
dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21

NVMeTCPG-IP for 25G reference design manual
Rev1.0 21-Aug-23

1 Overview ... 2
2 Hardware overview .. 6

2.1 NVMe/TCP ... 7
2.1.1 10/25Gb Ethernet PCS/PMA (25G BASE-R).. 7
2.1.2 Ethernet MAC (25G Ethernet) .. 7
2.1.3 NVMeTCP-IP for 25G ... 7

2.2 TestGen .. 8
2.3 CPU and Peripherals .. 17

2.3.1 AsyncAxiReg .. 18
2.3.2 UserReg ... 20

3 CPU Firmware .. 23
3.1 Test firmware (nvmetcpiptest.c) .. 23

3.1.1 Set network parameter ... 23
3.1.2 Connect .. 24
3.1.3 Write/ Read command .. 24
3.1.4 Disconnect ... 24

3.2 Function list in Test firmware ... 25
4 Example Test Result ... 27
5 Revision History .. 28

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 2

NVMeTCPG-IP for 25G reference design manual
Rev1.0 21-Aug-23

1 Overview

Figure 1-1 NVMe/TCP usage

Figure 1-1 shows the comparison between the traditional NVMe SSD by direct attached with the
host via PCIe interface (NVMe over PCIe) and the new topology of NVMe storage that the host
accesses across a network, called NVMe over Fabrics (NVMe-oF). While NVMe over PCIe
achieves the good performance with the low latency, NVMe-oF supports the pooled and the
scalable storage among many hosts. Therefore, the data in NVMe-oF storage is handled by many
hosts which can be installed in the different location with the storage server.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 3

Figure 1-2 NVMe/TCP protocol layer

Figure 1-2 shows the details of protocol layer for NVMe/TCP. Similar to NVMe over PCIe, NVMe
protocol is applied for the top layer which is the user application to handle the command and the
status of the storage. Therefore, the specification of the command is referred to NVMe base
specification which can be downloaded by following link.
https://nvmexpress.org/developers/nvme-specification/

To remote communication between the host and the storage server across the network, NVMe-oF
is applied. NVMe-oF standard describes the use of capsules for commands, responses, and data
transfers. Also, it includes the method for the host to establish a connection with NVM subsystem
(SSD connected with the server in Figure 1-1) and the discovery mechanism for the host to
determine which NVM subsystem accessed. More details of NVMe-oF specification can be
downloaded by following link.
https://nvmexpress.org/developers/nvme-of-specification/

https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-of-specification/

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 4

Figure 1-3 NVMe-oF comparison

To implement NVMe-oF, there are three well-known standards, i.e., FC, RoCE (RDMA over
Converged Ethernet), and TCP/IP. Even though FC and RoCE can outstanding achieve
low-latency access, they require the specific hardware for the network system which greatly
expands the overall system cost. Whereas, NVMe over TCP (NVMe/TCP) can be implemented by
using ubiquitous TCP/IP protocol. However, in term of latency time for storage accessing,
NVMe/TCP does not overcome both FC and RoCE protocol. More details about the NVMe
transport specification can be downloaded by following link.
https://nvmexpress.org/developers/nvme-transport-specifications/

TCP/IP provides a reliable data stream transferring between a sender and receiver. Also, it
supports bi-directional transferring by using the same connection. NVMe/TCP uses TCP/IP to
transfer NVMe/TCP Protocol Data Units (PDUs). More details about TCP/IP protocol are
described in following link.
https://tools.ietf.org/html/rfc793

https://nvmexpress.org/developers/nvme-transport-specifications/
https://tools.ietf.org/html/rfc793

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 5

Figure 1-4 General system of NVMe/TCP

Figure 1-4 shows the general system which implements NVMe/TCP. NVMe/TCP host is the
device that sends the request for accessing the storage while NVMe/TCP target is the device that
has the storage device. The host can be implemented by using the server or PC installed LinuxOS
(Kernel version 5.0 or later). However, limited resources and overhead processes via OS cause
some disadvantages, especially performance bottleneck. Thus, hardware logic in FPGA steps to
take the role of NVMe/TCP device to improve the system performance.

Figure 1-5 NVMe/TCP system by using NVMeTCP25-IP

Figure 1-5 shows the system that applies NVMeTCP25-IP to be the host controller for accessing
NVMe SSD. One host has one connection for accessing one SSD. To change the SSD, the host
needs to terminate the connection of the active SSD and then create the new connection for the
new SSD. Without CPU and DDR, NVMeTCP25G-IP in FPGA is designed as standalone
hardware in the system which can achieve higher performance to access the storage over
general host system, implemented by PC.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 6

2 Hardware overview

Figure 2-1 NVMeTCP25G-IP demo hardware

Following the function of each module, all hardware modules inside the test system are divided to
three parts, i.e., NVMe/TCP function (NVMeTCP25G-IP and Top25GPHY), test function
(TestGen), and CPU system (CPU and LAxi2Reg).

To connect with 25G Ethernet interface, NVMeTCP25G-IP connects to 10G25GEMAC-IP and
25G Ethernet PCS/PMA as shown in Figure 2-1. User interface of NVMeTCP25G-IP consists of
Parameters, Control, and HostMM interface. These three interfaces connect with 2 components.
The first component is test logic (TestGen). TestGen generates test data stream directly to the IP
and verifies received data stream output from the IP through HostMM interface. HostBusy, a
signal of Control interface, is sent from the IP to TestGen to confirm command completion. The
second component is CPU and peripherals (CPU and LAxi2Reg) which connect to
NVMeTCP25G-IP via Parameters interface and Control interface. CPU and LAxi2Reg are
designed to interface with user via UART or JTAG UART. On the console, user can set command
and the test parameters to TestGen and the IP. Also, the current status of the test hardware is
monitored by user on the console through Control interface. The CPU firmware must be
implemented to control the flow for operating each command.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 7

There are three clock domains displayed in Figure 2-1, i.e., CpuClk, UserClk and MacClk. CpuClk
is the clock domain of CPU and its peripherals. This clock must be stable clock and can be
different clock domain from other hardwares. UserClk is the user clock domain for running the
user interface of NVMeTCP25G-IP and TestGen. According to NVMeTCP25G-IP datasheet,
clock frequency of UserClk must be more than or equal to 195.3125 MHz. This reference design
uses 200 MHz. MacClk which is the clock output from 25G Ethernet PCS/PMA. More details of
each module inside the NVMeTCP25GIPTest are described as follows.

