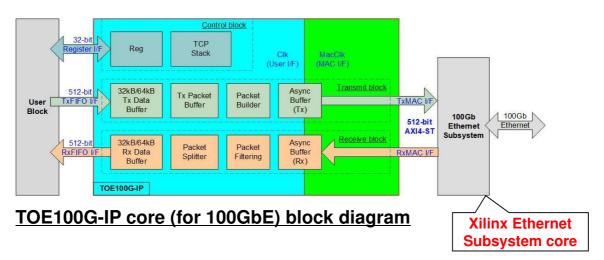


TOExxG-IP Introduction (Xilinx)

Ver2.0XE

Ultra Hi-Speed TCP by purely hard-wired logic IP-Core!


2021/8/2 Design Gateway Page 1

TOExxG-IP core Overview

- TCP/IP off-loading engine for 100G/40G/25G/10G/1GbE
- Inserts between user logic and Xilinx Ethernet Subsystem
- Fully hard-wired TCP control for both Tx and Rx
- Supports Full Duplex communication

OExxG-IP core product line up

Family Line rate	1GbE	10GbE	25GbE	40GbE	100GbE
Artix-7	Ship OK				
Kintex-7	Ship OK	Ship OK			
Virtex-7	Ship OK	Ship OK			
Zynq-7000	Ship OK	Ship OK			
Kintex-UltraScale	Order OK	Ship OK		Ship OK	
Kintex-UltraScale+	Order OK	Order OK	Ship OK	Order OK	Ship OK
Zynq-UltraScale+	Order OK	Ship OK		Ship OK	
Virtex-UltraScale+	Order OK	Ship OK	Ship OK	Order OK	Order OK
Alveo		Order OK	Order OK	Order OK	Ship OK

TOExxG-IP core lineup (as of 1st-Aug-2021)

Ship OK: Can immediate ship

Order OK: Can place order


2021/8/2 Page 3

TOExxG-IP core Advantage 1

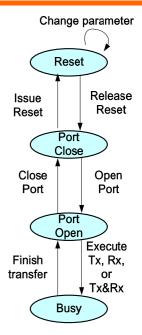
- Fully hard-wired TCP/IP protocol control
 - Possible to build CPU-less network system
 - Zero load for CPU

- 90% real transfer speed of line rate for half-duplex
- 80% real transfer speed of line rate for full-duplex

- Guarantee transfer data reliability
 - Tx: Automatic retry when No-ACK, Duplicate-ACK, timeout
 - Rx: Automatic ACK control by Sequence number calculation
 - Flow control: Automatic TCP Window Update Packet generation

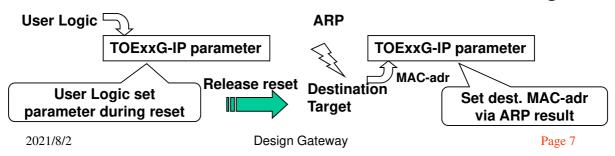
TOExxG-IP core Advantage 2

- · Selectable data buffer size
 - Selectable buffer size of memory usage vs. performance
- Compatible with Xilinx Ethernet Subsystem core
 - Low-cost EMAC-IP core (10GbE/25GbE) also available
- Many reference design on Xilinx evaluation board
 - Full Vivado project for standard Xilinx board
 - Free bit-file for evaluation before purchase
 - All source code (except IP-core) in design project


2021/8/2 Design Gateway Page 5

TOExxG-IP core Operation

- Set parameter (IP-adr&MAC-adr, etc) during Reset
- Release Reset then initialize including ARP
- · Idle state after initialization finish, wait command
- Port open by either of Active (Client) or Passive (Server) mode
- Tx and Rx operates individually (full-duplex)
- If want change parameter, move to Reset state (transfer/packet length can change except Busy)

