

2-Ch RAIDO (NVMe-IP) Demo Instruction

Rev2.1 29-Jun-23

2 Test Menu	1	Ove	erview	2
2.1Identify Command	2	Test	t Menu	3
2.2 Write Command		2.1	Identify Command	3
2.3 Read Command		2.2	Write Command	4
2.4 SMART Command		2.3	Read Command	6
 2.5 Flush Command		2.4	SMART Command	8
2.6 Shutdown Command		2.5	Flush Command	9
3 Revision History 10		2.6	Shutdown Command	9
	3	Rev	<i>r</i> ision History	. 10

2-Ch RAID0 (NVMe-IP) Demo Instruction

Rev2.1 29-Jun-23

1 Overview

This document describes the instruction to run NVMe-IP 2-ch RAID0 demo on FPGA development board for accessing two NVMe SSDs as RAID0. The demo is designed to run Identify, Write, Read, SMART, Flush, and Shutdown command. User controls test operation via FPGA console.

After user finishes FPGA board setup following "dg_nvmeip_raid0x2_fpgasetup" document, main menu is displayed. The user can set the input to the console for selecting test operation.

Figure 1-1 NVMe IP 2-ch RAID0 demo main menu

2 Test Menu

2.1 Identify Command

Select '0' to send Identify command to RAID0.

+++ Identify Command selected ++ Ch[0]Model Number : Samsung SSD Ch[1]Model Number : Samsung SSD R0ID Capacitus 1024[CR]	970 PRO 512GB 970 PRO 512GB
	Model name and RAID0 capacity
<pre> NUMEIF menu [0] : Identify Command [1] : Write Command [2] : Read Command [3] : SMART Command [4] : Flush Command [5] : Shutdown Command</pre>	
Figure 2-1 Test result when runr	ning Identify command

After finishing the operation, the SSD information output from Identify command is displayed. The console shows two values.

- 1) SSD model number: This value is decoded from Identify controller data of each SSD.
- RAID capacity: This value is calculated by multiplying device capacity in channel#0 by 2. Therefore, it is recommended to connect two SSDs which have the same size.

When unsupported LBA size SSD is detected, the error message is displayed on the console as shown in Figure 2-2

<u>Note</u>: In RAID0 design, LBA size of SSD must be equal to 512-byte. Other size can be supported by modifying RAID0 controller hardware.

Not supported LBA size is detected Warning : LBA Size Not Support! Please Check Devices

Figure 2-2 Error message when LBA does not support

Dec

dg_nvmeip_raid0x2_instruction_en

2.2 Write Command

Select '1' to send Write command to RAID0.

User inputs three parameters as follows.

- 1) Start Address: Start address to write RAID0 in 512-byte unit. The input is decimal unit when the input is only digit number. User can add "0x" to be a prefix for hexadecimal unit.
- 2) Transfer Length: Total transfer size in 512-byte unit. The input is decimal unit when the input is only digit number. User can add "0x" to be a prefix for hexadecimal unit.
- 3) Test pattern: Select test data pattern for writing RAID0. There are five patterns, i.e., 32-bit incremental, 32-bit decremental, all-0, all-1, and 32-bit LFSR counter.

When all inputs are valid, the operation begins. During writing data, current transfer size is displayed on the console every second to show that system is still alive. Finally, total size, total time usage, and test speed are displayed on the console as a test result.

