
dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 1

rmNVMe-IP for Gen4 reference design manual
Rev1.0 28-Jun-23

1 Overview ... 2
2 Hardware overview ... 4

2.1 WrTestGen .. 6
2.2 RdTestGen .. 13
2.3 NVMe .. 16

2.3.1 rmNVMe-IP .. 17
2.3.2 PCIe Hard IP (P-Tile/F-Tile Avalon-ST Intel FPGA for PCIe) 17

2.3.3 Two-port RAM .. 18

2.4 CPU and Peripherals .. 19

2.4.1 AsyncAvlReg .. 20
2.4.2 UserReg ... 22

3 CPU Firmware .. 26
3.1 Test firmware (rmnvmeiptest.c) ... 26

3.1.1 Identify Command .. 26
3.1.2 Write/Read Command .. 27

3.1.3 SMART Command ... 28
3.1.4 Flush Command ... 28
3.1.5 Shutdown Command .. 29

3.2 Function list in Test firmware ... 30
4 Example Test Result ... 33

5 Revision History .. 35

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 2

1 Overview

Design Gateway’s NVMe IP Core Series offers IP solutions for accessing an NVMe SSD without
the need for a CPU or external memory integration. Each IP core within the series comes with
distinct key features to match specific user applications.

Figure 1-1 raNVMe-IP and muNVMe-IP features

raNVMe-IP is a specialized IP designed for supporting random access. It includes an internal
Command Buffer, which can store up to 256 Write or Read commands with a data size of 4 Kbytes
each. This feature enables users to send multiple Write or Read requests without waiting for the
completion of the ongoing operation. However, it should be noted that the commands stored in the
Command Buffer must be the same type (write or read), and mixed Write-Read operations are not
supported.

As depicted in Figure 1-1, the data stored in the SSD using the raNVMe-IP can be stored at
random address as each command has 4Kbyte data size. This makes the raNVMe-IP well-suited
for applications that involve storing multiple small-sized data types at different locations within the
same SSD. However, it is important to note that this IP Core offers a single user interface,
requiring it to become idle before switching between command types (transitioning from Write to
Read or vice versa).

Ref: raNVMe-IP for Gen3 reference design document
https://dgway.com/products/IP/NVMe-IP/dg_ranvmeip_refdesign_intel/

https://dgway.com/products/IP/NVMe-IP/dg_ranvmeip_refdesign_intel/

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 3

Design Gateway introduces the muNVMe-IP, which is specifically designed to support multi-user
systems. As illustrated in Figure 1-1, two users can connect to the muNVMe-IP simultaneously
and send commands to access the same SSD. The commands can be the same or different types,
and the transfer size for each command can be configured to a large value, ensuring high
performance. This feature makes the muNVMe-IP ideal for applications that require storing data
in contiguous areas or sequential access.

Ref: muNVMe-IP for Gen4 reference design document
https://dgway.com/products/IP/NVMe-IP/dg_munvmeip_refdesign_g4_intel/

Figure 1-2 rmNVMe-IP features

The new solution offered by Design Gateway is the rmNVMe-IP (random access multiple-user
NVMe-IP), which combines the key features of both raNVMe-IP and muNVMe-IP. The
rmNVMe-IP provides random access capabilities and multiple-user interfaces for writing and
reading from an NVMe SSD simultaneously. It includes two user interfaces, for writing and
reading separately. Each interface supports up to 256 command requests with 4Kbyte data size
per command.

https://dgway.com/products/IP/NVMe-IP/dg_munvmeip_refdesign_g4_intel/

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 4

2 Hardware overview

Figure 2-1 rmNVMe-IP for Gen4 demo hardware

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 5

The hardware modules in the test system are divided into three parts: test function (RdTestGen
and WrTestGen), NVMe function (CtmRAM, IdenRAM, rmNVMe-IP, and PCIe block), and CPU
system (CPU and Avl2Reg).

The RdTestGen connects to the User#0 I/F of rmNVMe-IP. It is responsible for generating Read
command request and verifying the Read data received from rmNVMe-IP. Conversely, the
WrTestGen connects to the User#1 I/F of rmNVMe-IP and is responsible for generating Write
command request and sending Write data to rmNVMe-IP.

The NVMe function consists of the rmNVMe-IP and the PCIe hard IP (P-Tile/F-Tile Avalon-ST
Intel FPGA for PCIe), which allows direct access to an NVMe SSD without a PCIe switch. The
generation of command requests to the User#0 I/F of the rmNVMe-IP (U0CValid) depends on the
type of command. Single mode commands (Identify, Shutdown, Flush, or SMART) are generated
by the CPU through the Avl2Reg module. On the other hand, multi-mode command requests
(Read), are generated by WrTestGen. The data interface for both Custom and Identify commands
is connected to RAMs that are accessible by the CPU.

The CPU connects to the Avl2Reg module to interface with the NVMe test logics. Integrating the
CPU into the test system allows users to set test parameters and monitor the test status via JTAG
UART. The CPU also facilitates the execution of multiple test cases to verify the functionality of
the IP. The default firmware for the CPU includes functions for executing NVMe commands using
rmNVMe-IP.

Figure 2-1 shows three clock domains: CpuClk, UserClk, and PCIeClk. CpuClk is the clock
domain for the CPU and its peripherals, and it must be a stable clock independent from other
hardware. The UserClk is the user clock domain utilized for the operation of the rmNVMe-IP, RAM,
and TestGen. As specified in the rmNVMe-IP datasheet, the clock frequency of UserClk must be
greater than or equal to a half of the PCIeClk frequency. Finally, the PCIeClk is the clock output
generated by the PCIe hard IP to synchronize with the data stream of the Avalon-ST interface. In
this reference design, the interface is configured as four of 4-lane PCIe Gen4 at 500 MHz.
Therefore, PCIeClk is set to 500 MHz while UserClk is set to 275 MHz (> 250 MHz).

Further details about the hardware are described below.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 6

2.1 WrTestGen

Figure 2-2 WrTestGen Block diagram

The WrTestGen module connects to rmNVMe-IP for generating Write command request and
sending Write data stream via User#1 I/F. In Figure 2-2, the logic inside WrTestGen is
divided into three groups – Address, Command, and Data. The Address block generates
address values for multiple Write command requests, which are then transferred to
rmNVMe-IP through Write Command I/F, handle by the Command block. Concurrently, the
data block prepares the 4KB Write data of each Write command and transfers it to
rmNVMe-IP via the Write Data Stream I/F. These three logic groups operate in parallel, so
the Command and Data blocks include AdrFIFO and HdrFIFO to store the pre-generated
addresses from the Address block.

The Address block receives the start address from user, generates address for each
command, and stores it in the Command module (AdrFIFO) and Data module (HdrFIFO).
Only 45-bit Address (bit[47:3]) is stored in both FIFOs because bit[2:0] is always set to 000b
to align with 4Kbyte units. The generated addresses can be either sequential or random,
based on the user’s parameter (TrnMode). A state machine (AState) has been implemented
to manage the operation flow and control the complexity of the Address block.