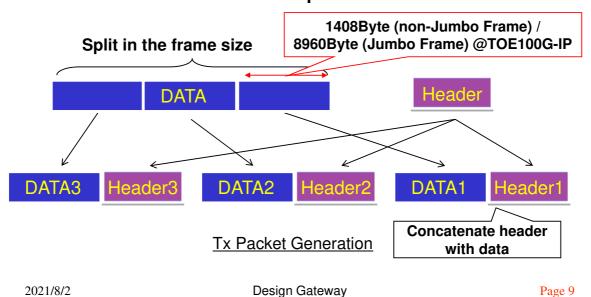

State Diagram

TOExxG-IP Initialization

- Set parameter to TOExxG-IP
 - User logic can set parameter during TOExxG-IP reset
 - Set IP address, MAC address, and Port number
 - Release reset after parameter setting finish
- TOExxG-IP executes ARP after reset release
 - Client mode: Issue ARP to the destination target
 - Server mode: Wait ARP from the destination target

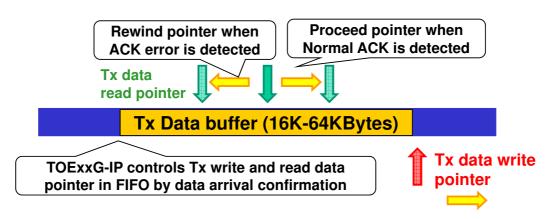
High-Speed Tx

- Tx packet generation
 - User Logic writes Tx data to TxFIFO
 - Split Tx data in the frame size
 - Concatenate header with Tx data
- Automatic retransmit function
 - Check ACK reply from destination
 - Detect No-ACK, Duplicate-ACK, and Timeout
 - Resend same packet by such ACK error detection



Tx Packet Generation

- Generate header and concatenate it with Tx data
 - TOExxG-IP splits Tx data in the frame size
 - Generate checksum and sequence number in TOExxG-IP



Automatic retransmit

- Retransmit function by dedicated FIFO
 - Proceed pointer by normal ACK reception
 - Rewind pointer by illegal ACK reception
 - TOExxG-IP controls pointer and retransmit operation

High-Speed Rx

Rx packet header check

- Ignore packet if destination is not TOExxG-IP or if checksum is wrong
- Data reordering
 - Reorder when sequence number skip is detected
 - Avoid retransmit request for transfer efficiency
 - If reordering is not possible, then send duplicate ACK

Duplicate data management

- Check duplicate data in Rx packet
- Retrieve original data by trimming duplicate data part

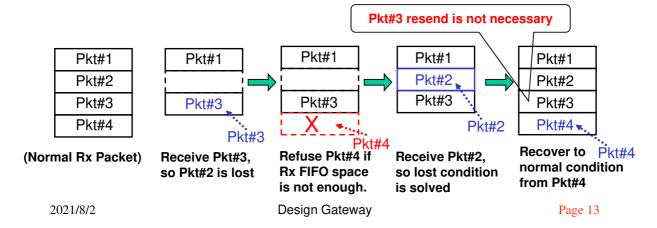
2021/8/2 Design Gateway Page 11

Rx Packet Header Check

Verify header check sum in Rx packet

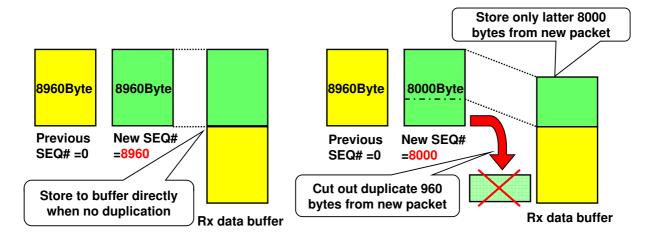
- Also check following condition in TOExxG-IP

Byte Offset	rotoco	Description	Check condition
0-5	ICMP	Destination MAC adr	Match with MAC adr set by SML/SMH register
6-11	ICMP	Source MAC adr Match with target MAC adr set by ARP	
12-13	ICMP	Туре	= 0x0800 (IP packet)
14	ΙΡ	Version/Header	= 0x45 (IPv4, IP header len=20)
20	ΙΡ	Flag/Fragment OFS	= b"000000" (no fragment)
23	ΙΡ	Protocol Number	= 0x06(TCP packet)
26-29	ΙP	Source IP adr	Match with IP adr set by DIP register
30-33	ΙΡ	Destination IP adr	Match with IP adr set by SIP register
			Match with DPN register or extracted target port number in
34-35	TCP	Source port number	Passive Open
36-37	TCP	Destination port number	Match with port number set by SPN register
38-41	TCP	Sequence number	Possible value within TOE2-IP core can process this packet


