
dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 1

raNVMe-IP for Gen4 reference design manual
Rev1.0 11-Jan-23

1 Overview

Figure 1-1 NVMe-IP for Gen4 and raNVMe-IP for Gen4 comparison

NVMe IP Core Series from Design Gateway are the host controller to access the NVMe SSD
without integrating CPU or external memory. Many IP solutions are provided to support the
different feature. Figure 1-1 shows the comparison of the features between NVMe-IP and
raNVMe-IP.

NVMe-IP is designed for the application that requires the best Write/Read performance of SSD
and the data can be stored in contiguous area. The transfer size that is requested by each
Write/Read command to NVMe-IP is flexible. The data interface is designed to be FIFO interface.
Therefore, user can set large size command to transfer data block to SSD continuously. However,
the NVMe-IP is not recommended to the application that stores the data in random addressing,
not sequential addressing. The IP is designed to achieve the best performance by using large
transfer size, not small transfer size.

raNVMe-IP is the NVMe host controller to support multiple Write or Read commands with 4 Kbyte
data size. Each 4 KB data can be stored at the different area of the SSD to support random
access. To support multiple commands, the command interface of raNVMe-IP is connected to
Cmd FIFO with fixed transfer size to be 4 KB. While the data interface is designed to be Stream
interface to transfer 4KB data block for each Write/Read command. Therefore, the raNVMe-IP is
fit to the application that uses one SSD to store many data types and each data type is mapped to
the different SSD address.

Both NVMe-IP and raNVMe-IP have one user interface. If the application requires multiple user
interface, please see more NVMe IP solutions from Design Gateway website.
https://dgway.com/NVMe-IP_X_E.html

https://dgway.com/NVMe-IP_X_E.html

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 2

2 Hardware overview

Figure 2-1 raNVMe-IP for Gen4 demo hardware

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 3

Following the function of each module, all hardware modules inside the test system are divided to
three types, i.e., test function (raTestGen), NVMe function (CtmRAM, IdenRAM, raNVMe-IP, and
PCIe block), and CPU system (CPU and LAxi2Reg).

The command request to raNVMe-IP (raNVMCValid) is created by two modules, depending on
the command type. When the command is Single mode (Identify, Shutdown, Flush, or SMART),
the command request is generated by CPU firmware via LAxi2Reg. When the command is
Multiple mode (Write or Read), the command request is generated by raTestGen module. Also,
raTestGen connects to the Data stream interface for transferring the data in Write or Read
command. While the received data returned from SSD in SMART command and Identify
command are stored to CtmRAM and IdenRAM, respectively.

CPU and LAxi2Reg are designed to interface with user via Serial interface. Therefore, Serial
console is applied to receive the test parameters from the user and display the current test status
to the user.

There are three clock domains displayed in Figure 2-1, i.e., CpuClk, UserClk, and PCIeClk.
CpuClk is the clock domain of CPU and its peripherals. This clock must be stable clock which may
be independent from the clock of other hardware. UserClk is the user clock domain for the user
interface of raNVMe-IP. According to raNVMe-IP datasheet, clock frequency of UserClk must be
more than or equal to PCIeClk. The reference design uses 275 MHz for UserClk. Finally, PCIeClk
is the clock output from PCIe hard IP to synchronous with data stream of 256-bit AXI4 stream bus.
When the PCIe hard IP is set to 4-lane PCIe Gen4, PCIeClk frequency is equal to 250 MHz.

More details of the hardware are described as follows.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 4

2.1 raTestGen

Figure 2-2 raTestGen Interface

raTestGen is the module to generate command request (raNVMCValid) when the user
command is Write or Read command. Also, test pattern for sending or verifying in Write or
Read command is created in this module. As shown in Figure 2-2, the logic inside raTestGen
is divided into two parts - Command and Data.

There are the FIFOs inside Command block and Data block - AdrFifo and HdrFifo to store the
address which is created by CPU and set via LAxi2Reg. Though 48-bit address is set, only
45-bit address (bit[47:3]) is stored to both AdrFifo and HdrFifo because bit[2:0] is always
equal to 000b to align to 4 KB unit. CPU needs to check the free space of the FIFO before
writing the new address, read by raPatAddrAvailCnt. The free space size (raPatAddrAvailCnt)
is calculated from the data counter of HdrFifo by CalUnit1. To achieve the best performance,
the command request and 4 KB data transmission of each command must be controlled
parallelly by Command block and Data block, respectively. Generally, there are many
commands that are requested to NVMe SSD via raNVMe-IP before starting transferring 4 KB
data. Therefore, HdrFifo is always read for operating data path after AdrFifo which is read for
generating command request. When calculating the free space size from the data counter of
FIFO, the free space size of HdrFifo is always less than AdrFifo. Therefore, it is safe for CPU
to check only the free space size of HdrFifo.