The Command block sends a Write command to rmNVMe-IP by setting CmdValid to 1b,
along with CmdAddr (the output of AdrFIFO). If the internal Command buffer of rmNVMe-IP
is available, CmdReady is asserted to 1b to accept the request. If rmNVMe-IP is unable to
receive additional commands, CmdReady will become de-asserted.

Lastly, the Data block generates 4Kbyte Write data for each command by utilizing the
address from the HdrFIFO to construct the header of each 4Kbyte Write data. The remaining
4Kbyte Write data is produced by the DataGen component within Data block. Additionally,
the Write data transfer rate can be adjusted through the user’s parameter (TrnRate), which
affects the assertion and de-assertion of WrValid (the data flow control signals of
rmNVMe-IP).

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 7

More details of each logic group in WrTestGen are described as follows.

Figure 2-3 Logic diagram of Address block

Address
When user asserts TrnStart pulse for Write command, four parameters are loaded from
Avl2Reg, i.e., the start address in 512-byte units (TrnAddr), the amount of transferred data in
512-byte units (TrnLen), the address mode (TrnMode: Random or Sequential), and the total
disk capacity (LBASize). The operation of Address block is managed by a state machine,
which will be discussed in further detail.

(1) stAIdle: This state is designed to wait for TrnStart pulse asserted when the new Write

command is requested. The internal logic is initialized by the input parameters. Len
Counter loads total transfer size from TrnLen, while the AddrGen and Random AddrGen
load the initial address from TrnAddr (bit[2:0] are ignored for 4Kbyte unit address). After
that, it transits to the next state: stAWrFf.

(2) stAWrFf: This state checks the FIFO full status. If both AdrFIFO and HdrFIFO are not full,
the new address, rCurAddr (output from AddrGen), is written to both FIFOs by asserting
rFifoWrEn to 1b. After that, the next state is determined based on the following
conditions.
a. If the current address is the final address (indicated by the remaining transfer length or

rRemALen being equal to 1), the state returns to stAIdle (1).
b. If the current address is not the final address, the next state depends on the address

mode (TrnMode). For sequential access (TrnMode=0b), it transits to stAInc, while for
random access (TrnMode=1b), it transits to stARand1.

(3) stAInc: This 1-clock state generates the next address for sequential access by
up-counting rCurAddr value using AddrGen. Afterward, the state returns to stAWrFf(2).

(4) stARand: The 1-clock state is designed to generate the next address for random access.
It utilizes the Polynomial Selector and Random AddrGen in this process, and the output
value, rRandAddr, will be validated in the subsequent state, stChkARand.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 8

(5) stChkARand: In this state, the random address (rRandAddr) is verified. If rRandAddr

value exceeds the disk capacity (LBASize – 1), the state returns to stARand to
re-generate the new address. Conversely, if the value is within an acceptable range, the
state transits to stAWrFf to store the address result to both AdrFIFO and HdrFIFO.

The busy flag of the WrTestGen (TrnBusy) is de-asserted to 0b when all subblock operations
have been finished. This occurs when the state within the Address block returns to stIdle,
both the AdrFIFO and HdrFIFO are empty, and the CmdBusy of rmNVMe-IP is de-asserted.
The Len Counter is a counter that decrements to indicate the number of remaining
addresses for the 4KB command request to be generated. The output signal, rARemLen, is
fed to the state machine to verify that the final address is completely generated. The key
function of the Address block is how to generate sequential address or random address
based on TrnMode setting. This function is performed by three components, i.e., Polynomial
Selector, Random AddrGen, and AddrGen.

The random value is generated through Galois LFSR, which uses XNOR operation to
overcome the issue of a start value being set to all zeros. Bit rotation is performed using a
right-shift operation. The degree of polynomial is determined by the disk capacity to
minimize the chance of the output value exceeding it. We apply LFSR-4, as mentioned in the
following website, is applied.
https://web.archive.org/web/20161007061934/http://courses.cse.tamu.edu/csce680/walker
/lfsr_table.pdf

Table 2-1 Implemented LFSR polynomial and pre-generated parameters

Disk size Polynomial rMSBOne (hex) rPolynm (hex)

≥8TB x31+x29+x25+x24 8000 0000h A300_0000h

8TB> and >4TB x30+x29+x28+x27 4000 0000h 7800_0000h

4TB> and >2TB x29+x28+x25+x23 2000 0000h 3280_0000h

2TB> and >1TB x28+x27+x26+x24 1000 0000h 1D00_0000h

1TB> and >512GB x27+x26+x23+x21 800 0000h 0CA0_0000h

512GB> and >256GB x26+x25+x24+x21 400 0000h 0720_0000h

≤256GB x25+x24+x23+x19 200 0000h 0388_0000h

To support multiple polynomials, two constant values, as listed in Table 2-1, are
pre-generated by the Polynomial Selector. These values are inputted into the Random
AddrGen to perform OR and XOR operations with the current address value to generate the
next address value. The process for generating a random address is as follows.

(1) Read the LSB of the current address value for the next operation.
(2) Right-shift the current address value and set the MSB to 1 by using OR with rMSBOne.
(3) If LSB result from step (1) is 1b, the next address is equal to the result from step (2).

If LSB is 0b, the next address is determined by XOR-ing the result from step (2) with
rPolynm.

(4) The next address (rRanAddr) is inputted to the State machine to check if it exceeds the
disk capacity. If it is within limit, it is fed into AddrGen for the next step. In case the result
exceeds the disk capacity, the random value is re-generated.

The AddrGen determines the next address value (rCurAddr), either as a random value
(rRanAddr) or as an incremental value (rCurAddr + 1). The address result is finally written
into AdrFIFO and HdrFIFO.

https://web.archive.org/web/20161007061934/http:/courses.cse.tamu.edu/csce680/walker/lfsr_table.pdf
https://web.archive.org/web/20161007061934/http:/courses.cse.tamu.edu/csce680/walker/lfsr_table.pdf

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 9

Figure 2-4 Logic diagram of Command block

Command
The AdrFIFO is read when the FIFO is not empty (AdrFfEmpty=0b) and the rmNVMe-IP is
ready to receive new command (CmdReady=1b). The AdrFIFO is Show-ahead type,
providing the read data (CmdAddr) at the same time as the read enable signal
(wAdrFfRdAck) being asserted. As a result, the CmdValid can be derived from
wAdrFfRdAck.

To display the write performance in IOPs, a logic has been designed to count the total
number of completed commands. The CmdCal block calculates the CmdCompCnt, which
represents the total number of commands sent to rmNVMe-IP (counted by the
wAdrFfRdAck signal) minus the number of incomplete commands at the rmNVMe-IP
(CmdCnt).