2.1 NVMe/TCP

2.1.1 10/25Gb Ethernet PCS/PMA (25G BASE-R)

This module implements PCS and PMA logic of 25G Ethernet. The physical interface is
SFP28 for 25Gb BASE-SR standard. The user interface for connecting with EMAC is 64-bit
XXVGMII interface running at 390.625 MHz. This IP core is be created by using IP wizard in
Vivado tools without the charge. More details of the core are described in the following link.
25G Ethernet PCS/PMA (BASE-SR)
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html

2.1.2 Ethernet MAC (25G Ethernet)

10G25GEMAC-IP connects between NVMeTCP25G-IP and 25G PCS/PMA module. The
interface with NVMeTCP25G-IP is 64-bit AXI4 stream while the interface with 25G PCS/PMA
module is 64-bit XXVGMII interface at 390.625 MHz. More details about 10G25GEMAC-IP
are described in the following link.
https://dgway.com/products/IP/GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx.pdf

2.1.3 NVMeTCP-IP for 25G

The NVMeTCP25G-IP implements NVMe over TCP which additionally includes TCP/IP stack
and offload engine of the host controller to access one target SSD via 25G Ethernet. The
NVMeTCP25G-IP supports Write and Read commands. The user needs to connect the IP
(host) to the target before writing/reading. After finishing, user disconnects the target from the
host. User interface of the IP has three signal groups, i.e., Parameters, Control, and Memory
Map (HostMM) Interface. Please see more details of NVMeTCP25G-IP on our website.
https://dgway.com/products/IP/NVMeTCP-IP/dg_nvmetcp25g_ip_data_sheet_xilinx.pdf

https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://dgway.com/products/IP/GEMAC-IP/dg_10g25gemacip_data_sheet_xilinx.pdf
https://dgway.com/products/IP/NVMeTCP-IP/dg_nvmetcp25g_ip_data_sheet_xilinx.pdf

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 8

2.2 TestGen

Figure 2-2 TestGen Interface

TestGen generates Command (HostMMWrite and HostMMRead) and the address
(HostMMAddr) to NVMeTCP25G-IP when user asserts Write or Read Request (WrPattStart
or RdPattStart). Also, 8-Kbyte test pattern for sending or verifying data in a Write or Read
Command is created in TestGen. HostMMWtReq is asserted by NVMeTCP25G-IP when the
IP is not ready to receive more commands or more data from TestGen. Therefore, FWFTFifo
is included to store test data generated by Data Generator when NVMeTCP25G-IP is not
ready for receiving more commands or data.

The logic inside TestGen is divided into two groups to handle write interface and read
interface of FIFO. Data Generator generates test data to store to FIFO while Command and
Data Verification sends the command request and transfers data from FIFO to
NVMeTCP25G-IP. There is a state machine for controlling the operation in each group,
DState for Data Generator and CState for Command and Data Verification.

FIFO is FWFT type to store Test data from Data Generator. When running Write Command,
Command and Verification reads prepared test data out from the FIFO to be Write Data
(HostMMWrData) in HostMM interface. When running Read Command, Command and
Verification waits Read Data (HostMMRdData) in HostMM interface returned from
NVMeTCP25G-IP. After that, Command and Verification reads prepared test data out from
the FIFO for verifying correctness of the Read Data (HostMMRdData).

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 9

Data Generator
Data Generator inside the TestGen consist of two logic groups, i.e., State machine to control
FIFO write enable (DState), and Pattern Data Generator to generate FIFO write data
(rPattData). When user starts the test by asserting Write or Read Request (WrPattStart or
RdPattStart), test pattern data is generated in Pattern Data Generator. The prepared test
pattern data is written to FIFO by State machine which controls the flow of FIFO writing.
According to NVMeTCP25G-IP specification, data size in a Write or Read Command is fixed
to 8 Kbytes. Thus, Data Generator writes data in burst mode by 8-Kbyte size to FIFO in each
round, controlled by Data State Machine (DState) described as follows.

(1) stDIdle: This state is designed to wait Write or Read Request (WrPattStart or RdPattStart)

from user. When user starts the test by asserting Write or Read Request (WrPattStart or
RdPattStart) along with test parameters i.e., total transfer size (TrnLen: 512-byte unit),
start transfer address (TrnAddr: 512-byte unit), and test pattern (PattSel), the logic in Data
Generator loads the first value from test parameters. Next, continue the next state.

(2) stDRst: This state asserts FIFO reset signal (rFfClr) to clear the FIFO before beginning the
test. The state is run for one clock cycle.

(3) stDWtRst: This state is designed to wait until FIFO is ready to be written. Also, FIFO reset
signal (rFfClr) is de-asserted. After FIFO full signal (FfWrFull) is de-asserted, state
continues to the next step.

(4) stDWtFf: This state is designed to wait until free size of FIFO is enough by checking FIFO
Data Counter (FfDataCnt). Continue the next state if the FIFO space is enough for 16
Kbytes (2 burst sizes).

