
dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 1

NVMe-IP reference design manual
Rev1.1 16-Dec-16

1. NVMe

NVM Express (NVMe) defines the interface for the host controller to access solid state drives
(SSD) by PCI Express. NVM Express optimizes the process to issue command and completion by
using only 2 register writes for command issue/completion cycle. Also, NVMe can support parallel
operation by supporting up to 64K commands within single queue. So, performance for both
sequential and random access is improved.

In PCIe SSD market, user can find two standards, i.e. AHCI and NVMe. AHCI is the older
standard to provide the interface for SATA hard disk drives while NVMe is optimized for non
volatile memory like SSD. The comparison between both protocols in more details can be found
from “A Comparison of NVMe and AHCI” document.
https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

The list of NVMe storage devices can be found from http://www.nvmexpress.org/products/.

Generally, user needs to install NVMe driver to access NVMe SSD as shown in Figure 1. Physical
connector of NVMe SSD is PCIe type such as M.2 connector. NVMe-IP implements NVMe driver
and the task running on CPU by pure-hardware logic. So, CPU is not required to access NVMe
SSD when using NVMe-IP in FPGA board.

PCIe Phy

PCIe Link

PCIe Transport

NVMe Driver

CPU

NVMe-IP

PC system FPGA

NVMe SSDNVMe SSD

Avalon-MM PCIe

Hard IP

PCIe Hard IP Block

PHY IP Core

for PCIe

Figure 1 NVMe protocol layer

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 2

2. Overview

C
R

A

T
x
S

R
x
M

Figure 2 NVMe-IP Demo System

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 3

The reference design integrates NVMe-IP with simple logic to write and read data with NVMe
PCIe SSD at high-speed rate. CPU is additional designed for user interface through JTAG UART.
AvlBRAMIF is designed to convert Avalon bus interface from NVMe-IP to Block Memory interface
which is applied to be data buffer in the design.

For simple test, user can input the parameters such as start address, transfer size, and command
to NiosII command shell. The logic will decode all inputs and convert to be input value for NVMe-IP.
When the operation is completed, CPU will check time usage and then calculate to be write/read
performance of the SSD. To interface with CPU bus, Avl2Reg module is used to decode the
address and data from the bus to be command interface of dgIF typeS. Data interface of dgIF
typeS are connected to external FIFO and transferred to data buffer (Block Memory) through
AvlBRAMIF. NVMe-IP can connect to two buffer sizes, i.e. 256 Kbyte (Mode=1) or 512 Kbyte
(Mode=2). 512 Kbyte can achieve the better transfer performance. Test data for write test and for
data verification are generated by TestGen module. IdenCtrl/IdenName data are transferred to
IdenRAM, so CPU can decode SSD model name by using Identify data.

NVMe-IP and TestGen modules run in the same clock domain which is source from internal PLL of
Avalon-MM PCIe Hard IP. This clock is equal to 125 MHz when interfacing with PCIe Gen2 SSD
or 250 MHz when interfacing with PCIe Gen3 SSD.

User can download NVMe-IP datasheet and send request to evaluate the IP from our website,
http://www.dgway.com/NVMe-IP_A_E.html.
The real transfer performance in the demo depends on each NVMe PCIe SSD characteristic.

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 4

3. CPU and Peripheral

CPU

(NiosII)

Avalon-MM bus

M

S

Timer

S

JTAG UART

S

Avalon

Slave I/F

S

On-Chip

Memory

To Avl2Reg
Figure 3 CPU system in reference design

In reference design, CPU peripherals consist of JTAG UART for user interface, Timer for
performance measurement, and Memory for CPU firmware. Avalon Slave I/F is connected to
Avalon-MM bus for CPU controlling/monitoring test system. More details about memory map for
CPU to access Avalon-MM bus are follows.

Table 1 Register Map

Address Register Name Description
Rd/Wr (Label in the “nvmeiptest.c”)

BA+0x00 User Address (Low) Reg [31:0]: Input to be start sector address (UserAddr[31:0] for dgIF typeS)
Wr (USRADRL_REG)
BA+0x04 User Address (High) Reg [15:0]: Input to be start sector address (UserAddr[47:32] for dgIF typeS)
Wr (USRADRH_REG)
BA+0x08 User Length (Low) Reg [31:0]: Input to be transfer length in sector unit (UserLen[31:0] for dgIF typeS)
Wr (USRLENL_REG)
BA+0x0C User Length (High) Reg [15:0]: Input to be transfer length in sector unit (UserLen[47:32] for dgIF

typeS) Wr (USRLENH_REG)
BA+0x10 User Command Reg [1:0]: Input to be user command (UserCmd for dgIF typeS)

“00”-Identify device, “10”-Write SSD, “11”-Read SSD
When this register is written, the design will generate command request to
NVMe-IP to start new command operation.