Figure 2-5 Logic diagram of Data block

Data
The Write Stream Control manages the core functionality of the Data block, responsible for
transferring 4KB Write data to the rmNVMe-IP. The header for each 4KB data segment is
read from the HdrFIFO, while the rest of the data is generated by the TestData Generator.
The maximum data rate for the data stream can be configured using the TrnRate signal, with
the TrnRateCtrl managing the duty cycle to set the rTrnRateEn signal to either 1b or 0b,
thereby limiting the maximum Write data rate. The WrValid signal can only be set to 1b when
the rTrnRateEn is set to 1b. The Data Counter is designed to check the total amount of Write
data that has been transferred to the rmNVMe-IP.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 10

The Write Stream Control initiates the transfer of 4KB Write data by waiting until the data is
available in the HdrFIFO (HdrFfEmpty=0b) and rmNVMe-IP has space to receive new data
(WrReady=1b). Once the conditions are met, the rWrTrn is set to 1b to initiate the transfer.
For every 4KB data transfer, the rHdrFfRdAck signal is set to 1b to read a single data
(HdrFfRdData) from the HdrFIFO, which is then passed to the TestData Generator.

The WrValid signal remains asserted for 128 clock cycles to transfer 4 KB data. However,
the signal may not be asserted continuously, depending on the TrnRate parameter which
determines the transfer rate of the Data Stream I/F. The RateCal logic asserts the
rTrnRateEn to 1b for the specified number of clock cycles based on “TrnRate” clock cycles,
and then de-asserts it to 0b for the remaining cycles in every 100 clock cycles.

A 7-bit counter (rDataCnt) is applied to track the completion of each 4KB data transfer and to
create the Write data. After finishing transferring each 4KB data segment, a pause of two
clock cycles is introduced to allow time for WrReady to be updated from the pipeline
processing.

The TestData Generator generates the test data (WrData) to be sent to rmNVMe-IP in the
Write command. Each 4 KB data segment consists of a 64-bit header data and the test
pattern, selected by the PattSel parameter.

Figure 2-6 Test pattern format of 4096-byte data for Increment/Decrement/LFSR pattern

Figure 2-6 demonstrates the generation of the 64-bit header in DW#0 and DW#1 by
combining a 48-bit address read from HdrFIFO with a zero value. The remaining data
(DW#2 – DW#1023) represents the test pattern, which can be selected from three formats:
32-bit incremental data, 32-bit decremental data, and 32-bit LFSR counter. The 32-bit
incremental data is obtained from the Data Counter. The decremental data is derived by
applying the NOT logic to the incremental data. The LFSR data is generated using a
Fibonacci LFSR with the equation is x31 + x21 + x + 1.

To implement the 256-bit LFSR pattern, the data is divided into two sets of 128-bit data, each
with a different initial value. The 128-bit data uses a look-ahead technique to calculate four
32-bit LFSR data in one clock cycle. Figure 2-7 illustrates that the initial value of LFSR is
obtained by combining a part of 32 lower bits of the address (LBAAddr) with the NOT logic of
the 32 lower bits of the LBA address (LBAAddrB).

For both all zero and all one patterns, a 64-bit header is not inserted into the 4KB data.
These patterns show the best Write/Read performance of certain SSDs.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 11

Figure 2-7 256-bit LFSR Pattern in TestGen

Timing diagram to show the operation of Data block inside WrTestGen is shown in Figure
2-8.

Figure 2-8 Timing diagram to show Data block operation within WrTestGen module

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 12

(1) To initiate a new 4KB Write data transfer, three conditions must be satisfied.

• HdrFfEmpty=0b to ensure that a new address has been stored in HdrFIFO.

• WrReady=1b to indicate the rmNVMe-IP has a capability to receive 4KB Write data.

• rWrTrn[1:0]=00b to add the latency time for waiting until the WrReady signal is
updated after finishing the previous transfer.

The new data transfer is initiated by setting rHdrFfRdAck to 1b for one clock cycle to read
the HdrFfRdData and will be used as the header data for each 4KB data segment.
Simultaneously, rWrTrn[0] is set to 1b to indicate the ongoing data transfer. This value
remains set until finishing the current data transfer.

(2) The Write data is sent to the rmNVMe-IP using the following guidelines.

• Asserting WrValid to 1b along with valid WrData.

• Setting WrValid to 1b when both rWrTrn[0] and rTrnRateEn are asserted to 1b,
indicating that the Write command is active and the Write data rate has not reached
the maximum limit.

• Including 48-bit header data from rHdData in the first data of each 4KB data segment.

• Incrementing rDataCnt after transferring each Write data to indicate the amount of
Write data transferred within this transfer (ranging from 0 to 127).

(3) While transferring a 4KB data segment, the value of WrValid value is controlled by

rTrnRateEn signal and can only be asserted when rTrnRateEn is set to 1b.
(4) When the final data of the current data segment is transferred in the next clock cycle,

indicated by rDataCnt=127 and rTrnRateEn=1b, rWrTrn[0] is set to 0b, marking the
completion of the current data transfer.

(5) The final data transfer occurs by asserting WrValid to 1b along with the last data (D127)
on WrData. rWrTrn[1] is set to 0b in the next clock cycle.

(6) The updated value of WrReady is provided after finishing transferring all 4KB data
segment when both rWrTrn[0] and rWrTrn[1] are de-asserted to 0b. Therefore, WrValid is
de-asserted to 0b at least two clock cycles before sending the next 4KB data segment.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 13

2.2 RdTestGen

Figure 2-9 RdTestGen Block diagram

While WrTestGen connects to User#1 I/F for handling Write command operation, the
RdTestGen connects to User#0 I/F for handling Read command operation. Similar to
WrTestGen, the RdTestGen module consists of three logic groups: Address, Command, and
Data. The function and the logic of the Address and Command groups are similar to
WrTestGen. Please refer to the previous topic for more details. This topic focuses only the
details of the Data block.

Note: As the User#0 I/F supports multiple command types, the U0Cmd which specifies the
command type is directly set by Avl2Reg. The Command block in the RdTestGen module
sends only the command request for Read commands.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 14

Figure 2-10 Logic diagram of Data block

Data
The maximum data transfer rate for Read data is controlled by the RdPause signal.
According to the rmNVMe-IP datasheet, setting RdPause to 1b will cause RdValid to be
de-asserted to 0b within 4 clock cycles. RdPause can be designed using the same logic as
rTrnRateEn in WrTestGen, by adding NOT logic.

The RdValid signal, an input of rmNVMe-IP, controls the Data Counter that shows the total
amount of Read data sent. When the first data of each 4KB data segment is received,
Decoder logic sets rHdrFfRdAck to 1b for one clock cycle. The header data, HdrFfRdData, is
input to TestData Generator to generate the expected data, rPattData. The logic of TestData
Generator is almost similar to that of WrTestGen. The Data Verification module compares
the RdData with the rPattData. If an error is detected, PattFail is set to 1b along with the
expected value (ExpPatt), received value (RdPatt), and failure position (FailNo).

Timing diagram to show the operation of Data block within RdTestGen is shown in Figure
2-11.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 15

Figure 2-11 Timing diagram to show Data block operation within RdTestGen module

(1) When the Command block generates a Read command request to rmNVMe-IP, the Data

block receives the 4KB Read data. The data is sent via RdData, and RdValid is set to 1b.
If RdValid=1b and rWt1stData=1b, it indicates that the first data (D0) is being sent. At this
point, rWt1stData signal is de-asserted, and rHdrFfRdAck is asserted. The output data of
HdrFIFO (HdrFfRdData) is input to the TestData Generator to create the expected value
(De0), similar to the process used in WrTestGen.