← 64-bit header of each sector →

	48-	bit L	.BA	Addı	ess	= 0	0x	0000	1	32	-bit l	FSF	Rpat	tern			48-	bit L	BA /	Addr	ess	= 1										
Offset	0	4	2	3	4	5	6	47	8	9	A	В	¢	D	E	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000000000	0	00	00	00	00	00	00	00	01	00	00	00	02	00	00	00	1	00	00	00	00	00	00	00	02	00	00	00	04	00	00	00
0000000010	04	00	00	00	09	00	00	00	12	00	00	00	24	00	00	00	09	00	00	00	12	00	00	00	24	00	00	00	49	00	00	00
0000000020	49	00	00	00	92	00	00	00	24	01	00	00	49	02	00	00	92	00	00	00	24	01	00	00	49	02	00	00	92	04	00	00
0000000030	92	04	00	00	24	09	00	00	49	12	00	00	92	24	00	00	24	09	00	00	49	12	00	00	92	24	00	00	24	49	00	00
0000000040	24	49	00	00	49	92	00	00	92	24	01	00	24	49	02	00	49	92	00	00	92	24	01	00	24	49	02	00	49	92	04	00
0000000050	49	92	04	00	92	24	09	00	24	49	12	00	49	92	24	00	92	24	09	00	24	49	12	00	49	92	24	00	93	24	49	00
	48-	bit L	BA A	١ddr	ess :	= 2											18	bit I	RA.	۸dd		- 3										
000000130	20	F 1	C.C.	74	4.1	- -	on	FO	00	06	10	ъэ	06	oр	27	λc	41	0.2	on	FO	033		10	ъэ	06	oъ	27	26	00	1 3	<u>د ټ</u>	40
00000001A0	AU	12	CB CE	14	41	24	DO	E9 00	20	60	1D DO	21	00	DO	37	A0 62	41	0.34	Da	E9	03	60	1D DO	21	00	DO	37	AD CO	00	1A NO	DE E 1	40
0000000180	00	74	51	40	10	34	DC do	90 00	30	00	00	10	00	00	/U	03	10	34	DC do	90	30	00	00	10	00	00	/U	03	OF	AU	13	CB
0000000100		AU	12	CB CE	15	41	03	6U DC	03	00	00	1B DO	07	00	DD	3/	101	41	03	8D DG	03	83	66	1B DO	07	06	DD	37	UF	00	AL NO	DE E1
0000000100	UF	00	AL NO	6E	1r EE	18	34	DC	31	30	68	88	71	60	00	70		18	34	DC	3F	30	68	B8	71	60	00	70	rr Eð	CU	AU	EI 12
0000001E0	FF	CU	AU	EI	rr Tr	81	41	03	FE FO	03	83	86	FD	07	06	υD	rr Tr	81	41	03	FE	03	83	86	FD	07	06	UU	FA	UF	UC ao	IA
0000001F0	FA	UF	UC	1A	F 4	11	18	34	£9	31	30	68	D3	71	60	DO	F 4	11	18	34	£9	31	30	68	D3	71	60	DU	A7	11	CU	AU
0000000200	02	00	00	00	00	00	00	00	04	00	00	00	09	00	00	00	03	00	00	00	00	00	00	00	07	00	00	00	OF	00	00	00
0000000210	12	00	00	00	24	00	00	00	49	00	00	00	92	00	00	00	1F	00	00	00	ЗF	00	00	00	7F	00	00	00	FF	00	00	00
-								Dis	sk#0															Dis	k#1							
Figu	Figure 2-4 Example Test data of the 1 st 512-byte of each SSD by using LFSR pattern																															

The stripe size in 2-ch RAID0 demo is 512-byte. For incremental, decremental, or LFSR pattern, each 512-byte data has unique 64-bit header which consists of 48-bit address (in 512-byte unit) and 16-bit zero value. The data after 64-bit header is the test pattern which is selected by user. The 1st stripe of RAID0 is mapped to the first 512-byte of SSD#0 while the 2nd stripe of RAID0 is mapped to the first 512-byte of SSD#1, as shown in Figure 2-4. The unique header is not included when running all-0 or all-1 pattern.

Figure 2-5 shows the example when the input is not in the recommended range for each parameter. The console displays "Invalid input" and then the operation is cancelled.

D·G

dg_nvmeip_raid0x2_instruction_en

2.3 Read Command

Select '2' to send Read command to RAID0.

User inputs three parameters as follows.

- 1) Start Address: Start address to read SSD as 512-byte unit. The input is decimal unit when the input is only digit number. User can add "0x" to be a prefix for hexadecimal unit.
- 2) Transfer Length: Total transfer size as 512-byte unit. The input is decimal unit when the input is only digit number. User can add "0x" to be a prefix for hexadecimal unit
- 3) Test pattern: Select test data pattern to verify data from RAID0. Test pattern must be matched with the pattern using in Write Command menu. There are five patterns, i.e., 32-bit incremental, 32-bit decremental, all-0, all-1, and 32-bit LFSR counter

Similar to Write command menu, test system starts reading data from RAID0 when all inputs are valid. During reading data, current transfer size is displayed on the console every second to show that system is still alive. Total size, total time usage, and test speed are calculated and displayed after finishing data transferring.

