User#0 busy flag (U0STS_INTREG[0]) is de-asserted to 0b, the CPU proceeds to

display information that has been decoded from CtmRAM (CTMRAM_CHARREG). This
information includes Remaining Life, Percentage Used, Temperature, Total Data Read,
Total Data Written, Power On Cycles, Power On Hours, and Number of Unsafe
Shutdown.

For additional details regarding the SMART log, refer to the NVM Express Specification at
https://nvmexpress.org/specifications/

3.1.4 Flush Command

When user selects this option, the Flush command is requested to User#0. After that, the
firmware follows this sequence.
1) Configure the 16-Dword Submission Queue entry (CTMSUBMQ_STRUCT) with the

Flush command value.
2) Set U0CMD_INTREG[2:0]=110b to send the Flush command request to User#0 I/F. This

action causes User#0 busy flag (U0STS_INTREG[0]) to change from 0b to 1b.
3) The CPU enters a waiting state, monitoring U0STS_INTREG[1:0] for the operation status

or any error.

• Bit[0] is de-asserted to 0b when the command is completed.

• Bit[1] is asserted when an error is detected. In this case, the error message will be
displayed on the console, revealing error details decoded from
U0ERRTYPE_INTREG[31:0]. The process will then be terminated.

4) Once User#0 busy flag (U0STS_INTREG[0]) is de-asserted to 0b, the CPU returns to the

main menu.

3.1.5 Shutdown Command

When user selects this option, the Flush command is requested to User#0. After that, the
firmware follows this sequence.
1) Set U0CMD_INTREG[2:0]=001b to send the Shutdown command request to User#0 I/F.

This action causes User#0 busy flag (U0STS_INTREG[0]) to change from 0b to 1b.
2) The CPU enters a waiting state, monitoring U0STS_INTREG[1:0] for the operation status

or any error.

• Bit[0] is de-asserted to 0b when the command is completed.

• Bit[1] is asserted when an error is detected. In this case, the error message will be
displayed on the console, revealing error details decoded from
U0ERRTYPE_INTREG[31:0]. The process will then be terminated.

3) Once User#0 busy flag (U0STS_INTREG[0]) is de-asserted to 0b, both the SSD and

muNVMe-IP become inactive, and the CPU will no longer accept new commands from
the user. To resume testing, the user must power off and subsequently power on the
system.

https://nvmexpress.org/specifications/

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 23

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)
Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in the muNVMe-IP
Description Execute SMART command as outlined in section 3.1.3 (SMART

Command) or execute Flush command as outlined in section 3.1.4
(Flush Command).

unsigned long long get_cursize(unsigned int user)
Parameters user: 0-User#0, 1-User#1

Return value Read value of U0-U1CURTESTSIZEH/L_INTREG

Description The value of U0-U1CURTESTSIZEH/L_INTREG are read and converted
to byte units before being return as the result of the function.

int get_param(userin_struct* userin)

Parameters userin: Five inputs from user, i.e., command, start address, total length in
512-byte unit, test pattern, and transfer rate

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Execute Identify command as outlined in section 3.1.1 (Identify
Command).

int setctm_flush(void)
Parameters None
Return value 0: No error, -1: Some errors are found in the muNVMe-IP

Description Set Flush command to CTMSUBMQ_STRUCT and call exec_ctm
function to execute Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the muNVMe -IP
Description Set SMART command to CTMSUBMQ_STRUCT and call exec_ctm

function to execute SMART command. Finally, decode and display
SMART information on the console

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 24

void show_error(unsigned int user)

Parameters user: 0-User#0, 1-User#1

Return value None
Description Read U<i>ERRTYPE_INTREG (where ‘i’ is an index from user input),

decode the error flag, and display error message corresponding to the
detected error. Also, call ‘show_pciestat’ function to check the
hardware’s debug signals.

void show_pciestat(void)

Parameters None
Return value None

Description Read PCIESTS_INTREG until the read value from two read times is
stable. After that, display the read value on the console. Also, debug
signal is read from U0-U1TESTPINL/H_INTREG.

void show_result(unsigned int user, unsigned int cmd, unsigned int timeuseh, unsigned
int timeusel)

Parameters user: 0-User#0, 1-User#1
cmd: 2-Write, 3-Read
timeuseh, timeusel: 64-bit read value of timer

Return value None

Description Print user channel, command, and total size by calling ‘get_cursize’ and
‘show_size’ functions. After that, calculate total time usage from global
parameters (timeuseh and timeusel) and display in usec, msec, or sec
unit. Finally, compute and display the transfer performance in MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console
Return value None

Description Calculate and display the input value in Mbyte or GByte unit.

void show_smart_hex16byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 16-byte SMART data
Return value None

Description Display 16-byte SMART data as hexadecimal unit.

void show_smart_int8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 8-byte SMART data
Return value None

Description When the input value is less than 4 billion (32-bit), the 8-byte SMART
data is displayed in decimal units. If the input value exceeds this limit, an
overflow message is displayed.

void show_smart_size8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 8-byte SMART data
Return value None

Description Display 8-byte SMART data as GB or TB unit. When the input value is
more than limit (500 PB), the overflow message is displayed instead.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 25

void show_vererr(unsigned int user)

Parameters user: 0-User#0, 1-User#1

Return value None
Description Read U<i>RDFAILNOL/H_INTREG (error byte address),

U<i>EXPPATW0-W3_INTREG (expected value), and
U<i>RDPATW0-W3_INTREG (read value) (where ‘i’ is an index from
user input) to display verification error details on the console.

void shutdown_dev(void)

Parameters None
Return value None

Description Execute Shutdown command as outlined in section 3.1.5 (Shutdown
Command)

int wrrd_dev(void)
Parameters None
Return value 0: No error, -1: Receive invalid input

Description Execute Write/Read command as outlined in section 3.1.2 (Write/Read
Command). In this function, ‘show_result’ is called to compute and
display transfer performance in Write/Read command.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 26

4 Example Test Result

The performance results of executing Write and Read commands with 1-2 users on an 800 GB
Intel P5800X SSD are illustrated in Figure 4-1.

Figure 4-1 Test Performance of muNVMe-IP demo

With specific SSDs, a good balance is observed when simultaneously executing Write and Read
commands. The performance of both User#0 and User#1 is identical when executing the same
command or the mixed Write-Read commands. When two users execute the same command, the
overall performance closely matches that of a single user’s execution.

Nevertheless, it is important to note that with certain SSDs, there may be an imbalance in
performance between User#0 and User#1 when executing mixed Write-Read commands,
compared to executing the same command.

dg_munvmeip_refdesign_intel.doc

2023/11/15 Page 27

5 Revision History

Revision Date Description

1.0 15-Nov-23 Initial Release

Copyright: 2023 Design Gateway Co,Ltd.

