

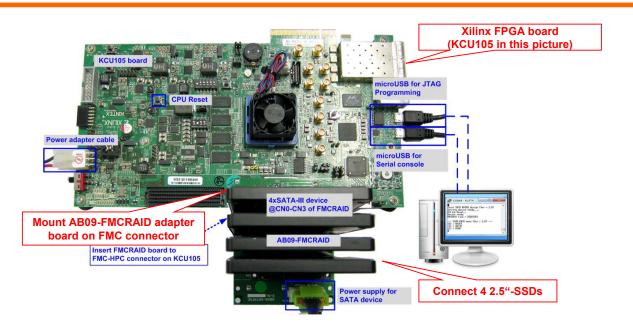
RAID prototype system introduction Ver1.3E

SATA-IP RAID prototype system for Xilinx FPGA

3 September 2018

Design Gateway

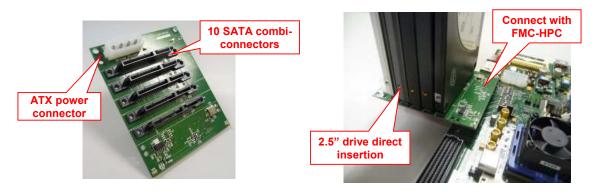
Page 1


System Outline

- RAID prototype for the latest Xilinx FPGA
- Use RAID adapter board (AB09-FMCRAID)
- Operate 4-channel RAID0 (parallel access)
- Standard and High Performance version
- Show read/write result to PC via RS232C
- Execute test pattern read/write
- Display measured transfer performance

RAID prototype system using Xilinx FPGA board

3 September 2018


Design Gateway

Page 3

RAID Adapter Board

- Can support up to 10 SATA channels (each 5 SATA ports on both component and solder side)
- Connect with FMC-HPC connector on Xilinx FPGA board
- 2.5"-SSD/HDD drive direct insertion
- Drive power supply via standard ATX power connector
- Part Number: AB09-FMCRAID
- Available on Mouser website <u>https://www.mouser.com/</u>

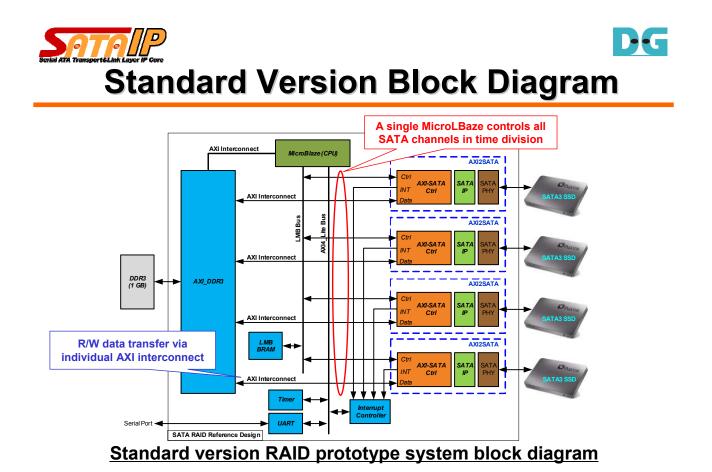
3 September 2018

Design Gateway

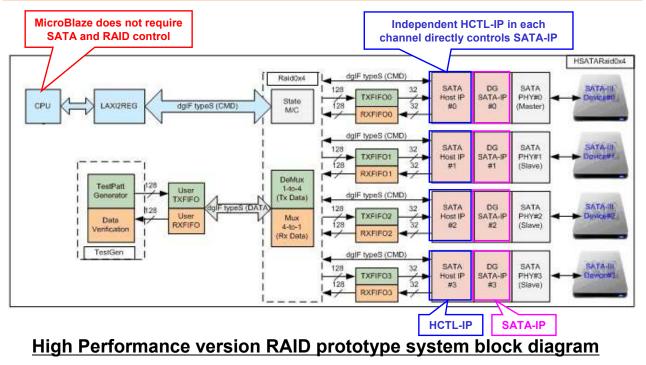
Page 4

Two types RAID design

• Standard Version (MicroBlaze control)