Header check condition in Rx packet

Data Reordering

- Function when SEQ number skip is detected
 - Not accept any packet other than that can solve lost condition
- Data reordering function
 - Recover data contiguous from lost-solved packet
 - Keep performance by suppress resend request

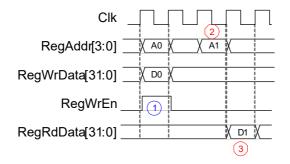


Duplicate data trimming

- Detect data duplication and correct automatically
 - Detect Rx data duplication by checking sequence number
 - Trim duplicate block and retrieve contiguous data

generation)

- TCP Window Update (ACK) packet generation
 - Detects available space in RX data buffer is restored
 - IP core sends Window Update pkt. at a set threshold.
 - Target side can resume packet sending.

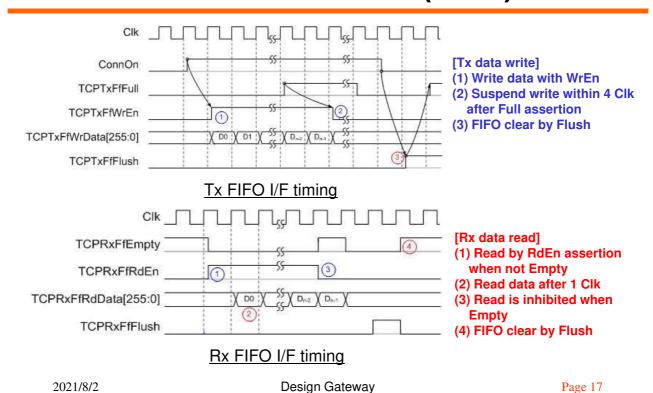

P: xx.42=FPG	A IP:xx.25	=PC (Tgt)							al ACK o	
Source	Destination	Protocol Length	Info					(lgi)	PGA	xiei
192.168.11.42	192.168.11.25	TCP 60	4000-50223	[ACK] S	eq=1 Ack=	61321 W	in=4213	Len=0		
192.168.11.42	192.168.11.25	TCP 60	4000→50223	[ACK] S	eq=1 Ack=	62781 W	in=2753	Len=0		
192.168.11.42	192.168.11.25	TCP 60	4000-50223	ACK 5	ea=1 Ack=	64241 W	in=1298	Len=0		
192.168.11.42	192.168.11.25	TCP 60	[TCP Window	v Update] 4000→50	223 [AC	K] Seq=1	Ack=64241	Win=3352	Len=0
192.168.11.42	192.168.11.25	TCP 60	[TCP Window	Update] 4000→50	223 [AC	K] Seq=1	Ack=64241	Win=5406	Len=0
192.168.11.42	192.168.11.25	TCP 60	[TCP Window	v Update] 4000→50	223 [AC	K] Seq=1	Ack=64241	Win=7460	Len=0
192.168.11.42	192.168.11.25	TCP 60	[TCP Window	v Update	1 4000→50	223 [AC	K] Seg=1	Ack=64241	Win=9514	Len=0
192.168.11.25	192.168.11.42		50223-4000							
192.168.11.25			50223-4000							
192.168.11.25	192.168.11.42	TCP 1514	50223-4000	[ACK] S	eq=67161	Ack=1 W	in=25696	0 Len=1460		
Resume of sending Windows	by Au	utomatic V (Example	Vindow U	•	•	_		IP core of Win. Upd	ate pkt.	by
2021/8/2	<u>e</u>		Desig	n Gatev	<i>v</i> ay				Page 1	5

User Interface (Control)

- 3 types of Register I/F, Tx FIFO I/F, and Rx FIFO I/F
 - Register I/F for initial parameter setting and Tx/Rx command
 - Tx FIFO I/F and Rx FIFO I/F is standard FIFO interface

Register I/F timing

[Register Write]
(1) Assert RegWrEn with
RegAddr and RegWrData


[Register Read]

- (2) Set RegAddr
- (3) Valid RegRdData output in the next clock

User Interface (Data)