The FIFO depth is set to 1024 to be the buffer for storing many command requests from user,
created by CPU. If the amount of command in FIFO is much, CPU has more free time to
handle other tasks such as displaying the test progress on Serial console while raNVMe-IP is
still processing Write/Read command in the FIFO.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 5

Command
Command Control in Command block reads AdrFifo when the FIFO is not empty
(AdrFfEmpty=’0’) and raNVMe-IP is ready to receive new command (raNVMCReady=’1’).
AdrFIFO is FWFT type (First Word Fall Through), so the read data (raNVMAddr) is valid at the
same time as the read enable (AdrFfRdEn) asserted. Thus, raNVMCValid can be mapped
from AdrFfRdEn.

To get the best performance for using raNVMe-IP, the new command must be always ready in
AdrFifo. Therefore, the CPU firmware is optimized to support random address generating at
high-speed rate. However, raPatSlowDet is designed to indicate that AdrFifo has ever been
empty while running the latest Write/Read command. If raPatSlowDet is asserted to ‘1’, it
means the FIFO has ever been empty and the Write or Read performance cannot show
maximum performance because of CPU resource limitation.

The demo shows the Write/Read performance in IOPs unit on the console every second.
Therefore, the logic to show total number of completed command is designed. CalUnit2
creates raPatCompCnt which is equal to the total number of commands sent to raNVMe-IP
(counted by using AdrFfRdEn signal) subtracted by the number of incomplete commands of
raNVMe-IP (raNVMCCnt).

Data
Write Stream Control is the state machine for controlling the data transmission to raNVMe-IP
in Write command. One data is read by HdrFifo for generating 4 Kbyte data to raNVMe-IP in
each Write command request. The write data enable (raNVMwValid) is asserted to ‘1’ to write
the test data to raNVMe-IP. Before sending the data, it needs to check if raNVMe-IP is ready
to receive the write data. The details of the state machine are described as follows.
(1) stIdle: In Write command, it waits until HdrFifo has the data (HdrFfEmpty=’0’) for using as

64-bit header data of each 4 Kbyte data. Also, raNVMe-IP must be ready to receive the
data by checking raNVMwReady=’1’. After that, HdrFfRdEn is asserted to ‘1’ for one clock
cycle to read one data and then 4 Kbyte data is transferred in the next step.

(2) stGenWrData: This state is designed to transfer 4 Kbyte data by asserting raNVMwValid
to ‘1’ for 128 clock cycles in Write command. 7-bit counter (rDataCnt) counts the amount of
Write data or Read data in each command, controlled by raNVMwValid (Write command)
or raNVMrValid (Read command). After finishing transferring 128 data (128x256-bit),
continue to the next step.

(3) stDelay: This state adds one clock cycle latency time to wait raNVMwReady updated.
After that, it returns to stIdle.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 6

TestData Generator creates test data for sending to raNVMe-IP (raNVMwData) in Write
command or verifying with the received data from raNVMe-IP (rPattData) in Read command.
The test data of one command is 4-Kbyte size which consists of 64-bit header data and the
test pattern, selected by raPattSel. There are five test patterns - all zero, all one, 32-bit
incremental data, 32-bit decremental data, and LFSR. All zero and all one pattern are
designed by using constant value. While other patterns are designed by separating the data
into two parts i.e., 64-bit header and 4088-byte test data for creating unique test data in every
4-Kbyte data, as shown in Figure 2-3.

Figure 2-3 Test pattern format of 4096-byte data for Increment/Decrement/LFSR pattern

As shown in Figure 2-3, 64-bit header in DW#0 and DW#1 is created by using 45-bit address,
read from HdrFifo (raPatAddr[47:3]), and then appended zero value to convert the address
unit from 4-Kbyte to 512-byte. Remaining data (DW#2 – DW#1023) is the test pattern which
can be 32-bit incremental data, 32-bit decremental data, or 32-bit LFSR counter. 32-bit
incremental data is designed by using the up-counter. The decremental data can be designed
by connecting NOT logic to incremental data. The LFSR pattern uses LFSR counter which
has the equation: x^31 + x^21 + x + 1.

To implement 256-bit LFSR pattern, the data is split to be two sets of 128-bit data with
assigning different initial value. Each 128-bit data uses look-ahead technique to calculate four
32-bit LFSR data in one clock cycle. As shown Figure 2-4, the initial value of LFSR is
designed by mixing a part of lower 32-bit address (raPatAddr[31:0]) with a part of NOT logic of
32-bit address (raPatAddrB[31:0]).

Figure 2-4 256-bit LFSR Pattern in raTestGen

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 7

When the pattern is all zero or all one, there is no 64-bit header inserted to 4Kbyte data
In addition, the user can select test pattern to be all zero or all one data to show the best
performance of some SSDs which has data compression algorithm in SSD controller. When
the pattern is all zero or all one, there is no 64-bit header inserted to 4-Kbyte data. Some
SSDs can show the best performance of Write/Read command when the data is all zero/all
one value.