(5) stDHd: This state is one clock cycle to prepare 64-bit header of each 8-Kbyte data.
(6) stDPatt: In this state, 8-Kbyte pattern data is written to the FIFO by asserting FIFO Write

Enable (rFfWrEn) to ‘1’ for 512 clock cycles. Also, Pattern Data Generator uses
look-ahead style to prepare next 128-bit pattern data for the next clock writing. When the
511th pattern data is prepared, state exit choices are considered as follows.

a. If the current FIFO writing is the last 8 Kbytes of the testing (indicated via
rPattLenCnt), state continues to stDIdle (1) to end the FIFO writing.

b. If the current FIFO writing is not the last 8 Kbytes but FIFO space is less than 16
Kbytes (2 burst sizes), state continues to stDWtFf (4) to finish current 8 Kbytes
writing. It needs to wait more FIFO space for the next 8-Kbyte writing. This state
transition triggers the logics to write the last 128-bit data to FIFO and de-asserts
FIFO Write Enable (rFfWrEn) to ‘0’.

c. If the current FIFO writing is not the last 8 Kbytes and FIFO space is enough for 16
Kbytes (2 burst sizes), state continues to stDHd (5). This state transition allows the
logics to write the next 8-Kbyte data to FIFO continuously after finishing transferring
current 8 Kbyte data. Thus, FIFO Write Enable (rFfWrEn) is still set to ‘1’ for another
512-clock cycle.

From this test logic design, FIFO size is 64 Kbytes (support 8 burst sizes) and FIFO writing is
paused when FIFO space is less than 16 Kbytes (2 burst sizes). Thus, pattern data is usually
prepared and stored in the FIFO via this Data State Machine of Data Generator. After
Command and Verification starts reading the FIFO, 128-bit prepared pattern data can be read
out from the FIFO for at least 512 clock cycles. Timing diagram when Data Generator writes
pattern data to the FIFO in burst mode is shown in Figure 2-3.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 10

Figure 2-3 Timing diagram of Data Generator when writing pattern data to FIFO

1) When Data Generator finishes preparing the 511th 128-bit pattern data of the current

8-Kbyte transferring, FIFO space is checked. If the space is more than 16 Kbytes
(FfDataCnt<3072), DState continues to stDHd to write next 8-Kbyte pattern continuously
(rFfWrEn[1]=’1’).

2) When Data Generator finishes preparing the 511th 128-bit pattern data of the current
8-Kbyte transferring and FIFO space is less than 16 Kbytes (FfDataCnt>=3072), DState
continues to stDWtFf to pause the FIFO writing (rFfWrEn[1]=’0’)

3) FIFO writing is continued when FIFO space is enough for 16 Kbytes (2 burst sizes).
Note: Although FIFO size is 64 Kbytes (support 8 burst sizes), free space threshold for
stopping FIFO writing is 16-Kbyte space to prevent FIFO from being full.

Command and Data Verification
Command and Data Verification inside the TestGen consist of two logic groups, i.e., State
machine (CState) and Data Verification. When user starts the test by asserting Write or Read
Request (WrPattStart or RdPattStart), State machine sends Write Command (HostMMWrite)
or Read Command (HostMMRead) to NVMeTCP25G-IP. State Machine (CState) consists of
six states, described as follows.
(1) stCIdle: This state is designed to wait Write or Read Request (WrPattStart or RdPattStart)

from user. When user starts the test along with test parameters, i.e., total transfer size
(TrnLen: 512-byte unit), start transfer address (TrnAddr: 512-byte unit), and test pattern
(PattSel), the logics load the first value from test parameters. Moreover, PattBusy is
asserted to ‘1’ to indicate that the test is running. If user starts the reading test by asserting
Read Request (RdPattStart), state continues to stCRdTrn (2). On the other hand, if user
starts the writing test by asserting Write Request (WrPattStart), state continues to
stCWrWt (3).

(2) stCRdTrn: In this state, Read Command (HostMMRead) is sent to NVMeTCP25G-IP in
HostMM interface along with the start read address (HostMMAddr) of each 8-Kbyte
transferring. After sending the last Read Command, state continues to stCWtEnd (6) to
wait until all read data is returned and IP finishes the operation.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 11

(3) stCWrWt: This state is designed to wait until data is enough in FIFO via checking FIFO

Data Counter (FfDataCnt). If the data in FIFO is more than or equal to 8 Kbytes (1 burst
size), state continues to the next step.

(4) stCWrTrn: This state is designed to read 8-Kbyte FIFO data and send them out as Write
Data (HostMMWrData) to NVMeTCP25G-IP along with the Write Command
(HostMMWrite). When write command and write data are received (HostMMWrite=’1’ and
HostMMWtReq=’0’), FIFO Read Enable (wFfRdAck) is asserted to read the next data
from FIFO. The FIFO Read Data (FfRdData) is bypassed to be HostMMWrData (as shown
in Figure 2-2). At the first clock cycle of this state, the first 128-bit Write Data
(HostMMWrData), the address (HostMMAddr), and Write Command (HostMMWrite) are
sent to the IP. After the 511th of 128-bit Write Data (HostMMWrData) is sent to the IP, state
continues to the next step.

(5) stCWrChkFf: This state is designed to send the last 128-bit Write Data (HostMMWrData)
of the current 8-Kbyte transferring. Moreover, state machine checks data amount in FIFO
via checking FIFO Data Counter (FfDataCnt) for next 8-Kbyte bursting decision. After the
last 128-bit Write Data (HostMMWrData) of the current 8-Kbyte transferring is sent, state
exit choices are considered as follows.

a. If the current 8-Kbyte Write Data is not the last 8 Kbytes of the Write Command and
data amount in FIFO is not enough for the next round, state continues to stCWrWt
(3) to wait until Data Generator fills more data to the FIFO. This state transition
triggers the logics to de-assert Write Command (HostMMWrite) to ‘0’.

b. If the current 8-Kbyte Write Data is not the last 8 Kbytes of the Write Command and
data amount in FIFO is enough for the next round, state continues to stCWrTrn (4).
This state transition allows the logic to start sending the next 8-Kbyte data
continuously after finishing transferring current 8-Kbyte data without de-asserting
Write Command (HostMMWrite) to ‘0’.

c. If the current 8-Kbyte Write Data is the last 8 Kbytes of the Write Command
(indicated via rMMLenCnt), state continues to stCWtEnd (6). Also, Write Command
(HostMMWrite) is de-asserted to ‘0’ to end the writing test.