(2) While receiving each Read data (RdValid=1b), rDataCnt is incremented to track the total
amount of Read data in each 4KB segment. Its value ranges from 0 to 127.

(3) The TestData Generator requires 4 clock cycles to process and generate the expected
value for the first data (De0) after receiving it on the RdData. De0 includes the 48-bit
address (HdrFfRdData), which is valid when rHdrFfRdAck=1b

(4) After the TestData Generator completes generating the expected value of the first data
(De0), which includes the 48-bit address (HdrFfRdData) that is valid when
rHdrFfRdAck=1b, several Flip-Flops are added to synchronize RdData signal with
rPattData4. The expected value (De0 – De127) are then compared to the Read data (D0
– D127) by the Data Verification module. If rRdData4 ≠ rPattData4, PattFail is asserted.

(5) To control the data transfer rate, rTrnRateEn can be set to 0b to assert RdPause to 1b.
After four clock cycles, RdValid will be de-asserted to 0b to pause data transmission.

(6) Data Verification also pauses the operation when rDataValid [4] (the RdValid signal with
4-clock latency) is de-asserted.

(7) When the last data of each 4KB block is received (DataCnt0=127 and RdValid=1b),
rWt1stData is re-asserted to 1b to scan the first data of the next 4KB data segment.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 16

2.3 NVMe

Figure 2-12 NVMe hardware

Figure 2-12 shows how to integrate rmNVMe-IP into the reference design. Each rmNVMe-IP
user interface consists of a Control interface and a Data interface. The Control interface
receives commands and parameters from the user, while the Data interface transfers data
when a command requires data transfer.

There are two types of commands – Single mode and Multi-mode. For User#0 I/F, the
command value (U0Cmd) is set by CPU firmware via Avl2Reg, whereas the command
request (U0CValid) is controlled by two sources – UserCValid and RdCmdValid. In Single
mode, the command request (UserCValid) is generated by the CPU firmware. On the other
hand, in Multi-mode, the command request (RdCmdValid) is generated by RdTestGen.
SMART and Flush commands are Custom commands that require additional parameters
set via the Custom Cmd I/F, which are also set by the CPU firmware via Avl2Reg module.
For User#1 I/F, only Write command, a Multi-mode command, is requested and the
command request (U1CValid) to the IP is generated by WrTestGen.

There are four commands that involve data transfer via specific interfaces.

• Custom Cmd I/F (RAM) transfers SMART data to CtmRAM in the SMART command.

• Iden I/F (RAM) transfers Identify data to IdenRAM in the Identify command.

• U0Rd I/F transfers Read data from rmNVMe-IP in the Read command.

• U1Wr I/F transfers Write data from WrTestGen in the Write command.

Although each command uses a different interface for data transfer, all data interfaces have
the same data bus size of 256 bits.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 17

2.3.1 rmNVMe-IP

rmNVMe-IP implements NVMe protocol on the host side, enabling direct access to an NVMe
SSD without the need for a PCIe switch connection. It supports two users, with the Main
user having access for five commands (Read, Identify, Shutdown, SMART, and Flush), and
the Sub user able to access only the Write command. rmNVMe-IP can handle up to 256
Read commands and 256 Write commands with random addressing, allowing to execute
the additional commands without the need to wait for the previous command completion.
Additionally, rmNVMe-IP can be directly connected to the PCIe hard IP. For more detailed
information about rmNVMe-IP, please refer to the datasheet available at the following link.

https://dgway.com/products/IP/NVMe-IP/dg_rmnvme_ip_datasheet_g4_intel/

2.3.2 PCIe Hard IP (P-Tile/F-Tile Avalon-ST Intel FPGA for PCIe)

This block is the hard IP integrated into Intel FPGA devices, which implements Physical,
Data Link, and Transaction Layers of the PCIe protocol. Further details can be found from
Intel FPGA website.

P-Tile Avalon-ST Intel FPGA for PCIe
https://www.intel.com/content/www/us/en/docs/programmable/683059/
F-Tile Avalon-ST Intel FPGA for PCIe
https://www.intel.com/content/www/us/en/docs/programmable/683140/

https://dgway.com/products/IP/NVMe-IP/dg_rmnvme_ip_datasheet_g4_intel/
https://www.intel.com/content/www/us/en/docs/programmable/683059/
https://www.intel.com/content/www/us/en/docs/programmable/683140/

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 18

2.3.3 Two-port RAM

The system includes two of two-Port RAMs, CtmRAM and IdenRAM, which store data from
Identify command and SMART command, respectively. IdenRAM is a simple dual-port RAM
with one read port and one write port. The data size of Identify command is 8 Kbytes, so the
size of IdenRAM is 8 Kbytes. rmNVMe-IP and Avl2Reg have different data bus sizes, 256-bit
data bus for rmNVMe-IP and 32-bit data bus for Avl2Reg. Therefore, IdenRAM has a
different bus size for its Write interface and Read interface. Besides, rmNVMe-IP features a
double word enable that allows for writing 32-bit data in specific cases. To accommodate this,
the RAM settings in the IP catalog of Quartus tool support write byte enable. As shown in
Figure 2-13, each bit (bit[0], [1], …, [7]) of double word enable (WrDWEn) is mapped to 4-bit
write byte enable (bit[3:0], [7:4], …, [31:28]) of IdenRAM byte write enable.

Figure 2-13 Word enable to byte write enable connection

On the other hand, CtmRAM is implemented using a Two-Port RAM (two read ports and two
write ports), along with byte write enable feature. The connection to convert from word
enable of rmNVMe-IP to byte enable of CtmRAM is similar to IdenRAM. Two-Port RAM is
used to support additional features when a customized Custom command needs the data
input. In case of SMART command, a simple dual port RAM is sufficient. Although the data
size returned from SMART command is 512 bytes, CtmRAM is implemented using an 8
Kbyte RAM for customized Custom command in future use.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 19

2.4 CPU and Peripherals

The CPU system uses a 32-bit Avalon-MM bus as the interface to access peripherals such
as the Timer and JTAG UART. The system also integrates an additional peripheral to access
rmNVMe-IP test logic by assigning a unique base address and address range. To support
CPU read and write operations, the hardware logic must comply with the Avalon-MM bus
standard. Avl2Reg module, as shown in Figure 2-14, is designed to connect the CPU
system via the Avalon-MM interface, in compliance with the standard.

Figure 2-14 CPU and peripherals hardware

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg converts Avalon-MM signals
into a simple Register interface with a 32-bit data bus size, similar to the Avalon-MM data
bus size. It also includes asynchronous logic to handle clock domain crossing between the
CpuClk and UserClk domains.