The read operation is controlled without the state machine. The logic is always ready to
receive the data from raNVMe-IP by de-asserting raNVMrPause to ‘0’ to get the best Read
performance. Therefore, raNVMrValid is always asserted to ‘1’ for 128 clock cycles
continuously for transferring 4 KB data of each Read command request. The first data of each
4KB data block is detected by monitoring the rising edge of raNVMrValid and HdrFfRdEn is
asserted to ‘1’ for reading the address of the Read command request. TestData Generator is
applied to generate the expected data for Read command operation. raPattFail is asserted to
‘1’ when the data verification is failed.

Timing diagram of raTestGen when running Write command and Read command are shown
in Figure 2-5 and Figure 2-6, respectively.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 8

Figure 2-5 Timing diagram of raTestGen when running Write command

(1) When running Write command (RdMode=’0’), HdrFfEmpty is read to check if the new

address is requested by CPU firmware. Also, raNVMwReady is read to check if
raNVMe-IP is ready to receive the data. After HdrFfEmpty=’0’ and raNVMwReady=’1’,
read enable of HdrFifo (HdrFfRdEn) is asserted to ‘1’ to read one address that is
requested by CPU for being the header of each 4 KB data block. After that, it enters to the
next state, stGenWrData.

(2) In stGenWrData state, raNVMwValid is asserted to ‘1’ for sending 128 data to raNVMe-IP
in Write command. DataCnt is increased to count the amount of transferred data to
raNVMe-IP.

(3) After finishing transferring 128 data, monitored by DataCnt, it changes to stDelay.
(4) raNVMwValid is de-asserted to ‘0’ when the state is stDelay. After that, the state enters to

stIdle for processing the next command, as described in step 1). After raNVMe-IP receives
the last data of each 4 KB, it will check the internal buffer status. raNVMwReady is
de-asserted to ‘0’ when the internal buffer of raNVMe-IP is full. Otherwise, raNVMwReady
is still asserted to ‘1’ to receive the next 4 KB data block.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 9

Figure 2-6 Timing diagram of raTestGen when running Read command

(1) To achieve the best Read performance, raNVMrPause is always de-asserted to ‘0’.

Therefore, 4Kbyte read data is returned by raNVMe-IP continuously by asserting
raNVMrValid to ‘1’ for 128 clock cycles. The received data is valid on raNVMrData when
raNVMrValid is asserted to ‘1’.

(2) When the first data of 4Kbyte data block is received, detected by the rising edge of
raNVMrValid, HdrFfRdEn is asserted to ‘1’ to read one address from HdrFifo. The address
is applied for creating the header data of 4Kbyte data block. The expected data
(De0-De127) is created by TestData Generator to compare with the received data
(raNVMrData). rRdValid, created by raNVMrValid with one clock cycle latency, is applied
to be the valid signal of Test pattern (rPattData). Also, it is applied to enable the data
verification function. To compare data with rPattData, the received data (raNVMrData)
must be fed to one Flip-Flop to add one-clock latency for synchronization with rPattData.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 10

2.2 NVMe

Figure 2-7 NVMe hardware

Figure 2-7 shows the interface of raNVMe-IP in the reference design. The user interface of
raNVMe-IP consists of Control interface and Data interface. The Control interface receives
command and the parameters from the user while Data interface transfers the data when the
command needs data transferring.

There are two types of the command, i.e., Single-mode command and Multiple-mode
command. The command value (raNVMCmd) is set by CPU firmware via LAxi2Reg, but the
command request (raNVMCValid) is controlled by two sources, i.e., UserNVMCValid and
raTestCValid. When the command is Single mode, the command request (UserNVMCValid) is
created by CPU firmware. When the command is Multiple mode, the command request
(raTestCValid) is created by raTestGen. SMART command and Flush command are the
Custom commands that need to set the additional parameters via Custom Cmd I/F. In the test
design, these parameters are also set by CPU firmware via LAxi2Reg module.

There are four commands which has data transferring by using its own interface.
- Custom Cmd I/F (RAM): Transfer SMART data to CtmRAM in SMART command.
- Iden I/F (RAM): Transfer Identify data to IdenRAM in Identify command.
- raNVMw I/F: Transfer Write data from raTestGen in Write command.
- raNVMr I/F: Transfer Read data from raNVMe-IP in Read command.

Though each command uses the different interface for transferring the data, every data
interface has the same data bus size, 256-bit data.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 11

2.2.1 raNVMe-IP for Gen4

The raNVMe-IP implements NVMe protocol of the host side to access one NVMe SSD.
Multiple Write or Read commands with random addressing can be sent to raNVMe-IP. Six
commands are supported by the IP, i.e., Write, Read, Identify, Shutdown, SMART, and Flush.
raNVMe-IP can connect with the PCIe hard IP directly. More details of raNVMe-IP are
described in datasheet.
https://dgway.com/products/IP/NVMe-IP/dg_ranvme_ip_data_sheet_g4_xilinx.pdf

2.2.2 Integrated Block for PCIe

This block is the hard IP integrated in some Xilinx FPGAs to support PCIe Gen4 speed. It
implements Physical, Data Link, and Transaction Layers of PCIe specification. More details
are described in Xilinx document.