Note: There is latency time to update FIFO Data Counter after asserting FIFO Read
enable. Thus, the threshold value to check 1-burst-size data being available in FIFO in
stCWrChkFf must be more than 8 Kbytes to compensate latency time of FIFO Data
Counter. For simple design, the threshold value in this state is equal to 8704 bytes
(FfDataCnt=544).

(6) stCWtEnd: This state is designed to wait until the writing or reading test is done. TestGen
waits until NVMeTCP25G-IP finishes its internal processes by monitoring the IP busy flag
(HostBusy) with Flip Flop. When HostBusy with Flip Flop is ‘0’ in this state, PattBusy is
de-asserted to ‘0’ to notify user that the test is done. State returns back to stCIdle (1).

Data Verification works only in reading test and its working process is not controlled by
Command State Machine (CState). After user starts the reading test by asserting Read
Request (RdPattStart), Data Verification waits until Read Data (HostMMRdData) is returned
from NVMeTCP25G-IP. Data Verification uses validation signal of Read Data
(HostMMRdValid) to be FIFO Read Enable (wFfRdAck) for reading pattern data out from the
FIFO. Each 128-bit Read Data (HostMMRdData) and pattern data (FfRdData) are compared
to verify the Read Data (HostMMRdData) correctness. If a 128-bit Read Data
(HostMMRdData) does not match the pattern, Data Verification asserts PattFail to ‘1’ to notify
user about the verification failure.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 12

The timing diagram examples of Command and Data Verification when running Write
Command and Read Command are shown as follows.

Figure 2-4 Timing diagram of Command S/M when sending each 8-Kbyte Write Command

1) When the 511th 128-bit Write Data (HostMMWrData) of the current 8 Kbytes is sent to the

IP, CState continues to stCWrChkFf for next 8-Kbyte bursting decision.
2) In stCWrChkFf, the last 128-bit Write data (HostMMWrData) of each 8-Kbyte Write

Command is sent to the IP and data amount in FIFO is checked.
a. If data amount in FIFO is enough (8704 bytes: FfDataCnt>544), CState enters

stCWrTrn to start next 8-Kbyte Write Command continuously. Also, Write Command
(HostMMWrite) is not de-asserted to ‘0’.

b. If data amount in FIFO is too less (less than or equal to 8704 bytes:
FfDataCnt<=544), CState enters stCWrWt to wait the FIFO Data Counter
(FfDataCnt) updating. Write Command (HostMMWrite) is de-asserted to ‘0’ to finish
current 8 Kbytes.

3) The validation of each 128-bit Write Data (HostMMWrData) is considered from
HostMMWtReq, output of NVMeTCP25G-IP. At the point that HostMMWtReq is ‘0’ and the
Write Command (HostMMWrite) is ‘1’, the 128-bit Write Data (HostMMWrData) is
considered as successfully sent to the IP. On the other hand, when the IP pauses the Write
Command by asserting HostMMWtReq to ‘1’, the value of HostMMWrData must be held.

4) While FIFO data amount is checked in stCWrChkFf and at least 8-Kbyte (8192 bytes) data
is ready in FIFO, CState continues to stCWrTrn to start next 8-Kbyte Write Command.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 13

PattBusy is the output signal of TestGen for the user monitoring complete status after sending
the Write or Read request.

Figure 2-5 Timing diagram of PattBusy when running Write Command

1) When user starts the writing test by asserting Write Request (WrPattStart), test busy flag

(PattBusy) is also asserted to ‘1’ to notify user that the test is running.
2) When TestGen sends the first 128-bit Write Data (HostMMWrite) to the IP, IP busy flag

(HostBusy) is asserted to ‘1’ referred from NVMeTCP25G-IP specification.
3) After TestGen finishes sending the last Write data to the IP, CState enters stCWtEnd to

wait internal writing processes of NVMeTCP25G-IP.
4) When the IP finishes its internal processes, HostBusy is de-asserted to ‘0’. After that,

PattBusy is de-asserted to ‘0’ to notify user that the test is done. Also, CState returns back
to stCIdle.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 14

Figure 2-6 Timing diagram of Command S/M when sending each Read Command

1) When user starts the reading test by asserting Read Request (RdPattStart), CState

changes to stCRdTrn to start sending Read Command (HostMMRead).
2) At the first clock cycle of stCRdTrn, Read Command (HostMMRead) is asserted to ‘1’ with

the address (HostMMAddr).
3) The validation of each Read Command (HostMMRead) is considered from HostMMWtReq,

output of NVMeTCP25G-IP. At the point that HostMMWtReq is ‘0’, the Read Command
(HostMMRead) with the address (HostMMAddr) is considered as successfully sent to the
IP. On the other hand, when the IP pauses the Read Command by asserting
HostMMWtReq to ‘1’, the value of HostMMAddr must be held. When a Read Command
(HostMMRead) is successfully sent to the IP, the next Command is sent continuously
without waiting 8-Kbyte Read Data (HostMMRdData) returning from the IP.

4) After Read Command (HostMMRead) has been asserted, the value is held until the last
Command is sent. When the last Read Command (HostMMRead) is sent to the IP, Read
Command (HostMMRead) is de-asserted to ‘0’. After that, CState changes to stCWtEnd to
wait until IP finishes Read command and returns all Read data.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 15

Figure 2-7 Timing diagram of PattBusy when running Read Command

1) When user starts the reading test by asserting Read Request (RdPattStart), test busy flag

(PattBusy) is asserted to ‘1 to notify user that the test is running.
2) When the first Read Command (HostMMRead) is sent to the IP, IP busy flag is asserted to

‘1’ referred from NVMeTCP25G-IP specification.
3) After the last Read command is sent, the state enters to stCWtEnd.
4) The command (HostMMRead) and the read data (HostMMRdData) are transferred

independently. When the IP is ready, 8-Kbyte Read data of the first command is returned
continuously (512 clock cycles) without de-asserting the Read Data Valid
(HostMMRdDataValid). The order of each 8-Kbyte data returned back from the IP is the
same order as Read Command which TestGen is sent. After TestGen receives the last
Read Data (HostMMRdData) from the IP, NVMeTCP25G-IP has de-asserted HostBusy to
‘0’ (referred from NVMeTCP25G-IP specification).

