SHA256 IP Core Data Sheet

Featu	res	1
Gene	ral Description	2
	ional Description	
	Set length of data	
	Input data transfer	
	Hash result valid	
	cation Methods	
	mmended Design Experience	
	ing Information	
	ion History	

Design Gateway Co.,Ltd

E-mail: ip-sales@design-gateway.com URL: www.design-gateway.com

Features

- Support SHA 256-bit standard function.
- Support input data length up to 2⁶¹-1 bytes. (2⁶⁴-8 bits)
- Super high throughtput rate at 65 clocks per 64 bytes data (1.015625 cycles/byte).
- Hash speed up to 1.575 Gbps @ 200MHz.
- Simple user interface signals as same as FIFO interface.

Core Facts					
Provided with Core					
Documentation	User Guide, Design Guide				
Design File Formats	Encrypted hdl File				
Verification	A10SoC board @200MHz				
Instantiation Templates	VHDL				
Reference Designs &	QuartusII Project,				
Application Notes	See Demo Instruction				
Additional Items	Arria10 SoC				
	Development Board				
Sin	nulation Tool Used				
-					
Support					
Support Provided by Design Gateway Co., Ltd.					

Table 1: Example Implementation Statistics for SHA256IP on A10SoC board.

Family	Example Device	Fmax (MHz)	ALMs	LUTs	Registers ⁽¹⁾	M20Ks	Design Tools
Arria10 SX	10AS066N3F40E2SGE2	200	761.3	1,163	1,359	1	QuartusII 16.0

Notes:

(1) Actual logic resource dependent on percentage of unrelated logic.

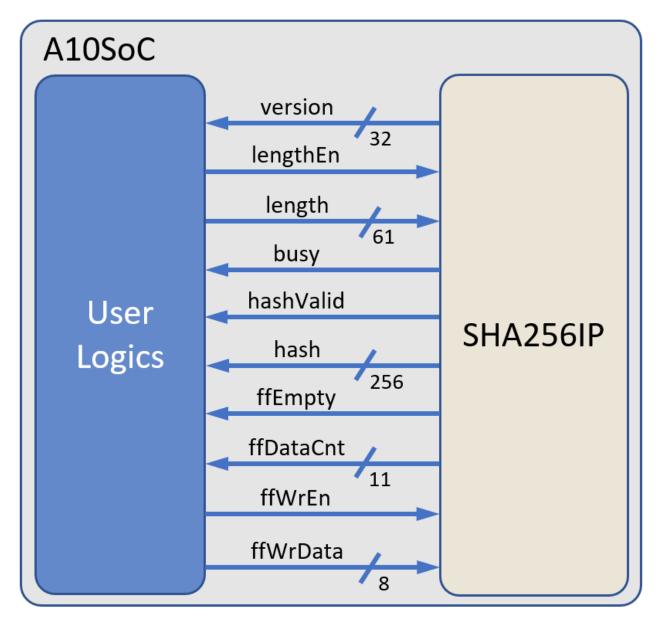


Figure 1: SHA256IP Block Diagram

General Description

SHA256IP implements the SHA-256 algorithm which is widely used for authenticating in many applications. Such as communication, password authentication, and also data authentication in blockchain system.

2 August 30, 2023

Functional Description

Table 1 shows interface signals of SHA256IP.

Table 1 I/O signals

Signal name	Dir	Description				
rstB	In	IP core system reset. Active low.				
clk	In	IP core system clock.				
version[31:0]	Out	32-bit version number of SHA256IP				
	HASH function control signals					
lengthEn	In	lengthEn is signal to set length of data for hash function. And SHA256IP will start to wait data.				
length[60:0]	In	data length in byte unit.				
busy	Out	busy is actived after user set lengthEn, until SHA256IP get all data and finish hash process.				
hashValid	Out	hashValid signal is actived 1 cycle at the end of hash process, user can capture hash result at this cycle.				
hash[255:0]	Out	256-bit hash result				
		Input data interface (FIFO interface)				
ffWrEn	In	ffWrEn is control signal to write ffWrData[7:0] to internal memory.				
ffWrData[7:0]	In	8-bit input data.				
ffEmpty	Out	ffEmpty is empty status of internal memory to wait for input data. *Note: actual internal memory is 32-bit width, then ffEmpty is changed when internal data valid is more than 4 bytes.				
ffDataCnt[10:0]	Out	ffDataCnt[10:0] is current valid data in byte unit. User must pause data transfer when remained buffer is less than 64 bytes (ffDataCnt[10:0] > x"7C0") *Note: actual internal memory is 32-bit width, then ffDataCnt is changed when internal data valid is more than 4 bytes.				

August 30, 2023 3

SHA256IP operation is as simple as 3 steps as below and Figure 2 shows timing diagram of SHA256IP interface signals.

Set length of data

The hash operation is started after user set lengthEn = '1' and data size is set in length[60:0] signal on the same cycles.

The busy signal is actived to be '1' until SHA256IP get all data and finished hash function.

Input data transfer

After set length to SHA256IP, SHA256IP wait for data with same size of length. The hash function is calculated while data is transferring.

Data interface signals is as simple as 8-bit FIFO interface signals. User logic must pause data transfer when ffDataCnt[[10:0] is existed "7C0" value because SHA256IP need interface data buffer at least 64 bytes.

Hash result valid

After SHA256IP receive all data equal with specific length and hash function is finished, hash value is set to hash[255:0] signal while hashValid signal is set to be '1'. Then busy is set to be '0' in next cycle, and wait for next operation cycle.

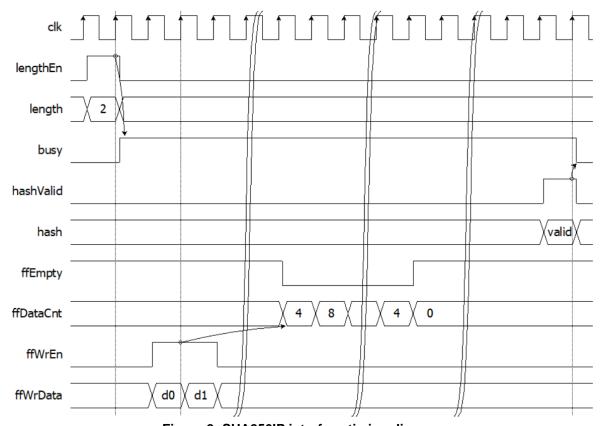


Figure 2: SHA256IP interface timing diagram

4 August 30, 2023

Verification Methods

The SHA256IP Core functionality was verified on real board design by using Arria10 SoC development board.

Recommended Design Experience

User must be familiar with HDL design methodology to integrate this IP into system.

Ordering Information

This product is available directly from Design Gateway Co., Ltd. Please contact Design Gatway Co., Ltd. For pricing and additional information about this product using the contact information on the front page of this datasheet.

Revision History

Revision	Date	Description	
1.00	26/Jan/2021	New release	

August 30, 2023 5