PG213: UltraScale+ Devices Integrated Block for PCI Express
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentati
on

PG343: Versal ACAP Integrated Block for PCI Express
https://www.xilinx.com/products/intellectual-property/pcie-versal.html#documentation

The PCIe hard IP is created by using IP wizard. It is recommended for user to select “PCIe
Block Location” which is closed to the transceiver pin that connects to the SSD. Please see
more details about the location of PCIe hard IP and transceiver from following document.

UG575: UltraScale and UltraScale+ FPGAs Packaging and Pinouts
https://www.xilinx.com/support/documentation/user_guides/ug575-ultrascale-pkg-pinout.pdf

AM013: Versal ACAP Packaging and Pinouts
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pino
ut.pdf

The example of PCIe hard IP location on XCVC1902-VSVA2197 is shown in Figure 2-8.

Figure 2-8 PCIe Hard IP Pin location

https://dgway.com/products/IP/NVMe-IP/dg_ranvme_ip_data_sheet_g4_xilinx.pdf
https://dgway.com/products/IP/NVMe-IP/dg_ranvme_ip_data_sheet_g4_xilinx.pdf
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentation
https://www.xilinx.com/products/intellectual-property/pcie4-ultrascale-plus.html#documentation
https://www.xilinx.com/products/intellectual-property/pcie-versal.html#documentation
https://www.xilinx.com/support/documentation/user_guides/ug575-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pinout.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am013-versal-pkg-pinout.pdf

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 12

2.2.3 Dual port RAM

Two dual port RAMs, CtmRAM and IdenRAM, store the returned data from Identify command
and SMART command, respectively. IdenRAM has 8 Kbyte size to store 8 Kbyte data, output
from Identify command. raNVMe-IP and LAxi2Reg have the different data bus size, 256-bit on
raNVMe-IP but 32-bit on LAxi2Reg, so IdenRAM is asymmetric RAM that has the different
bus size for Write interface and Read interface. Also, raNVMe-IP has double word enable to
write only 32-bit data in some cases. The RAM setting on Xilinx IP tool supports the write byte
enable, so the small logic to convert double word enable to be write byte enable is designed
as shown in Figure 2-9.

Figure 2-9 Byte write enable conversion logic

Bit[0] of WrDWEn with WrEn signal are the inputs to AND logic. The output of AND logic is fed
to bit[3:0] of IdenRAM byte write enable. Bit[1], [2], …, [7] of WrDWEn are applied to be
bit[7:4], [11:8], …, [31:28] of IdenRAM write byte enable, respectively.

Comparing with IdenRAM, CtmRAM is implemented by true dual-port RAM with byte write
enable. The small logic to convert double word enable of Custom interface to be byte write
enable must be used, similar to IdenRAM. True dual-port RAM is used to support the
additional features when the customized Custom command needs the data input. To support
SMART command, using simple dual port RAM is enough. The data size returned from
SMART command is 512 bytes.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 13

2.3 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. CPU system integrates an additional peripheral to access raNVMe-IP
test logic by assigning a unique base address and the address range. Therefore, the
hardware logic must be designed to support AXI4-Lite bus standard for CPU writing and
reading. LAxi2Reg module is applied to connect with the CPU system via AXI4-Lite bus
standard, as shown in Figure 2-10.

Figure 2-10 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size, similar to
AXI4-Lite data bus size. Besides, AsyncAxiReg includes asynchronous logic to support clock
domain crossing between CpuClk and UserClk domain.

UserReg includes the register file of the parameters and the status signals of the modules in
raNVMe-IP Test system, i.e., CtmRAM, IdenRAM, raNVMe-IP, and raTestGen. More details of
AsyncAxiReg and UserReg are described as follows.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 14

2.3.1 AsyncAxiReg

Figure 2-11 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/d
esigning_a_custom_axi_slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. So, the
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-11. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface. While
the read data is returned from Register interface to AXI4-Lite through clock domain crossing
registers. In register interface, RegAddr is shared signal for write and read access, so it loads
the value from LAxiAw for write access or LAxiAr for read access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-12.

https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Slave-Peripheral/blob/master/designing_a_custom_axi_slave_rev1.pdf

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 15

Figure 2-12 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data is returned after receiving the read request. The slave detects RegRdReq
asserted to start the read transaction. In read operation, the address value (RegAddr)
does not change until RegRdValid is asserted to ‘1’. Therefore, the address can be used
for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 16

2.3.2 UserReg

Figure 2-13 UserReg Interface

The logic inside UserReg consists of Address decoder, RegFile, and RegMux. The address
decoder decodes the address which is requested from AsyncAxiReg and then selects the
active register for write or read transaction. The address range assigned in UserReg is split
into six areas, as shown in Figure 2-13.
1) 0x0000 – 0x00FF: mapped to set the command with the parameters of raNVMe-IP and

raTestGen. This area is write-access only.
2) 0x0200 – 0x02FF: mapped to set the parameters for Custom command interface of

raNVMe-IP. This area is write-access only.
3) 0x0100 – 0x01FF: mapped to read the status signals of raNVMe-IP and raTestGen. This

area is read-access only.
4) 0x0300 – 0x03FF: mapped to read the status of Custom command interface (raNVMe-IP).