5) PattBusy is de-asserted to ‘0’ to notify user that the test is done. Also, CState returns back
to stCIdle.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 16

Test Data
The test data is generated and stored to FIFO by Data Generator and read out from FIFO by
Command and Data Verification to be Write Data (HostMMWrData) or expected data to verify
with Read Data (HostMMRdData). The test data of one Command is 8-Kbyte size which
consists of 64-bit header data and the test pattern, selected by PattSel.

Figure 2-8 Test pattern format of 8192-byte data for Increment/Decrement/LFSR pattern

As shown in Figure 2-8, 8-Kbyte data consists of 64-bit header in DW#0 and DW#1 created
by using 48-bit address value (512-byte unit) of a physical address of the target SSD.
Remaining data (DW#2 – DW#2047) is the test pattern which can be selected by three
formats: 32-bit incremental data, 32-bit decremental data, and 32-bit LFSR counter. 32-bit
incremental data is designed by using the up-counter. The decremental data can be designed
by connecting NOT logic to incremental data. The equation of 32-bit LFSR data is x^31 + x^21
+ x + 1. Four 32-bit LFSR data must be generated in the same clock to create 128-bit data, so
the LFSR counter logic uses look-ahead style to generate four LFSR data in one clock cycle.

In addition, the user can select test pattern to be all zero or all one data to show the best
performance of some SSDs which have data compression algorithm in SSD controller. When
the pattern is all zero or all one, there is no 64-bit header inserted to 8 KB data.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 17

2.3 CPU and Peripherals

32-bit AXI4-Lite bus is applied to be the bus interface for CPU accessing the peripherals such
as Timer and UART. The test system of NVMeTCP25G-IP is connected with CPU as a
peripheral on 32-bit AXI4-Lite bus for CPU controlling and monitoring. CPU assigns the
different base address and the address range to each peripheral for accessing one peripheral
at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. So, the hardware logic must be designed to support AXI4-Lite bus standard for
CPU writing and reading. LAxi2Reg module is designed to connect with the CPU system as
shown in Figure 2-9.

Figure 2-9 CPU and peripherals hardware

LAxi2Reg consists of AsyncAxiReg and UserReg. AsyncAxiReg is designed to convert the
AXI4-Lite signals to be the simple register interface which has 32-bit data bus size, similar to
AXI4-Lite data bus size. Additionally, AsyncAxiReg includes asynchronous logic to support
clock domain crossing between CpuClk and UserClk domain.

UserReg includes the register file of the parameters and the status signals of other modules in
the test system, i.e., NVMeTCP25G-IP and TestGen. More details of AsyncAxiReg and
UserReg are described as follows.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 18

2.3.1 AsyncAxiReg

Figure 2-10 AsyncAxiReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. The
logic inside AsyncAxiReg to interface with AXI4-Lite bus is split into four groups, i.e., Write
control logic, Write data logic, Read control logic, and Read data logic as shown in the left
side of Figure 2-10. Write control I/F and Write data I/F of AXI4-Lite bus are latched and
transferred to be Write register interface with clock domain crossing registers. Similarly, Read
control I/F of AXI4-Lite bus are latched and transferred to be Read register interface. While
the returned data from Register Read I/F is transferred to AXI4-Lite bus by using clock
domain crossing registers. In register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the address from LAxiAw for write access or LAxiAr for read
access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-11.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 19

Figure 2-11 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAxiReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data is returned after receiving the read request. The slave detects RegRdReq
asserted to start the read transaction. During read operation, the address value (RegAddr)
does not change until RegRdValid is asserted to ‘1’. Therefore, the address can be used
for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAxiReg forwards the read value to LAxir* interface.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 20

2.3.2 UserReg

Figure 2-12 UserReg Interface

The address range to map to UserReg is split into five areas, as shown in Figure 2-12.
1) 0x0000 – 0x01FF: mapped to set the parameters of NVMeTCP25G-IP. This area is write

access only.
2) 0x0200 – 0x02FF: mapped to set the control signals of NVMeTCP25G-IP and TestGen.

This area is write access only.
3) 0x0400 – 0x04FF: mapped to read the status signals of NVMeTCP25G-IP. This area is

read access only.
4) 0x0500 – 0x07FF: mapped to read the status signals of TestGen. This area is read access

only.
5) 0x0800 – 0xFFFF: mapped to read IP version of NVMeTCP25G-IP. This area is read

access only.

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit bus size. Therefore, write byte enable (RegWrByteEn) is
not applied in the test system and the CPU uses 32-bit pointer to set the hardware register.

To read register, two-step multiplexer is designed to select the read data within each address
area. The lower bit of RegAddr is applied in each Register area to select the active data. Next,
the address decoder uses the upper bit to select the read data from active area and return to
CPU. Totally, the latency of read data is equal to two clock cycles. Therefore, RegRdValid is
created by RegRdReq with asserting two D Flip-flops. More details of the address mapping
within UserReg module are shown in Table 2-1.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 21

Table 2-1 Register Map

Address Register Name Description

Rd/Wr (Label in “nvmetcpiptest.c”)

0x0000 – 0x01FF: Parameters of NVMeTCP25G-IP (Write access only)

BA+0x0000 Host MAC Address (Low) Reg [31:0]: Input to be host MAC address.

(HostMAC[31:0] of NVMeTCP25G-IP) (TCP_HML_INTREG)

BA+0x0004 Host MAC Address (High) Reg [15:0]: Input to be host MAC address.

(HostMAC[47:32] of NVMeTCP25G-IP) (TCP_HMH_INTREG)

BA+0x0008 Host IP Address Reg [31:0]: Input to be host IP address.