Wr (USRCMD_REG)

BA+0x14 Test Pattern Reg [1:0]: Test pattern select
“00”-Increment, “01”-Decrement, “10”-All 0, “11”-All 1 Wr (PATTSEL_REG)

BA+0x18 User Reset Reg [0]: ‘1’-Reset test system, ‘0’-Release reset
Wr (USRRST_REG)

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 5

Address Register Name Description
Rd/Wr (Label in the “nvmeiptest.c”)

BA+0x100 User Status Reg [0]: UserBusy of dgIF typeS (‘0’: Idle, ‘1’: Busy)
[1]: UserError of dgIF typeS (‘0’: Normal, ‘1’: Error)
[2]: Data verification fail (‘0’: Normal, ‘1’: Error)
[4:3]: PCIe speed from IP
(“00”: No linkup, “01”: PCIe Gen1, “10”: PCIe Gen2, “11”: PCIe Gen3)

Rd (USRSTS_REG)

BA+0x104 Total disk size (Low) Reg [31:0]: Total capacity of SSD in sector unit (LBASize[31:0] from dgIF typeS)
Rd (LBASIZEL_REG)
BA+0x108 Total disk size (High) Reg [15:0]: Total capacity of SSD in sector unit (LBASize[47:32] from dgIF typeS)
Rd (LBASIZEH_REG)
BA+0x10C User Error Type Reg [31:0]: User error status (UserErrorType[31:0] from dgIF typeS)
Rd (USRERRTYPE_REG)
BA+0x114 Completion Status Reg [15:0]: Status from Admin completion (AdmCompStatus[15:0] from NVMe-IP)

[31:16]: Status from IO completion (IOCompStatus[15:0] from NVMe-IP) Rd (COMPSTS_REG)
BA+0x120 Data Failure Address(Low) Reg [31:0]: Latch value of failure address[31:0] in byte unit from read command
Rd (RDFAILNOL_REG)
BA+0x124 Data Failure Address(High) Reg [24:0]: Latch value of failure address [56:32] in byte unit from read command
Rd (RDFAILNOH_REG)
BA+0x130 Expected value Word0 Reg [31:0]: Latch value of expected data [31:0] from read command
Rd (EXPPATW0_REG)
BA+0x134 Expected value Word1 Reg [31:0]: Latch value of expected data [63:32] from read command
Rd (EXPPATW1_REG)
BA+0x138 Expected value Word2 Reg [31:0]: Latch value of expected data [95:64] from read command
Rd (EXPPATW2_REG)
BA+0x13C Expected value Word3 Reg [31:0]: Latch value of expected data [127:96] from read command
Rd (EXPPATW3_REG)
BA+0x140 Read value Word0 Reg [31:0]: Latch value of read data [31:0] from read command
Rd (RDPATW0_REG)
BA+0x144 Read value Word1 Reg [31:0]: Latch value of read data [63:32] from read command
Rd (RDPATW1_REG)
BA+0x148 Read value Word2 Reg [31:0]: Latch value of read data [95:64] from read command
Rd (RDPATW2_REG)
BA+0x14C Read value Word3 Reg [31:0]: Latch value of read data [127:96] from read command
Rd (RDPATW3_REG)
BA+0x150 Current test byte (Low) Reg [31:0]: Current test data size of TestGen module in byte unit (bit[31:0])
Rd (CURTESTSIZEL_REG)
BA+0x154 Current test byte (High) Reg [24:0]: Current test data size of TestGen module in byte unit (bit[56:32])
Rd (CURTESTSIZEH_REG)
BA+0x2000
– 0x2FFF

Identify Controller Data
(IDENCTRL_REG)

4Kbyte Identify Controller Data Structure

BA+0x3000
– 0x3FFF

Identify Namespace Data
(IDENNAME_REG)

4Kbyte Identify Namespace Data Structure

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 6

After initialization complete, CPU firmware in the demo will be in idle state to wait user command
input through NiosII command shell. The command can be Identify device, write, or read
command. The sequence of each command is follows.

For Identify device command,

1) Set USRCMD_REG=”00”. Test logic will generate command and request to NVMe-IP.
Busy flag (USRSTS_REG[0]) will change from ‘0’ to ‘1’.

2) CPU will wait until command complete or any error found by monitoring USRSTS_REG
value. Bit[0] will be cleared to ‘0’ when command is completed. Bit[1] will be asserted to ‘1’
when any error is detected. If any error is detected, error message will be displayed.

3) To be test result, SSD model name decoded from IDENCTRL_REG and SSD capacity
read from LBASIZEL/H_REG are displayed to the command shell.

For write/read command,

1) Receive start address, transfer length, and test pattern value from user through command
shell. If any input is invalid, the operation will be cancelled.

2) Get all inputs and set the value to USRADRL/H_REG, USRLENL/H_REG, and
USRCMD_REG (USRCMD_REG=”10” for write transfer, and “11” for read transfer).

3) Similar to step 2) in Identify device command. But USRSTS_REG[2] will be also monitored
for read command to confirm that read data is correct.

4) During running command, current transfer size will be displayed every second. Finally, test
performance will be displayed on the command shell when command is completed.