This area is read-access only.
5) 0x2000 – 0x3FFF: mapped to Read data from IdenRAM. This area is read-access only.
6) 0x4000 – 0x5FFF: mapped to Write data and Read data with Custom command RAM

interface. This area supports write-access and read-access. The demo shows only read
access for running SMART command.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware that is
raNVMe-IP, raTestGen, IdenRAM, or CtmRAM. The register file inside UserReg is 32-bit bus
size. Therefore, write byte enable (RegWrByteEn) is not applied in the test system and the
CPU uses 32-bit pointer to set the hardware register.

To read register, multi-level multiplexers (mux) select the data to return to CPU by using the
address. The lower bit of RegAddr is fed to the submodule to select the active data from each
submodule. While the upper bit is applied in UserReg to select the returned data from each
submodule. Totally, the latency time of Read data is equal to three clock cycles. Therefore,
RegRdValid is created by RegRdReq with asserting three D Flip-flops. More details of the
address mapping within UserReg module are shown in Table 2-1.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 17

Table 2-1 Register Map

Address Register Name Description

(Label in the “ranvmeiptest.c”)

0x0000 – 0x00FF: Control signals of raNVMe-IP for Gen4 and TestGen (Write access only)

BA+0x0000 User Address (Low) Reg [31:0]: Input to be start address as 512-byte unit

(UserAddr[31:0] of raNVMe-IP for Write or Read command) (USRADRL_INTREG)

BA+0x0004 User Address (High) Reg [15:0]: Input to be start address as 512-byte unit

(UserAddr[47:32] of raNVMe-IP for Write or Read command)

When writing this register, 48-bit UserAddr is stored to FIFO within raTestGen.

(USRADRH_INTREG)

BA+0x0010 User Command Reg [2:0]: Input to be user command (UserCmd of raNVMe-IP)

000b: Identify, 001b: Shutdown, 010b: Write SSD, 011b: Read SSD,

100b: SMART, 110b: Flush, 101b/111b: Reserved

When Single-mode command (not Write/Read) is written to this register, the

new command request (raNVMCValid) is asserted to raNVMe-IP.

Otherwise, start flag for Write or Read command is asserted to raTestGen.

Multi-mode command request (raNVMCValid) is asserted by raTestGen.

(USRCMD_INTREG)

BA+0x0014 Test Pattern Reg [2:0]: Select test pattern.

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR.

[3]: Verification enable. ‘0’ -No verification, ‘1’-Enable verification.

(PATTSEL_INTREG)

BA+0x0020 NVMe Timeout Reg [31:0]: Timeout value of raNVMe-IP

(TimeOutSet[31:0] of raNVMe-IP) (NVMTIMEOUT_INTREG)

0x0100 – 0x01FF: Status signals of raNVMe-IP for Gen4 and TestGen (Read access only)

BA+0x0100 User Status Reg [0]: Mapped to raNVMBusy of raNVMe-IP. ‘0’: IP is Idle, ‘1’: IP is busy.

[1]: Mapped to raNVMError of raNVMe-IP. ‘0’: No error, ‘1’: Error is found.

[2]: Data verification fail. ‘0’: Normal, ‘1’: Error.

[11:4]: Mapped to raNVMCId of raNVMe-IP to show current command ID.

[19:12]: Mapped to raNVMDId of raNVMe-IP to show command ID which

currently transfers data on Data stream interface.

[28:20]: Mapped to raNVMCCnt of raNVMe-IP to show remaining command

count stored in raNVMe-IP when running Write or Read command.

[31]: Mapped to raNVMCReady of raNVMe-IP to show command ready.

(USRSTS_INTREG)

BA+0x0104 Total disk size (Low) Reg [31:0]: Mapped to LBASize[31:0] of raNVMe-IP

(LBASIZEL_INTREG)

BA+0x0108 Total disk size (High) Reg [15:0]: Mapped to LBASize[47:32] of raNVMe-IP

(LBASIZEH_INTREG)

BA+0x010C User Error Type Reg [31:0]: Mapped to UserErrorType[31:0] of raNVMe-IP to show error status

 (USRERRTYPE_INTREG)

BA+0x0110 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (‘0’: No linkup, ’1’: linkup)

[3:2]: Two lower bits to show PCIe link speed of PCIe hard IP. MSB is bit[16].

(000b: Not linkup, 001b: PCIe Gen1, 010b: PCIe Gen2,

 011b: PCIe Gen3, 111b: PCIe Gen4)

[7:4]: PCIe link width status from PCIe hard IP

(0001b: 1-lane, 0010b: 2-lane, 0100b: 4-lane, 1000b: 8-lane)

[13:8]: Current LTSSM State of PCIe hard IP. Please see more details of

LTSSM value in Integrated Block for PCIe datasheet.

[16]: The upper bit to show PCIe link speed of PCIe hard IP.

Two lower bits are bit[3:2].