(HostIPAddr[31:0] of NVMeTCP25G-IP) (TCP_HIP_INTREG)

BA+0x000C Host Port Number Reg [15:0]: Input to be host admin port number

(HostAdmPort[15:0] of NVMeTCP25G-IP)

[31:16]: Input to be host I/O port number

(HostIOPort[15:0] of NVMeTCP25G-IP)

(TCP_HPN_INTREG)

BA+0x0010 Target IP Address Reg [31:0]: Input to be target IP address.

 (TCP_TIP_INTREG) (TrgIPAddr[31:0] of NVMeTCP25G-IP)

BA+0x0014 Target MAC Address (Low) Reg [31:0]: Input to be target MAC address.

(TrgMAC[31:0] of NVMeTCP25G-IP) (TCP_TMH_INTREG)

BA+0x0018 Target MAC Address (High) Reg [15:0]: Input to be target MAC address.

(TrgMAC[47:32] of NVMeTCP25G-IP)

[31]: Input to be Target MAC mode

(TrgMACMode of NVMeTCP25G-IP)

(TCP_TIP_INTREG)

BA+0x0020 TCP Timeout Reg [31:0]: Input to be TCP timeout value

(TCPTimeOutSet[31:0] of NVMeTCP25G-IP) (TCP_TMO_INTREG)

BA+0x0024 NVMe Timeout Reg [31:0]: Input to be NVMe timeout value

(NVMeTimeOutSet[31:0] of NVMeTCP25G-IP) (NVM_TMO_INTREG)

BA+0x0100 -

BA+0x010F

Host NQN Word 0-3 Reg 128-bit input to be NVMe Qualifed Name (NQN) of the host

(HostNQN [127:0] of NVMeTCP25G-IP)

0x0100: Bit[31:0], 0x0104: Bit[63:32], …, 0x010C:Bit[127:96]

(HSTNQNW0-W3_INTREG)

BA+0x0180 -

BA+0x018F

Target NQN Word 0-3 Reg 128-bit input to be NVMe Qualifed Name (NQN) of the target

(TrgNQN[127:0] of NVMeTCP25G-IP)

0x0180: Bit[31:0], 0x0184: Bit[63:32], …, 0x018C:Bit[127:96]

(TRGNQNW0-W3_INTREG)

0x00200 – 0x02FF: Control signals of NVMeTCP25G-IP and TestGen (Write access only)

BA+0x0200 Connection Enable Reg [0]: Input to enable the connection with the target

(HostConnEn of NVMeTCP25G-IP) (CONNEN_INTREG)

BA+0x0210 User Command Reg [0]: Input to be command request for writing/reading target SSD

‘0’: Write SSD , ‘1’: Read SSD

When this register is written, Write or Read command is generated from

TestGen to NVMeTCP25G-IP in HostMM interface.

(USERCMD_INTREG)

BA+0x0214 Test Pattern Reg [2:0]: Select test pattern.

“000”-Increment, “001”-Decrement, “010”-All 0, “011”-All 1, “100”-LFSR. (PATTSEL_INTREG)

BA+0x0220 Host MM Address (Low) Reg [31:0]: Input to be start address (512-byte unit) of SSD Writing/Reading in

HostMM interface. (HMM_ADRL_INTREG)

BA+0x0224 Host MM Address (High) Reg [15:0]: Input to be start address (512-byte unit) of SSD Writing/Reading in

HostMM interface. (HMM_ADRH_INTREG)

BA+0x0228 Host MM Length (Low) Reg [31:0]: Input to be transfer length (512-byte unit) of SSD Writing/Reading in

HostMM interface. (HMM_LENL_INTREG)

BA+0x022C Host MM Length (High) Reg [15:0]: Input to be transfer length (512-byte unit) of SSD Writing/Reading in

HostMM interface. (HMM_LENH_INTREG)

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 22

Address Register Name Description

Rd/Wr (Label in “nvmetcpiptest.c”)

0x0400 – 0x04FF: Status signals of NVMeTCP25G-IP (Read access only)

BA+0x0400 Host Status Reg [0]: Mapped to linkup of 10G25GEMAC IP.

‘0’: Link is down, ‘1’: Link is up.

[1]: Mapped to HostConnStatus of NVMeTCP25G-IP.

‘0’: NVMe/TCP connection off, ‘1’: NVMe/TCP connection on.

[2]: Mapped to HostBusy of NVMeTCP25G-IP.

‘0’: IP is Idle, ‘1’: IP is busy.

[3]: Mapped to HostError of NVMeTCP25G-IP. ‘

0’: No error, ‘1’: Error is found.

[4]: Mapped to PattBusy of TestGen.

‘0’: Test is Idle, ‘1’: Test is running.

[5]: Mapped to PattFail of TestGen which is fail flag of Read data

verification from TestGen.

‘0’: No error, ‘1’: Verification Error is found.

(HSTS_INTREG)

BA+0x0410 Total disk size (Low) Reg [31:0]: Mapped to TrgLBASize[31:0] of NVMeTCP25G-IP.

(LBASIZEL_INTREG)

BA+0x0414 Total disk size (High) Reg [15:0]: Mapped to TrgLBASize[47:32] of NVMeTCP25G-IP.

(LBASIZEH_INTREG)

BA+0x0420 Capability (Low) Status Reg [31:0]: Mapped to TrgCAPStatus[31:0] of NVMeTCP25G-IP.

(CAPSTSL_INTREG)

BA+0x0424 Capability (High) Status Reg [31:0]: Mapped to TrgCAPStatus[47:32] of NVMeTCP25G-IP.

(CAPSTSL_INTREG)

BA+0x0430 Host Error Type Reg [31:0]: Mapped to HostErrorType[31:0] of NVMeTCP25G-IP to show error

status. (HERRTYPE_INTREG)

BA+0x0440 NVMe Completion Status Reg [15:0]: Mapped to TrgAdmStatus[15:0] of NVMeTCP25G-IP.