UserReg includes the register file of parameters and the status signals of other modules in
the test system, including the CtmRAM, IdenRAM, rmNVMe-IP, RdTestGen, and WrTestGen.
More details of AsyncAvlReg and UserReg are explained below.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 20

2.4.1 AsyncAvlReg

Figure 2-15 AsyncAvlReg Interface

The Avalon-MM bus interface signal can be grouped into three categories: Write channel
(blue), Read channel (red), and Shared control channel (black). More details about the
Avalon-MM interface specification can be found in the following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_a
valon_spec.pdf

According to Avalon-MM specification, only one command (write or read) can be executed
at a time. AsyncAvlReg’s logic is divided into three groups: Write control logic, Read control
logic, and Flow control logic. The flow control logic asserts SAvlWaitReq to hold the next
request from the Avalon-MM interface if the current request has not finished. Write control
and Write data I/F of the Avalon-MM bus are latched and transferred to be the Write register
interface with clock domain crossing registers. Similarly, Read control I/F are latched and
transferred to be Read register interface. Afterward, the data returned from Register Read
I/F is transferred to Avalon-MM bus with using clock domain crossing registers. The Address
I/F of Avalon-MM is also latched and transferred to the Address register interface.

The Register interface is compatible with the single-port RAM interface for write transactions.
However, the read transaction of the Register interface is slightly modified from RAM
interface by adding RdReq and RdValid signals to control the read latency time. Since the
address of the Register interface is shared for write and read transactions, the user cannot
write and read the register at the same time. The timing diagram of the Register interface is
shown in Figure 2-16.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 21

Figure 2-16 Register interface timing diagram

1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units),
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte
enable consists of four bits that indicate the validity of the byte data. For example, bit[0],
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid,
respectively.

2) To read register, AsyncAvlReg sets the RegRdReq signal to 1b with a valid value for
RegAddr. The 32-bit data is returned after the read request is received. The slave detects
the RegRdReq signal being set to start the read transaction. In the read operation, the
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address
can then be used to select the returned data using multiple layers of multiplexers.

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b.
After that, AsyncAvlReg forwards the read value to the SAvlRead interface.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 22

2.4.2 UserReg

Figure 2-17 UserReg Interface

The UserReg module consists of an Address decoder, a Register File, and a Register Mux.
The Address decoder decodes the address requested by AsyncAvlReg and selects the
active register to be accessed for write or read transactions. The address range assigned
within UserReg is divided into six areas, as shown in Figure 2-17.
1) 0x0000 – 0x01FF: Mapped to User#0 and RdTestGen
2) 0x0200 – 0x03FF: Mapped to User#1 and WrTestGen
3) 0x2000 – 0x3FFF: Mapped to read data from IdenRAM (read-only access).
4) 0x4000 – 0x5FFF: Mapped to write and read access with Custom command RAM

interface. However, the current demo uses only read access through SMART command.
5) 0x6000 – 0x7FFF: Mapped to Custom command interface
6) 0x8000 – 0xFFFF: Mapped to other interfaces such as shared parameters for all Users,

PCIe status, and IP version.

The Address decoder decodes the upper bits of RegAddr to select the active hardware
(rmNVMe-IP, RdTestGen, WrTestGen, IdenRAM, or CtmRAM). The Register File within
UserReg has a 32-bit bus size, so the write byte enable (RegWrByteEn) is not used in the
test system and the CPU uses 32-bit pointer to set the hardware register.

For reading a register, multi-level multiplexers (mux) select the data to be returned to the
CPU based on the address. The lower bits of RegAddr are fed to the submodule, enabling to
select the active data from each submodule. Meanwhile, the upper bits are used within
UserReg to select the returned data from each submodule. The total latency time for reading
data is equal to three clock cycles, and RegRdValid is created by RegRdReq through the
use of three D Flip-flops. Further details of the address mapping within the UserReg module
can be found in Table 2-2.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 23

Table 2-2 Register Map

Address Register Name Description

(Label in the “rmnvmeiptest.c”)

0x0000 – 0x01FF: Signal interface of User#0 (rmNVMe-IP) and RdTestGen

0x0000 – 0x00FF: Control signals of User#0 and RdTestGen (Write access only)

BA+0x0000 User#0 Address (Low) Reg [31:0]: Input to be bit[31:0] of User#0 start address as 512-byte unit

(TrnAddr[31:0] of RdTestGen) (U0ADRL_INTREG)

BA+0x0004 User#0 Address (High) Reg [15:0]: Input to be bit[47:32] of User#0 start address as 512-byte unit

(TrnAddr[47:32] of RdTestGen) (U0ADRH_INTREG)

BA+0x0008 User#0 Length (Low) Reg [31:0]: Input to be bit[31:0] of User#0 transfer length as 512-byte unit

(TrnLen[31:0] of RdTestGen) (U0LENL_INTREG)

BA+0x000C User#0 Length (High) Reg [15:0]: Input to be bit[47:32] of User#0 transfer length as 512-byte unit

(TrnLen[47:32] of RdTestGen) (U0LENH_INTREG)

BA+0x0010 User#0 Command Reg [2:0]: Input to be User#0 command (U0Cmd of rmNVMe-IP)

000b: Identify, 001b: Shutdown, 011b: Read SSD,

100b: SMART, 110b: Flush, 010b/101b/111b: Reserved

When a Single mode command (not Read command) is written to this

register, the new command request (UserCValid) is asserted to

rmNVMe-IP. However, if it is a Read command, the start flag for Read

command is asserted to RdTestGen, which then asserts the read

command request (RdCmdValid) to rmNVMe-IP.

(U0CMD_INTREG)

BA+0x0014 User#0 Test Pattern Reg [2:0]: Select test pattern of RdTestGen

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR

[3]: Verification enable. 0b -No verification, 1b -Enable verification.

[4]: Address mode. 0b -Sequential access, 1b -Random access

(U0PATTSEL_INTREG)

BA+0x0018 User#0 Transfer Rate Reg [6:0]: Transfer rate in percentage unit of RdTestGen

(TrnRate[6:0] of RdTestGen)

Valid from 1 – 100. For example, when this value=40, the maximum

data rate is 40% of 275 x 256-bit (8.8 GB/s) = 3520 MB/s

(U0TRNRATE_INTREG)

0x0100 – 0x01FF: Status signals of User#0 and RdTestGen (Read access only)

BA+0x0100 User#0 Status Reg [0]: Mapped to U0Busy of rmNVMe-IP. 0b: IP is Idle, 1b: IP is busy.

[1]: Mapped to U0Error of rmNVMe-IP. 0b: No error, 1b: Error is found.

[2]: Data verification failure. 0b: Normal, 1b: Error detected.

[3]: Busy status of RdTestGen. 0b: Idle, 1b: Busy.

[11:4]: Mapped to U0CId of rmNVMe-IP to show current command ID.

[19:12]: Mapped to U0DId of rmNVMe-IP to show command ID which

currently transfers data on Data stream interface.

[28:20]: Mapped to U0CCnt of rmNVMe-IP to show remaining

command count stored in rmNVMe-IP when executing Read

command.

[31]: Mapped to U0CReady of rmNVMe-IP to show command ready.