(PCIESTS_INTREG)

BA+0x0114 NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of raNVMe-IP

 (NVMCAP_INTREG)

BA+0x0118 Admin Completion Status Reg [15:0]: Mapped to AdmCompStatus[15:0] of raNVMe-IP to show status of

Admin completion (ADMCOMPSTS_INTREG)

BA+0x011C IO Completion Status Reg [31:0]: Mapped to IOCompStatus[15:0] of raNVMe-IP to show status of I/O

completion. (IOCOMPSTS_INTREG)

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 18

Address Register Name Description

Rd/Wr (Label in the “ranvmeiptest.c”)

0x0100 – 0x01FF: Status signals of raNVMe-IP for Gen4 and TestGen (Read access only)

BA+0x0120 NVMe IP Test pin Reg [31:0]: Mapped to TestPin[31:0] of raNVMe-IP

(NVMTESTPIN_INTREG))

BA+0x0124 Test FIFO Remaining Count Reg [9:0]: Remaining size of FIFO in raTestGen (raPatAddrAvailCnt of

raTestGen) (TESTFFREMCNT_INTREG)

BA+0x0128 Slow Transfer detect Reg [0]: ‘1’-Slow transfer is found, ‘0’-Not detect.

It is asserted when CPU firmware sends the address for Write or Read

command at slower rate than raNVMe-IP processing. If this flag is asserted

to ‘1’, SSD performance result is limited by CPU task.

This flag is auto-cleared when CPU sets USRCMD_INTREG=Write or

Read command.

(SLOWDET_INTREG)

BA+0x0140 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure data in Read command

(RDFAILNOL_INTREG)

BA+0x0144 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure data in Read

command (RDFAILNOH_INTREG)

BA+0x0148 Completed Count (Low) Reg [31:0]: Bit[31:0] of the number of completed commands in raTestGen

(raPatCompCnt of raTestGen) (CMDCMPCNTL_INTREG)

BA+0x014C Completed Count (High) Reg [12:0]: Bit[44:32] of the number of completed commands in raTestGen

(raPatCompCnt of raTestGen) (CMDCMPCNTH_INTREG)

BA+0x0180-

BA+0x019F

Expected value Word0-7 Reg 256-bit of the expected data at the 1st failure data in Read command

0x0180: Bit[31:0], 0x0184[31:0]: Bit[63:32], …, 0x019C[31:0]: Bit[255:224] (EXPPATW0-W7_INTREG)

BA+0x01C0-

BA+0x01DF

Read value Word0-7 Reg 256-bit of the read data at the 1st failure data in Read command

0x01C0: Bit[31:0], 0x01C4[31:0]: Bit[63:32], …, 0x01DC[31:0]: Bit[255:224] (RDPATW0-W7_INTREG)

Other interfaces (Custom command of raNVMe-IP for Gen4, IdenRAM, and Custom RAM)

BA+0x0200-

BA+0x023F

Custom Submission

Queue Reg

[31:0]: Submission queue entry of SMART and Flush command.

Input to be CtmSubmDW0-DW15 of raNVMe-IP.

0x200: DW0, 0x204: DW1, …, 0x23C: DW15 Wr (CTMSUBMQ_STRUCT)

BA+0x0300-

BA+0x030F

Custom Completion

Queue Reg

[31:0]: CtmCompDW0-DW3 output from raNVMe-IP.

0x300: DW0, 0x304: DW1, …, 0x30C: DW3

Rd (CTMCOMPQ_STRUCT)

BA+0x0800 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of raNVMe-IP

Rd (IPVERSION_INTREG)

BA+0x2000-

BA+0x2FFF

Identify Controller Data

4Kbyte Identify Controller Data Structure

Rd (IDENCTRL_CHARREG)

BA+0x3000-

BA+0x3FFF

Identify Namespace Data

4Kbyte Identify Namespace Data Structure

Rd (IDENNAME_CHARREG)

BA+0x4000-

BA+0x5FFF

Custom command RAM

Connect to 8K byte CtmRAM interface.

Used to store 512-byte data output from SMART Command.

Wr/Rd (CTMRAM_CHARREG)

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 19

3 CPU Firmware

3.1 Test firmware (ranvmeiptest.c)

After system boot-up, CPU starts the initialization sequence as follows.
1) CPU initializes UART and Timer parameters.
2) CPU waits until PCIe connection links up (PCIESTS_INTREG[0]=’1’).
3) CPU waits until raNVMe-IP completes initialization process (USRSTS_INTREG[0]=’0’). If

some errors are found, the process stops with displaying the error message.
4) CPU displays PCIe link status (the number of PCIe lanes and the PCIe speed) by reading

PCIESTS_INTREG[16:2].
5) CPU displays the main menu. There are six menus for running six commands of

raNVMe-IP, i.e., Identify, Write, Read, SMART, Flush, and Shutdown.
More details for operating each command in CPU firmware are described as follows.