[31:16]: Mapped to TrgIOStatus[15:0] of NVMeTCP25G-IP. (NVMCOMPSTS_INTREG)

BA+0x0450 -

BA+0x045F

Test pin Word 0-3 Reg 128-bit signal mapped to TestPin[127:0] of NVMeTCP25G-IP.

0x0450: Bit[31:0], 0x0454: Bit[63:32], …, 0x045C:Bit[127:96] (NVMTESTPINW0-W3_INTREG)

0x0500 – 0x07FF: Status signals of TestGen (Read access only)

BA+0x0500 -

BA+0x050F

Expected Pattern DW0-DW3 Reg 128-bit expected data at the 1st failure data in Read data verification of

TestGen.

0x0500: Bit[31:0], 0x0504: Bit[63:32], …, 0x050C:Bit[127:96]

(EXPPAT0-3_INTREG)

BA+0x0540 -

BA+0x054F

Read Pattern DW0-DW3 Reg 128-bit read data at the 1st failure data in Read data verification of

TestGen.

0x0540: Bit[31:0], 0x0544: Bit[63:32], …, 0x054C:Bit[127:96]

(RDPAT0-3_INTREG)

BA+0x0580 Failure Address (Low) Reg [31:0]: Mapped to bit[31:0] of the byte address of the 1st failure data in

Read data verification of TestGen. (RDFAILNOL_INTREG)

BA+0x0584 Failure Address (High) Reg [24:0]: Mapped to bit [56:32] of the byte address of the 1st failure data in

Read data verification of TestGen. (RDFAILNOH_INTREG)

BA+0x0590 Current Test Byte (Low) Reg [31:0]: Mapped to bit[31:0] of the current test data size in TestGen to show

the byte amount of successful test data (without error). (CURSIZEL_INTREG)

BA+0x0594 Current Test Byte (High) Reg [24:0]: Mapped to bit[56:32] of the current test data size in TestGen to

show the byte amount of successful test data (without error). (CURSIZEH_INTREG)

0x0800 – 0xFFFF: Other interfaces

BA+0x0800 IP Version REG [31:0]: Mapped to IPVersion[31:0] of NVMeTCP25G-IP

 Rd (IPVERSION_INTREG)

BA+0x0804 EMAC Version REG [31:0]: Mapped to IPVersion[31:0] of 10G25GEMAC-IP

Rd (EMACVERSION_INTREG)

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 23

3 CPU Firmware

3.1 Test firmware (nvmetcpiptest.c)

After system boot-up, CPU initializes (JTAG)UART and Timer parameters. Next, 25G
Ethernet link up status (HSTS_INTREG[0]) is polling. The CPU waits until the ethernet link is
established. After that, the main menu is displayed on the console (Serial console or JTAG
Terminal). There are five test operations for user selection, i.e., Set network parameter,
Connect, Write command, Read command, and Disconnect. User must select the proper
menu following the IP sequential processes as below.
1) User sets network parameter as the first action.
2) User selects Connect as the second action to connect with target SSD.
3) After Connect operation is done, user can write or read the target SSD by Write command

or Read command.
4) When user wants to disconnect with the target SSD (disconnect NVMeTCP25G-IP from

the target), user selects Disconnect.
5) After Disconnect operation is done, user can go back to set network parameter again (1)

or connect with the target again by Connect (2).
Note: When user connects host with the same target again (2), setting network parameter
(1) can be omitted.

In main menu, only proper menu is displayed. If user selects a menu which is unavailable on
the console, no action will occur.

3.1.1 Set network parameter

This menu is used to set the network parameters for NVMeTCP25G-IP initialization, i.e., host
MAC address, host IP address, host port number, target MAC address mode, target MAC
address (when running Fixed MAC mode), and target IP address. Also, NVMe Qualified Name
(NQN) of the host and the target are set in this menu. The sequence of parameter setting is as
follows.
1) Display current parameter values on the console. If the parameters have never been set,

the default values (assigned in the testing firmware) are shown.
2) Ask user to skip (confirm the current parameter values) or set the desired values.

(a) Press ‘x’ on keyboard to skip.
(b) Press other keys to start parameter value setting.

3) When pressed key is not ‘x’, user is asked to input the desired parameter values, i.e., target
NQN, host MAC address, host IP address, host port numbers (Admin and I/O), target MAC
address mode, target MAC address (when running Fixed MAC mode), and target IP
address respectively. If the input is invalid, the parameter is set by its latest value.

4) After parameter values are set (or ‘x’ key is pressed), CPU assigns them to parameter
registers (HSTNQNW0-3_INTREG, TRGNQNW0-3_INTREG, TCP_HML/H_INTREG,
TCP_HIP_INTREG, TCP_HPN_INTREG, TCP_TML/H_INTREG, TCP_TIP_INTREG,
TCP_TMO_INTREG, and NVM_TMO_INTREG).
Note: Timeout value of TCP, Timeout value of NVMe, and host NQN are always set as
default values by the firmware.

• TCP timeout value is 1 sec.

• NVMe timeout value is 4 sec.

• NQN of the host value is “dgnvmehtest”

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 24

3.1.2 Connect

This menu is used to create the connection between NVMeTCP25G-IP (the host) with the
target system before writing or reading the target SSD. The sequence of Connect is as follows.
1) Set connection enable (CONNEN_INTREG) to ‘1’.
2) CPU waits until the connection is created completely via monitoring host connection status

flag (HSTS_INTREG[1]=’1’). If some errors are found (HSTS_INTREG[3]=’1’), the process
stops with displaying the error message.

3) After that, the target SSD capacity (LBASIZEL/H_INTREG) in GB unit is displayed.

3.1.3 Write/ Read command

These menus are used to test NVMeTCP25G-IP by writing or reading the target SSD. The
sequence of the commands is as follows.
1) Receive start address, transfer length, and test pattern from user. If some inputs are invalid,

the operation is cancelled.
Note: A Write or Read command data size is fixed to 8 Kbytes. So, start address and
transfer length which are 512-byte unit must be aligned to 16.