(U0STS_INTREG)

BA+0x0104 User#0 Error Type Reg [31:0]: Mapped to U0ErrorType[31:0] of rmNVMe-IP to show error

status (U0ERRTYPE_INTREG)

BA+0x0108 User#0 Admin Completion Status Reg [15:0]: Mapped to U0AdmCompStatus[15:0] of rmNVMe-IP to show

status of Admin completion U0AMCOMPSTS_INTREG)

BA+0x010C User#0 IO Completion Status Reg [31:0]: Mapped to U0IOCompStatus[31:0] of rmNVMe-IP to show

status of I/O completion. U0IOCOMPSTS_INTREG)

BA+0x0110 User#0 Test pin (Low) Reg [31:0]: Mapped to U0TestPin[31:0] of rmNVMe-IP

(U0TESTPINL_INTREG)

BA+0x0114 User#0 Test pin (High) Reg [15:0]: Mapped to U0TestPin[47:32] of rmNVMe-IP

(U0TESTPINH_INTREG)

BA+0x0140-

BA+0x015F

User#0 Expected value Word0-7 Reg The 256-bit expected data of the 1st failure in RdTestGen when

executing a Read command.

0x0140: Bit[31:0], 0x0144: Bit[63:32], …, 0x015C: Bit[255:224]

(U0EXPPATW0-W7_INTREG)

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 24

Address Register Name Description

(Label in the “rmnvmeiptest.c”)

0x0100 – 0x01FF: Status signals of User#0 and RdTestGen (Read access only)

BA+0x0160-

BA+0x017F

User#0 Read value Word0-7 Reg The 256-bit read data of the 1st failure in RdTestGen when executing

a Read command.

0x0160: Bit[31:0], 0x0164: Bit[63:32], …, 0x017C: Bit[255:224]

(U0RDPATW0-W7_INTREG)

BA+0x0180 User#0 Data Failure Address(Low) Reg [31:0]: Bit[31:0] of the byte address of the 1st failure when executing a

Read command (U0RDFAILNOL_INTREG)

BA+0x0184 User#0 Data Failure Address(High) Reg [24:0]: Bit[56:32] of the byte address of the 1st failure when executing

a Read command (U0RDFAILNOH_INTREG)

BA+0x0188 User#0 Completed Count (Low) Reg [31:0]: Bit[31:0] of the completed command count in RdTestGen

(U0CMDCMPCNTL_INTREG)

BA+0x018C User#0 Completed Count (High) Reg [12:0]: Bit[44:32] of the completed command count in RdTestGen

(U0CMDCMPCNTH_INTREG)

0x0200 – 0x03FF: Signal interface of User#1 (rmNVMe-IP) and WrTestGen

0x0200 – 0x02FF: Control signals of User#1 and WrTestGen (Write access only)

BA+0x0200 User#1 Address (Low) Reg [31:0]: Input to be bit[31:0] of User#1 start address as 512-byte unit

(TrnAddr[31:0] of WrTestGen) (U1ADRL_INTREG)

BA+0x0204 User#1 Address (High) Reg [15:0]: Input to be bit[47:32] of User#1 start address as 512-byte unit

(TrnAddr[47:32] of WrTestGen) (U1ADRH_INTREG)

BA+0x0208 User#1 Length (Low) Reg [31:0]: Input to be bit[31:0] of User#1 transfer length as 512-byte unit

(TrnLen[31:0] of WrTestGen) (U1LENL_INTREG)

BA+0x020C User#1 Length (High) Reg [15:0]: Input to be bit[47:32] of User#1 transfer length as 512-byte unit

(TrnLen[47:32] of WrTestGen) (U1LENH_INTREG)

BA+0x0210 User#1 Command Reg [2:0]: Input to be User#1 command

010b: Write SSD, Others: Reserved

When Write command is written to this register, the start flag for Write

command is asserted to WrTestGen, which then asserts the

command request (U1CValid) to rmNVMe-IP.

(U1CMD_INTREG)

BA+0x0214 User#1 Test Pattern Reg [2:0]: Select test pattern of WrTestGen

000b-Increment, 001b-Decrement, 010b-All 0, 011b-All 1, 100b-LFSR

[3]: Reserved

[4]: Address mode. 0b-Sequential access, 1b-Random access

(U1PATTSEL_INTREG)

BA+0x0218 User#1 Transfer Rate Reg [6:0]: Transfer rate in percentage unit of WrTestGen

(TrnRate[6:0] of WrTestGen) (U1TRNRATE_INTREG)

0x0300 – 0x03FF: Status signals of User#1 and WrTestGen (Read access only)

BA+0x0300 User#1 Status Reg [0]: Mapped to U1Busy of rmNVMe-IP. 0b: IP is Idle, 1b: IP is busy.

[1]: Mapped to U1Error of rmNVMe-IP. 0b: No error, 1b: Error is found.

[3]: Busy status of WrTestGen. 0b: Idle, 1b: Busy.

[11:4]: Mapped to U1CId of rmNVMe-IP to show current command ID.

[19:12]: Mapped to U1DId of rmNVMe-IP to show command ID which

currently transfers data on Data stream interface.

[28:20]: Mapped to U1CCnt of rmNVMe-IP to show remaining

command count stored in rmNVMe-IP when executing Write

command.

[31]: Mapped to U1CReady of rmNVMe-IP to show command ready.

(U1STS_INTREG)

BA+0x0304 User#1 Error Type Reg [31:0]: Mapped to U1ErrorType[31:0] of rmNVMe-IP to show error

status (U1ERRTYPE_INTREG)

BA+0x030C User#1 IO Completion Status Reg [31:0]: Mapped to U1IOCompStatus[31:0] of rmNVMe-IP to show

status of I/O completion. U1IOCOMPSTS_INTREG)

BA+0x0310 User#1 Test pin (Low) Reg [15:0]: Mapped to U1TestPin[15:0] of rmNVMe-IP

(U1TESTPINL_INTREG)

BA+0x0388 User#1 Completed Count (Low) Reg [31:0]: Bit[31:0] of the completed command count in WrTestGen

(U1CMDCMPCNTL_INTREG)

BA+0x038C User#1 Completed Count (High) Reg [12:0]: Bit[44:32] of the completed command count in WrTestGen

(U1CMDCMPCNTH_INTREG)

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 25

Address Register Name Description

(Label in the “rmnvmeiptest.c”)

0x2000 – 0x3FFF: IdenRAM (Read access only)

BA+0x2000-

BA+0x2FFF

Identify Controller Data 4Kbyte Identify Controller Data Structure

(IDENCTRL_CHARREG)

BA+0x3000-

BA+0x3FFF

Identify Namespace Data 4Kbyte Identify Namespace Data Structure

(IDENNAME_CHARREG)

0x4000 – 0x5FFF: CtmRAM (Write/Read access)

BA+0x4000-

BA+0x5FFF

Custom command Ram Connect to 8Kbyte CtmRAM for storing 512-byte data output from

SMART Command. (CTMRAM_CHARREG)

0x6000 – 0x7FFF: Custom Command Interface

BA+0x6000-

BA+0x603F

Custom Submission Queue Reg [31:0]: Submission queue entry of SMART and Flush commands.

Input to be CtmSubmDW0-DW15 of rmNVMe-IP.

0x6000: DW0, 0x6004: DW1, …, 0x603C: DW15 Wr (CTMSUBMQ_STRUCT)

BA+0x6100-

BA+0x610F

Custom Completion Queue Reg [31:0]: CtmCompDW0-DW3 output from rmNVMe-IP.