3.1.1 Identify Command

The sequence of the firmware when user selects Identify command is below.
1) Set USRCMD_INTREG=000b to send Identify command request to raNVMe-IP. After that,

busy flag (USRSTS_INTREG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. After that, the data from
Identify command of raNVMe-IP is stored in IdenRAM.
Bit[1] is asserted to ‘1’ when some errors are detected. The error message is displayed on
the console to show the error details, decoded from USRERRTYPE_INTREG[31:0]. Finally,
the process is stopped.

3) After busy flag (USRSTS_INTREG[0]) is de-asserted to ‘0’, CPU displays some
information decoded from IdenRAM (IDENCTRL_CHARREG) such as SSD model name
and the information from raNVMe-IP output such as SSD capacity (LBASIZEH/L_INTREG).
Finally, CPU prepares the polynomial for creating LFSR test pattern following SSD capacity.
LFSR test pattern is applied to generate random address for Write command test or Read
command test.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 20

3.1.2 Write/Read Command

The sequence of the firmware when user selects Write/Read command is below.
1) Receive transfer mode, data verification (for Read command), start address, transfer

length, and test pattern from Serial console. If some inputs are invalid, the operation is
cancelled.
Note: Start address and transfer length must be aligned to 8.

2) Get all inputs and set test pattern to PATTSEL_INTREG.
3) Set USRCMD_INTREG[2:0]= 010b for Write command or 011b for Read command.
4) Calculate the maximum address request that can be created. Compare the remaining

buffer size to store the address request in the Test logic (TESTFFREMCNT_INTREG[9:0])
with the remaining user request length. The firmware selects the less value.

5) Repeat this step to send the address to the hardware by setting
USRADRL/H_INTREG[31:0] until finishing sending total request. The address value is
calculated by using the following rules.
a. If this is the first value of the test, use the Start address received from the user.
b. If transfer mode is Sequential mode, the next address is increased to be the next 4

Kbyte address.
c. If transfer mode is Random mode, calculate the next address by using LFSR equation

until the address is not more than SSD capacity.
6) CPU reads error status by reading USRSTS_INTREG[2:1]. Display the error message

when some bits are asserted to ‘1’.

Bit[1] is asserted when IP error is detected. After that, error message is displayed on the
console to show the error details. Finally, the process is hanged up.
Bit[2] is asserted when data verification is enabled in Read command and data failure is
found. After that, the verification error message is displayed. However, CPU is still running
until the operation is done or user inputs any keys to cancel operation.

While the command is running, the current transfer size (CMDCMPCNTL/H_INTREG) is
read and displayed as percentage every second. Go to the next step (step 7) if remaining
total transfer size is equal to 0. Otherwise, return to step 4) to calculate the transfer size for
the next loop.

7) CPU waits until raNVMe-IP finishes the operation (USRSTS_INTREG[0]=’0’). Display the
error message if some errors are found.

8) Read SLOWDET_INTREG. If the flag is asserted, print the warning message about the
performance limitation by CPU firmware. Finally, display the test results on the console, i.e.,
total time usage, total transfer size, and transfer speed.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 21

3.1.3 SMART Command

The sequence of the firmware when user selects SMART command is below.
1) Set 16-Dword of Submission queue entry (CTMSUBMQ_STRUCT) to be SMART

command value.
2) Set USRCMD_INTREG[2:0]=100b to send SMART command request to raNVMe-IP. After

that, busy flag (USRSTS_INTREG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. Next, the data from
SMART command of raNVMe-IP is stored in CtmRAM.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details, decoded from USRERRTYPE_INTREG[31:0]. Finally,
the process is stopped.

4) After busy flag (USRSTS_INTREG[0]) is de-asserted to ‘0’, CPU displays the information
which is decoded from CtmRAM (CTMRAM_CHARREG) such as Remaining Life,
Percentage Used, Temperature, Total Data Read, Total Data Written, Power On Cycles,
Power On Hours, and Number of Unsafe Shutdown.

More details of SMART log are described in NVM Express Specification.
https://nvmexpress.org/resources/specifications/

3.1.4 Flush Command

The sequence of the firmware when user selects Flush command is below.
1) Set 16-Dword of Submission queue entry (CTMSUBMQ_ STRUCT) to be Flush command

value.
2) Set USRCMD_INTREG[2:0]=110b to send Flush command request of raNVMe-IP. After

that, busy flag (USRSTS_INTREG[0]) changes from ‘0’ to ‘1’.
3) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. Next, the CPU returns to
the main menu.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details, decoded from USRERRTYPE_INTREG[31:0]. Finally,
the process is stopped.

https://nvmexpress.org/resources/specifications/

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 22

3.1.5 Shutdown Command

The sequence of the firmware when user selects Shutdown command is below.
1) Set USRCMD_INTREG[2:0]=001b to send Shutdown command request of raNVMe-IP.

After that, busy flag (USRSTS_INTREG[0]) changes from ‘0’ to ‘1’.
2) CPU waits until the operation is completed or some errors are found by monitoring

USRSTS_INTREG[1:0].

Bit[0] is de-asserted to ‘0’ after finishing operating the command. After that, the CPU goes
to the next step.
Bit[1] is asserted when some errors are detected. The error message is displayed on the
console to show the error details, decoded from USRERRTYPE_INTREG[31:0]. Finally,
the process is stopped.