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 7

4. AvlBRAMIF

Address

Counter

AvwWriteData

BRAMWrAddr

BRAMWrEn

BRAMWrData

AdrFifo

(Fifo32x34)

CMP
AdrFfCntAvrWaitRequest

AvrRead
AdrFfWrEn

AdrFfWrData

AvrAddress

AvrBurstCount

DEC

AdrFfEmpty

AdrFfRdEn

AdrFfRdData

rRdTrans

FF

BRAMRdAddr

Block

Memory

(256 Kbyte/

512 Kbyte)

NVMe-IP

Avw -> BRAMWr

Avr <- BRAMRd

AvlBRAMIF

DEC

Data

Counter

Di

Cnt

LdAvwWrite

AvwAddress

Di

Cnt

Ld
AvwBurstCount rWrBurstCnt

rWrReqAck

FF

FF

AvwWaitRequest
‘0’

BRAMRdDataAvrReadData

Data

Counter

Address

Counter

Di

Cnt

Ld

Di

Cnt

Ld

rRdBurstCnt

FF
AvrReadDataValid

Figure 4 Logic design in AvlBRAMIF

Logic design in AvlBRMAIF can be split into two parts, i.e. Write part which controls data transfer
from Avw to Block Memory, and Read port which controls data transfer from Block Memory to Avr.

For write transfer, AvwWaitRequest is always set to ‘0’, so new data from NVMe-IP can be sent to
Block Memory without waiting state. Following Avalon standard, Start write address
(AvwAddress) and transfer length (AvwBurstCount) are loaded to internal counter at the 1st clock
of each burst transfer. AvwWrite is used to be counter enable for both Address and data counter.
Address counter is designed to be count-up to generate next write address of Block memory
during burst transfer. Data counter is count-down logic to check the end position of each transfer.
rWrReqAck is designed to assert to ‘1’ only the 1st clock of each burst, so it is used to be load
enable for both Address and Data counter. BRAMWrEn and BRAMWrData are fed directly from
AvwWrite and AvwWriteData.

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 8

For read transfer, AdrFifo is included to store start address and transfer length of each request
from NVMe-IP. If FIFO is not full, AvrWaitRequest will be equal to ‘0’ to receive the next request
from NVMe-IP. So, NVMe-IP can send many read requests without waiting data strobe of previous
request. FIFO depth is equal to 32 and implemented by the logic, not Block Memory. FIFO counter
is monitored to check almost full condition which will assert AvrWaitRequest to ‘1’ to hold the new
request.

For data transfer in read request, it will go to data transfer state if new request is available in
AdrFifo (AdrFfEmpty=’0’). AdrFfRdEn will be asserted for one clock to read address and size of
one request, and then rRdTrans will change to ‘1’ to start data transfer. The address of the request
will be loaded to Address counter while transfer length will be loaded to Data counter. Similar to
write transfer, Address counter is count-up mode for read address generating and Data counter is
count-down mode for data counting to check end of burst position. rRdTrans is de-asserted to ‘0’
at the end of burst transfer. So, rRdTrans is the main control signal which is used to be counter
enable and ReadDataValid. BRAMRdData is directly forwarded to be AvrReadData.

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 9

5. Avl2Reg

AsyncAvlReg

UserReg

AvalonMM

I/F

Avalon clock
PCIe clock

Register

I/F

NVMe-IP

dgIF typeS (CMD)

IdenRAM

TestGen

Control&Status

Figure 5 Avl2Reg interface

This module consists of two submodules, i.e. AsyncAvlReg and UserReg. AsyncAvlReg is
designed to convert Avalon interface to be register interface and convert clock domain from
Avalon clock to user clock system. UserReg module is designed to decode write/read address
which is mapped following Table 1. Transfer parameters such as transfer direction, size, and
address from user will be converted to be command interface of dgIF typeS for NVMe-IP and
converted to be control signal for TestGen module. During transferring, CPU can read the register
to check NVMe-IP status, TestGen result, and Identify device data.

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 10

6. TestGen

In this module, there are two operations, i.e. generating test data to WrFf port when user selects
write command, or verifying received data from RdFf port when user selects read command. The
details of logic design inside this module are displayed in Figure 6.

Figure 6 Logic design in TestGen

For write transfer, test pattern will be generated from Pattern counter module after WrPattStart is
asserted. WrFfAFull is monitored to confirm that WrFf still have free space to store new test data.
Test data pattern will be fed to WrFf when FIFO is available and stopped when total transfer size is
equal to set value from user. TrnLen is the input to show total transfer size in sector unit and used
to calculate the end value of test data pattern for stopping data generating. Four test patterns can
be selected through PattSel input, i.e. increment, decrement, all 0, and all 1 value.

For read transfer, read enable of RdFf is asserted when FIFO has available data, monitored by
RdFfEmpty signal. Test data generator is used to generate expected data to compare and verify
RdFfRdData value. If data is mismatched, Fail flag will be asserted.

dg_nvmeip_refdesign_alt_en.doc

2016/12/16 Page 11

7. Revision History

Revision Date Description

1.0 5-Aug-16 Initial Release
1.1 16-Dec-16 Change buffer from DDR to Block Memory

Copyright: 2016 Design Gateway Co,Ltd.