2) Get all inputs and set to HMM_ADRL/H_INTREG, HMM_LENL/H_INTREG, and
PATTSEL_INTREG.

3) Set USRCMD_INTREG[0] according to command type (‘0’ for Write command, ‘1’ for Read
command). After that, Test logic (TestGen) generates the command in HostMM I/F to
NVMeTCP25G-IP. Test busy flag (HSTS_INTREG[4]) changes from ‘0’ to ‘1’ and
NVMeTCP25G-IP starts operating the command.

4) CPU waits until the operation is completed or some errors (except verification error) are
found by monitoring HSTS_INTREG[5:3].

Bit[3] is asserted to’1’ when error is detected. After that, error message is displayed on the
console to show the error details. Finally, the process is hanged up.
Bit[4] is de-asserted to ‘0’ when the command operation in the test system is done which
means both NVMeTCP25G-IP and TestGen return back to be idle.
Bit[5] is asserted to ‘1’ when data verification is failed. Then, the verification error message
is displayed. CPU is still running until the operation is done or user inputs any key to cancel
operation.

During running command, current amount of transferred data (read from
CURSIZEL/H_INTREG) is displayed every second.

5) After test busy flag (HSTS_INTREG[4]) is de-asserted to ‘0’, CPU displays the test result

on the console, i.e., total time usage, total transfer size, and transfer speed.

3.1.4 Disconnect

This menu is used to terminate TCP/IP and NVMe/TCP connections between the host and the
target which are built by Connect command. The sequence of Disconnect is as follows.
1) Reset connection enable (CONNEN_INTREG) to ‘0’.
2) CPU waits until the disconnecting process is completed via monitoring host connection

status flag (HSTS_INTREG[1]=’0’). If some errors are found (HSTS_INTREG[3]=’1’), the
process stops with displaying the error message.

3) After disconnect is done, user can re-connect the host with the same target again via
Connect command. If the target is changed, “Set Network Parameter” must be selected to
set the new parameters for the new target.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 25

3.2 Function list in Test firmware

unsigned long long get_cursize(void)

Parameters None

Return value Read value of CURSIZEH/L_INTREG

Description Read CURSIZEH/L_INTREG and return read value as function result.

int get_param(userin_struct* userin)

Parameters userin: Three inputs from user, i.e., start address, total transfer length in
512-byte unit, and test pattern

Return value 0: Valid input, -1: Invalid input

Description Receive the input parameters from the user and verify the value. When
the input is invalid, the function returns -1. Otherwise, all inputs are
updated to userin parameter.

void get_string(unsigned char* out_val)

Parameters out_val: Character array which stores 16 bytes of NQN

Return value None
Description Receive 16 characters of NQN from user. When user presses “Enter”,

the input NQN is stored in output character array. If the input is less than
16 characters, the upper characters are filled as ”00h” (Null).

void proc_connect(void)

Parameters None

Return value None

Description Establish the connection with the target SSD, following topic 3.1.2
(Connect)

void proc_disconnect(void)

Parameters None

Return value None

Description Terminate the connection with the target SSD, following topic 3.1.4
(Disconnect)

int set_netparam(void)

Parameters None

Return value 0: No error, -1: Out of range input

Description Set network parameters, following topic 3.1.1 (Set network parameter).

void set_param(void)

Parameters None

Return value None

Description Set parameters from global parameters to the registers.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 26

void show_error(void)

Parameters None

Return value None

Description Read HERRTYPE_INTREG, decode the error flag, and display error
message following the error flag.

void show_param(void)

Parameters None

Return value None

Description Display the current value of the parameters, read from global parameters
such as NQN, IP address, MAC address, and port number.

void show_result(void)

Parameters None

Return value None

Description Print total size by calling get_cursize and show_size function. After that,
calculate total time usage from global parameters (timer_val and
timer_upper_val) and display in usec, msec, or sec unit. Finally, transfer
performance is calculated and displayed in MB/s unit.

void show_size(unsigned long long size_input)

Parameters size_input: transfer size to display on the console

Return value None

Description Calculate and display the input value in MByte, GByte or TByte unit

void show_testpin(void)

Parameters None

Return value None

Description Read NVMTESTPINW0-W3_INTREG to display IP test pin on the
console for debugging.

void show_vererr(void)

Parameters None

Return value None

Description Read RDFAILNOL/H_INTREG (error byte address),
EXPPAT0-3_INTREG (expected value), and RDPAT0-3_INTREG (read
value) to display verification error details on the console.

void wait_ethlink(void)

Parameters None

Return value None

Description Read HSTS_INTREG[0] and wait until Ethernet link is established.

int wrrd_dev(unsigned int user_cmd)

Parameters user_cmd: 0-Write command, 1-Read command,

Return value 0: No error, -1: Receive invalid input or some errors are found.

Description Run Write or Read command, following topic 3.1.3 (Write/Read
command)

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 27

4 Example Test Result

The demo uses NVMeTCP25G-IP on KCU116 board as the host. A 1 TB WD Black SN850 is
plugged in target PC installing LinuxOS with kernel version 5.4.0-81. The example test result is
shown in Figure 4-1.

Figure 4-1 Test Performance of NVMeTCP25G-IP demo

Write performance is about 2200 - 2500 Mbyte/sec for every buffer size. While read performance
depends on read buffer size referred from NVMeTCP25G-IP specification. The maximum read
performance is about 2600 Mbyte/sec with 1-Mbyte read buffer. The minimum read performance
is about 1448 Mbyte/sec with 64-Kbyte read buffer. The performance results may be unstable
affected from resources of the target side. The results shown in Figure 4-1 are the best
performance values in our test environment.

dg_nvmetcp25gip_refdesign_xilinx.doc

2023/08/21 Page 28

5 Revision History

Revision Date Description

1.0 25-Mar-22 Initial Release

Copyright: 2022 Design Gateway Co,Ltd.