3) After Shutdown command is done, the SSD and raNVMe-IP change to inactive status. The
CPU cannot receive the new command from user and the user must power off the test
system.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 23

3.2 Function list in Test firmware

unsigned int cal_lfsr(unsigned int curaddr)

Parameters curaddr: The latest value of 32-bit address
Return value The next value of 32-bit address after finishing LFSR calcalation

Description Calculate LFSR value in Write or Read command when running random
access mode.

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in the raNVMe-IP

Description Run SMART command or Flush command, following in topic 3.1.3
(SMART Command) and 3.1.4 (Flush Command).

int get_param(unsigned int user_cmd, userin_struct* userin)

Parameters user_cmd: 2-Write command, 3-Read command
userin: Three inputs from user, i.e., start address, total length in 512-byte
unit, and test pattern

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Run Identify command, following in topic 3.1.1 (Identify Command).

int setctm_flush(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the raNVMe-IP

Description Set Flush command to CTMSUBMQ_STRUCT and call exec_ctm
function to operate Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the raNVMe-IP

Description Set SMART command to CTMSUBMQ_STRUCT and call exec_ctm
function to operate SMART command. Finally, decode and display
SMART information on the console

void show_error(void)

Parameters None

Return value None

Description Read USRERRTYPE_INTREG, decode the error flag and display error
message following the error flag.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 24

void show_pciestat(void)

Parameters None

Return value None

Description Read PCIESTS_INTREG until the read value from two read times is
stable. After that, display the read value on the console.

void show_result(void)

Parameters None

Return value None

Description Print total size by reading CMDCMPCNTL/H_INTREG and then calling
show_size function. After that, calculate total time usage from global
parameters (timer_val and timer_upper_val) and display in usec, msec,
or sec unit. Finally, transfer performance is calculated and displayed on
MB/s unit and IOPS unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in MByte, GByte, or TByte unit

void show_smart_hex16byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: pointer of 16-byte SMART data

Return value None

Description Display 16-byte SMART data as hexadecimal unit.

void show_smart_int8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: pointer of 8-byte SMART data

Return value None

Description When the input value is less than 4 billion (32-bit), display 8-byte SMART
data as decimal unit. Otherwise, display overflow message.

void show_smart_size8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: pointer of 8-byte SMART data

Return value None

Description Display 8-byte SMART data as GB or TB unit. When the input value is
more than limit (500 PB), the overflow message is displayed instead.

void show_vererr(void)

Parameters None

Return value None

Description Read RDFAILNOL/H_INTREG (error byte address),
EXPPATW0-W3_INTREG (expected value), and
RDPATW0-W3_INTREG (read value) to display verification error details
on the console.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 25

void shutdown_dev(void)

Parameters None
Return value None

Description Run Shutdown command, following in topic 3.1.5 (Shutdown Command)

int wrrd_dev(unsigned int user_cmd)

Parameters user_cmd: 2-Write command, 3-Read command
Return value 0: No error, -1: Receive invalid input or some errors are found.

Description Run Write command or Read command, following in topic 3.1.2
(Write/Read Command). Call wrrd_seq() function when running in
sequential mode or wrrd_rand() function when running in random mode.

void wrrd_rand(unsigned int user_cmd, userin_struct* userin)

Parameters user_cmd: 2-Write command, 3-Read command
userin: Three inputs from user, i.e., start address, total length in 512-byte
unit and test pattern

Return value None

Description Run Write command or Read command with 32-bit address calculation
in 4 KB unit by using random mode.

void wrrd_seq(unsigned int user_cmd, userin_struct* userin)

Parameters user_cmd: 2-Write command, 3-Read command
userin: Three inputs from user, i.e., start address, total length in 512-byte
unit and test pattern

Return value None

Description Run Write command or Read command with 48-bit address calculation
in 512-byte unit by using sequential mode.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 26

4 Example Test Result

The test results when Command Depth of raNVMe-IP for Gen4 is configured to be 1 Mbyte. The
test environment uses 800 GB Intel Optane P5800X and VCK190 board (PCIe Gen4) for running
by Random access and Sequential access. The result is shown in Figure 4-1.

Figure 4-1 Test Performance of raNVMe-IP for Gen4 demo

The random access uses 4 KB size per command. The result shows 1,410,000 IOPS (5,776
MB/s) for Write command and 1,344,000 IOPS (5,507 MB/s) for Read command. While
sequential mode shows almost same performance as random access – 5,862 MB/s for Write
command and 5,507 MB/s for Read command. This SSD shows the good performance for both
random access and sequential access. However, many SSDs show the less performance when
running Random access, comparing to sequential access. Also, many SSDs show the better
performance when Command Depth of raNVMe-IP is larger.

dg_ranvmeip_refdesign_g4_xilinx.doc

2023/01/11 Page 27

5 Revision History

Revision Date Description

1.0 11-Jan-23 Initial Release

Copyright: 2023 Design Gateway Co,Ltd.