Figure 2-7 shows error message when data verification is failed. "Verify fail" is displayed with the information of the 1st failure data, i.e., the error byte address, the expected value, and the read value. User can press any key(s) to cancel read operation or wait until finishing Read command. Without cancelling the operation, the read operation runs until finishing and then displaying the performance on the console as a test result.

When cancelling the operation, the read command still runs as the background process. So, the operation does not complete in the good sequence. It is recommended to power-off/on AB18/AB16 and then presses "RESET" button to restart system.

2.4 SMART Command

Select '3' to send SMART command to RAID0.

+++ SMART Command selected +++ Data output decoded from SMART ++ ch[0] << Health Status >> command (SSD Channel#0) Remaining Life : 97% << SMART Log Information >> Percentage Used 3% : 28 Degree Celsius Temperature : 41886 GB 0×00000000_00000000_0000000_04E03866 Total Data Read Total Data Read (Raw data) Total Data Written : : 52321 GB = Total Data Written (Raw data) : 0×0000000 0000000 0000000 0617306C Power On Cycles Power On Hours : 1431 Times 104 Hours 742 Times : Unsafe Shutdowns : Data output decoded from SMART ++ ch[1] << Health Status >> command (SSD Channel#1) Remaining Life : 98% << SMART Log Information >> 2% Percentage Úsed : : 28 Degree Celsius Temperature Total Data Read Total Data Read (Raw data) : 45640 GB : 0×00000000_00000000_0000000_05501CDD Total Data Written Total Data Written (Raw data) : 47900 GB ______ : 0x00000000_00000000_0000000_0593732A Power On Cycles Power On Hours : 1145 Times : 144 Hours : 580 Times Unsafe Shutdowns SMART Command Complete --- NVMeIP menu ---

Figure 2-8 Test result when running SMART command

After finishing the operation, SMART/Health Information (output from SMART command) of two SSDs are displayed, as shown in Figure 2-8. The console shows Health status and SMART log information. The Health status shows the remaining life of the SSD in percent unit which is calculated from Percentage Used in the SMART log information.

The SMART log information shows seven parameters as follow.

- 1) Percentage Used: Display SSD usage in percent unit.
- 2) Temperature in °C unit.
- 3) Total Data Read decoded as GB/TB unit. Additionally, raw data without decoding is displayed in 128-bit hexadecimal unit. The unit size of raw data is 512,000 bytes.
- 4) Total Data Written decoded as GB/TB unit. Additionally, raw data without decoding is displayed in 128-bit hexadecimal unit. The unit size of raw data is 512,000 bytes.
- 5) Power On Cycles: Display the number of power cycles.
- 6) Power On Hours: Display period of time in hours to show how long the SSD has been powered on.
- 7) Unsafe Shutdowns: Display the number of unsafe shutdowns of SSD

2.5 Flush Command

Select '4' to send Flush command to RAID0.

Flush Command Complete	Message after
	finishing the operation
NUMeIP menu	g operation
[0] · Identifu Command	
11 - Hulte O - Command	
LIJ : Write Command	
[2] : Read Command	
[3] : SMART Command	
41 · Fluch Command	
141 • Flush Command	
ISI • Shutdown Command	

Figure 2-9 Test result when running Flush command

"Flush Command Complete" is displayed after finishing Flush operation.

2.6 Shutdown Command

Select '5' to send Shutdown command to RAID0.

The confirmation message is displayed on the console. User enters 'y' or 'Y' to continue the operation or enters other keys to cancel the operation.

After finishing Shutdown operation, "Shutdown command is complete" is displayed on the console as the last message. Main menu is not displayed anymore. User needs to power off/on the test system to start new test operation.

3 Revision History

Revision	Date	Description
1.0	9-Oct-17	Initial version release
2.0	26-Jun-20	Remove FPGA setup from the document
2.1	30-Mar-21	Update SMART log information