0x6100: DW0, 0x6104: DW1, …, 0x610C: DW3

Rd (CTMCOMPQ_STRUCT)

0x8000 – 0xFFFF: Other Interfaces

BA+0x8000 NVMe Timeout Reg [31:0]: Mapped to TimeOutSet[31:0] of rmNVMe-IP

Wr (NVMTIMEOUT_INTREG)

BA+0x8100 PCIe Status Reg [0]: PCIe linkup status from PCIe hard IP (0b: No linkup, 1b: linkup)

[3:2]: Two lower bits to show PCIe link speed of PCIe hard IP.

MSB is bit[16].

(000b: Not linkup, 001b: PCIe Gen1, 010b: PCIe Gen2,

 011b: PCIe Gen3, 111b: PCIe Gen4)

[6:4]: PCIe link width status from PCIe hard IP

(001b: 1-lane, 010b: 2-lane, 100b: 4-lane)
[13:8]: Current LTSSM State of PCIe hard IP. Please see more details

of LTSSM value in PCIe hard IP datasheet

[16]: The upper bit to show PCIe link speed of PCIe hard IP.

Two lower bits are bit[3:2].

Rd (PCIESTS_INTREG)

BA+0x8110 NVMe CAP Reg [31:0]: Mapped to NVMeCAPReg[31:0] of rmNVMe-IP

Rd (NVMCAP_INTREG)

BA+0x8120 Total disk size (Low) Reg [31:0]: Mapped to LBASize[31:0] of rmNVMe-IP

Rd (LBASIZEL_INTREG)

BA+0x8124 Total disk size (High) Reg [15:0]: Mapped to LBASize[47:32] of rmNVMe-IP

Rd (LBASIZEH_INTREG)

BA+0x8200 IP Version Reg [31:0]: Mapped to IPVersion[31:0] of rmNVMe-IP

Rd (IPVERSION_INTREG)

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 26

3 CPU Firmware

3.1 Test firmware (rmnvmeiptest.c)

The CPU follows these steps upon system startup to complete the initialization process.
1) Initialize JTAG UART and Timer settings.
2) Wait for the PCIe connection to become active (PCIESTS_INTREG[0]=1b).
3) Wait for rmNVMe-IP to completes its own initialization process

(U0-U1STS_INTREG[0]=0b). If errors are encountered, the process will stop and display
an error message.

4) Display the status of the PCIe link, including the number of lanes and the speed, by
reading PCIESTS_INTREG[16:2] status.

5) Display the main menu with options to run six commands for rmNVMe-IP, i.e., Identify,
Write, Read, SMART, Flush, and Shutdown.

More details on the sequence for each command in the CPU firmware are described in the
following sections.

3.1.1 Identify Command

The sequence for the firmware when the Identify command is selected by User#0 I/F is as
follows.
1) Set U0CMD_INTREG=000b to send the Identify command request on User#0 I/F of

rmNVMe-IP. The busy flag of User#0 I/F (U0STS_INTREG[0]) will then change from 0b to
1b.

2) The CPU waits until the operation is completed or an error is detected by monitoring
U0STS_INTREG[1:0].

• If Bit[0] is de-asserted to 0b after the operation is finished, the data of Identify
command returned by rmNVMe-IP will be stored in IdenRAM.

• If Bit[1] is asserted to 1b, indicating an error, the error message will be displayed on
the console with details decoded U0ERRTYPE_INTREG[31:0]. The process will then
stop.

3) After the busy flag (U0STS_INTREG[0]) is de-asserted to 0b, the CPU will display

information decoded from IdenRAM (IDENCTRL_CHARREG), such as the SSD model
name and the information from rmNVMe-IP output, such as SSD capacity
(LBASIZEH/L_INTREG).

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 27

3.1.2 Write/Read Command

This menu allows the user to execute Write and Read commands. The user has the option
to enable Write or Read operation separately with specific parameters. The sequence of the
firmware for this menu is as follows.
1) Input two sets of parameters (Write command parameters and Read command

parameters) from the console, including the command (enable or disable), the address
mode (Sequential or Random), Data verification (enable or disable for Read command
only), the start address, transfer length, test pattern, and transfer rate from the console. If
any inputs are invalid, the operation will be cancelled.

2) After obtaining all the inputs, set them to U0-U1ADRL/H_INTREG,
U0-U1LENL/H_INTREG, U0-U1PATTSEL_INTREG, and U0-U1TRNRATE_INTREG.

3) To execute the Read command, set U0CMD_INTREG[2:0] = 011b. To execute the Write
command, set U1CMD_INTREG[2:0] = 010b. This sends the command request to the
corresponding User I/F. Once the command is issued, the busy flags for both rmNVMe-IP
and TestGen of the active user (U0-U1STS_INTREG[0] and U0-U1STS_INTREG[3],
respectively) will change from 0b to 1b.

4) The CPU waits until the operation is completed or an error (excluding verification error) is
detected by monitoring U0-U1STS_INTREG[3:0].

• Bit[0] will be de-asserted to 0b when the User#0-#1 command is completed.

• Bit[1] will be asserted when an error is detected in User#0-#1. In this case, the error
message will be displayed on the console to show the decoded error details from
U0-U1ERRTYPE_INTREG, and the process will be stopped.

• Bit[2] will be asserted when data verification fails for User#0. In this case, the
verification error message will then be displayed on the console, but the CPU will
continue to run until the operation is complete or the user inputs any key to cancel the
operation.

• Bit[3] will be de-asserted to 0b when RdTestGen/WrTestGen is completed.

While the command is running, the current transfer size of the active user, read from
U0-U1CMDCMPCNTL/H_INTREG, will be displayed every second.

5) Once the busy flags (U0-U1STS_INTREG[0] and U0-U1STS_INTREG[3]) are
de-asserted to 0b, CPU will calculate and display the test result of the active user on the
console including the total time usage, total transfer size, transfer speed, and IOPS.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 28

3.1.3 SMART Command

The sequence for the firmware when the SMART command is selected by User#0 I/F is as
follows.
1) The 16-Dword of the Submission Queue entry (CTMSUBMQ_STRUCT) is set to the

SMART command value.
2) Set U0CMD_INTREG[2:0]=100b to send the SMART command request on User#0 I/F of

rmNVMe-IP. The busy flag of User#0 I/F (U0STS_INTREG[0]) will then change from 0b to
1b.

3) The CPU waits until the operation is completed or an error is detected by monitoring
U0STS_INTREG[1:0].

• If Bit[0] is de-asserted to 0b after the operation is finished, the data of SMART
command returned by rmNVMe-IP will be stored in CtmRAM.

• If Bit[1] is asserted to 1b, indicating an error, the error message will be displayed on
the console with details decoded U0ERRTYPE_INTREG[31:0]. The process will then
stop.

4) After the busy flag (U0STS_INTREG[0]) is de-asserted to 0b, the CPU will display

information decoded from CtmRAM (CTMRAM_CHARREG) including Remaining Life,
Percentage Used, Temperature, Total Data Read, Total Data Written, Power On Cycles,
Power On Hours, and Number of Unsafe Shutdown.