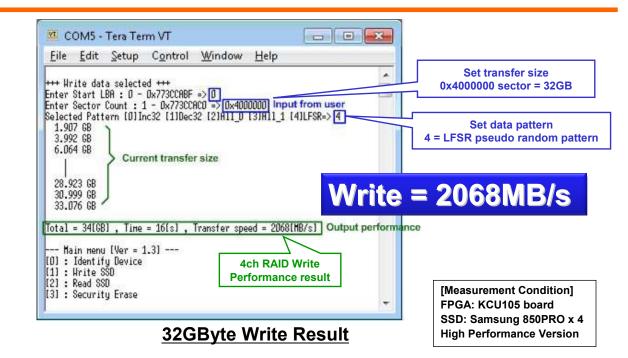

- Use MicroBlaze for SATA-IP controller

- All channel control by time division in CPU F/W
- Requires SATA-IP only (no need HCTL-IP)
- High Performance Version (HCTL-IP control)
 - Use HCTL-IP core for SATA-IP controller
 - Minimum latency, Maximum performance
 - Requires Both SATA-IP and HCTL-IP core


3 September 2018

Design Gateway

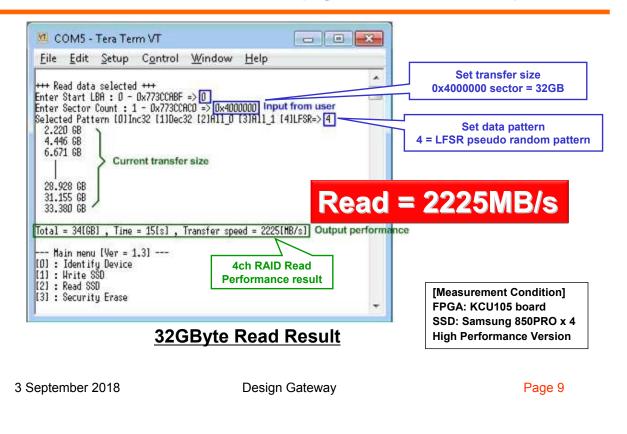
High Performance Version Block Diagram



Design Gateway

3 September 2018

Write Result (High Performance Version)



Page 7

Read Result (High Performance Version)

RAID Performance

- Write speed efficiency=99%
 - Single=520MB/s, 4ch-RAID=2068MB/s
 - Speed efficiency = 2068/(4 x 520) = 99%
- Read speed efficiency=97.29%
 - Single=560MB/s, 4ch-RAID=2225MB/s
 - Speed efficiency = 2225/(4 x 560) = 99%

- Vivado project is attached with SATA-IP and/or HCTL-IP product
- Full source code except IP core
 - VHDL for hardware and C for MicroBlaze firmware

Can save user system development duration

- Confirm real board operation by original reference design
- Then modify a little to approach final user product
- Check real operation in each modification step

3 September 2018

Design Gateway

Page 11

Conclusion

- Can build RAID prototype with FPGA & RAID adapter
 - Quick check of RAID system without new board building
- RAID performance is almost 100% of single drive total
 - Multiply performance by drive count
- Prototype design is available for SATA-IP users
 - Reduce RAID system development period based on this design

For more detail

- Detailed technical information available on the web site.
 - <u>https://dgway.com/SATA-IP_X_E.html</u>
- Contact
 - Design Gateway Co,. Ltd.
 - sales@design-gateway.com
 - FAX: +66-2-261-2290

3 September 2018

Design Gateway

Page 13

Revision History

Rev.	Date	Description
1.0	04-Jun-09	RAID prototype system introduction 1st release
1.1E	21-Feb-13	Updated toKC705 based RAID system
1.3E	03-Sep-18	Added latest family support, added high performance version description