For more information on the SMART log, refer to the NVM Express Specification.
https://nvmexpress.org/specifications/

3.1.4 Flush Command

The sequence for the firmware when the Flush command is selected by User#0 I/F is as
follows.
1) The 16-Dword of the Submission Queue entry (CTMSUBMQ_STRUCT) is set to the

Flush command value.
2) Set U0CMD_INTREG[2:0]=110b to send Flush command request on User#0 I/F of

rmNVMe-IP. The busy flag of User#0 I/F (U0STS_INTREG[0]) will then change from 0b to
1b.

3) The CPU waits until the operation is completed or an error is detected by monitoring
U0STS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the CPU will then return to
the main menu.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on
the console with details decoded U0ERRTYPE_INTREG[31:0]. The process will then
stop.

https://nvmexpress.org/specifications/

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 29

3.1.5 Shutdown Command

The sequence for the firmware when the Shutdown command is selected by User#0 I/F is as
follows.
1) Set U0CMD_INTREG=001b to send the Shutdown command request on User#0 I/F of

rmNVMe-IP. The busy flag of User#0 I/F (U0STS_INTREG[0]) will then change from 0b to
1b.

2) The CPU waits until the operation is completed or an error is detected by monitoring
U0STS_INTREG[1:0].

• If bit[0] is de-asserted to 0b after the operation is finished, the CPU will then proceed
to the next step.

• If bit[1] is asserted to 1b, indicating an error, the error message will be displayed on
the console with details decoded U0ERRTYPE_INTREG[31:0]. The process will then
stop.

3) After Shutdown command completes, both the SSD and rmNVMe-IP will become inactive

and the CPU will be unable to receive any new commands from the user. To continue
testing, the user must power off and power on the system.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 30

3.2 Function list in Test firmware

int exec_ctm(unsigned int user_cmd)

Parameters user_cmd: 4-SMART command, 6-Flush command

Return value 0: No error, -1: Some errors are found in the rmNVMe-IP

Description Execute SMART command as outlined in section 3.1.3 (SMART
Command) or execute Flush command as outlined in section 3.1.4
(Flush Command).

unsigned long long get_cursize(unsigned int user)

Parameters user: 0-1 for User#0-#1, respectively

Return value Read value of U0-U1CMDCMPCNTH/L_INTREG

Description The value of U0-U1CMDCMPCNTH/L_INTREG is read and converted to
byte units before being returned as the result of the function.

int get_param(unsigned int user, userin_struct* userin)

Parameters user: 0-1 for User#0-#1, respectively
userin: Seven inputs from user, i.e., command, address mode, data
verification, start address, total length in 512-byte unit, test pattern, and
transfer rate

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void iden_dev(void)

Parameters None
Return value None

Description Execute Identify command as outlined in section 3.1.1 (Identify
Command).

int setctm_flush(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the rmNVMe-IP

Description Set Flush command to CTMSUBMQ_STRUCT and call exec_ctm
function to execute Flush command.

int setctm_smart(void)

Parameters None
Return value 0: No error, -1: Some errors are found in the rmNVMe -IP

Description Set SMART command to CTMSUBMQ_STRUCT and call exec_ctm
function to execute SMART command. Finally, decode and display
SMART information on the console

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 31

void show_error(unsigned int user)

Parameters user: 0-1 for User#0-#1, respectively

Return value None

Description Read U0-U1ERRTYPE_INTREG, decode the error flag, and display the
corresponding error message. Also, call show_pciestat function to check
the hardware’s debug signals.

void show_pciestat(void)

Parameters None

Return value None

Description Read PCIESTS_INTREG until the read value from two read times is
stable. After that, display the read value on the console. Also, debug
signals are read from U0-U1TESTPINL/H_INTREG.

void show_result(unsigned int user, unsigned int timeuseh, unsigned int timeusel)

Parameters user: 0-1 for User#0-#1, respectively
timeuseh, timeusel: 64-bit read value of timer

Return value None

Description Print command and total size by calling show_size function. After that,
calculate total time usage from timeuseh and timeusel and then display
in usec, msec, or sec unit. Finally, transfer performance is calculated and
displayed in MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in MByte or GByte unit.

void show_smart_hex16byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 16-byte SMART data

Return value None

Description Display 16-byte SMART data as hexadecimal unit

void show_smart_int8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 8-byte SMART data

Return value None

Description When the input value is less than 4 billion (32-bit), the 8-byte SMART
data is displayed in decimal units. If the input value exceeds this limit, an
overflow message is displayed.

void show_smart_size8byte(volatile unsigned char *char_ptr)

Parameters *char_ptr: Pointer of 8-byte SMART data

Return value None

Description Display 8-byte SMART data as GB or TB unit. When the input value is
more than limit (500 PB), the overflow message is displayed instead.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 32

void show_vererr(void)

Parameters None

Return value None

Description Read U0RDFAILNOL/H_INTREG (error byte address),
U0EXPPATW0-W7_INTREG (expected value), and
U0RDPATW0-W7_INTREG (read value) to display verification error
details on the console.

void shutdown_dev(void)

Parameters None
Return value None

Description Execute Shutdown command as outlined in section 3.1.5 (Shutdown
Command)

int wrrd_dev(void)

Parameters None
Return value 0: No error, -1: Receive invalid input

Description Execute Write command and Read command as outlined in section 3.1.2
(Write/Read Command). Show_result function is called to calculate and
display transfer performance of the Write and Read command.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 33

4 Example Test Result

The demo system was tested using an 800 GB Intel Optane P5800X SSD on Agilex 7 F-Series
development board. The results of the tests are presented in Figure 4-1 and Figure 4-2.

Figure 4-1 Test Performance of Write and Read commands

Figure 4-1 shows the performance of Random access and Sequential access when executing
either Write or Read command. The Write performance for Random access is slightly lower than
that of Sequential access. However, the Read performance for both Random access and
Sequential access is the same. It is important to recognize that while some SSDs exhibit excellent
performance with Sequential access, their performance significantly deteriorates for Random
access.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 34

Figure 4-2 Test Performance of Mixed Random Write Read command

The demo features the ability to set the maximum data rate for both write and read operation.
Figure 4-2 displays the results by adjusting the percentage of the maximum data rate for each
operation. Five data sets are presented, including scenarios where only Write or Read is
executed, where Write or Read is limited to 20% (1760 MB/s), and where there are no limits for
both Write and Read. The total sum of write and read speeds across all settings remain consistent,
averaging around 6000 – 6500 MB/s.

This SSD demonstrates a well-balanced performance for both write and read operations. When
either Write or Read commands are executed alone, the read speed exceeds the write speed.
However, when both write and read commands are set to the same rate, the performance of both
becomes equal. As a result, write-sensitive systems should reduce the number of Read command
requests to the rmNVMe-IP, while read-intensive systems should minimize the number of Write
command requests.

It is worth mentioning that some SSDs may exhibit varying and unbalanced write-read
performance when both commands are run simultaneously. The rmNVMe-IP demo is available for
use to assess the characteristics of your own SSD.

dg_rmnvmeip_refdesign_g4_intel.doc

2023/06/28 Page 35

5 Revision History

Revision Date Description

1.0 22-Jun-23 Initial Release

Copyright: 2023 Design Gateway Co,Ltd.