Buffer Capacity

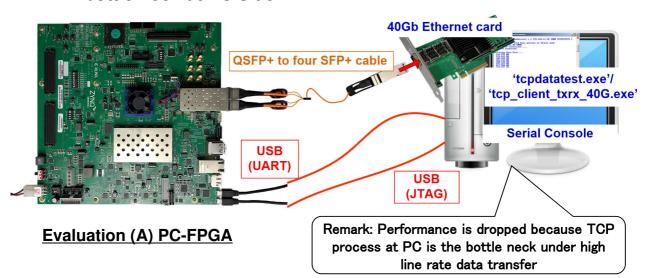
- Parameterized 2 types of data buffer
 - (1) Tx Data Buffer: 16K/32K/64KBytes(2) Rx Data Buffer: 16K/32K/64KBytes
- User can optimize resource usage and performance

Generic Name	Range	Description
TxBufBitWidth	9-11	Set Tx data buffer size in address bit width
		When set to 9, size is 16KBytes, when 11, 64Kbytes for example.
RxBufBitWidth	9-11	Set Rx data buffer size in address bit width
		When set to 9, size is 16KBytes, when 11, 64KBytes for example.

Buffer size is selectable by parameterization

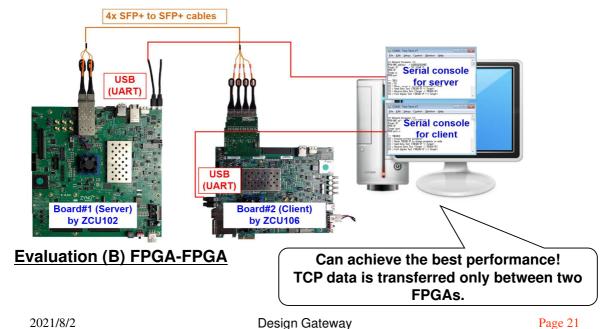
2 types free Bit file for Evaluation

- 2 types free Bit file for evaluation with Xilinx board
 - Communicate between (A)PC and FPGA, or (B)Two FPGA Bds.
 - For PC-FPGA connection, PC side become bottle neck
 (Real time TCP process by PC with high rate is not practical)
- Measure transfer performance and data reliability
 - Supports both Half-Duplex and Full-Duplex mode
 - Data reliability check by real time data verification
- Bit file is free of charge
 - User can evaluate IP-core before purchase


2021/8/2 Design Gateway Page 19

Evaluation (A) PC-FPGA

- Use of evaluation software on PC side
 - Note that it can't achieve the best performance due to the bottle neck at PC side



Evaluation (B) FPGA-FPGA

- Communicate between two FPGA boards
 - External PC controls both two FPGAs via serial console

IP Corp Series

Reference Design Overview

- Vivado design project for real operation
 - All source code (except IP-core) included in full project
 - Both half-duplex and full-duplex design in IP-core package

Vivado project in package

Effective Development on Ref. Design

- Vivado project is attached to the package
- Full source code (VHDL) except IP core
- Can save user system development duration
 - Confirm real board operation by original reference design.
 - Then modify a little to approach final user product.
 - Check real operation in each modification step.

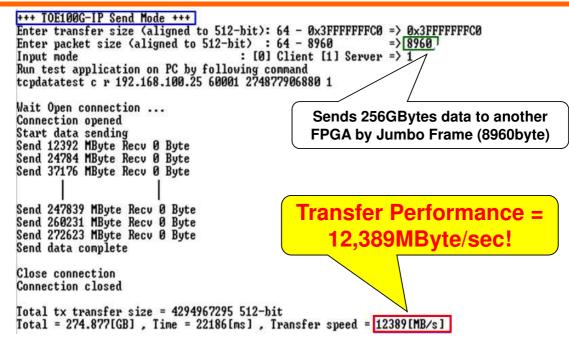
Short-term development is possible without big turn back

2021/8/2 Design Gateway Page 23

Resource Usage

- TOExxG-IP core standalone resource usage
 - Condition = Maximum buffer setting (Tx=Rx=64KB buffer)

Line rate (family)	Clock freq.	Logic usage	Max. memory
1GbE (Kintex-7)	125MHz	1059 Slices	37.5 BRAM Tile
10GbE (Kintex-7)	156.25MHz	1326 Slices	36 BRAM Tile
10GbE (Kintex-US)	156.25MHz	755 CLBs	34.5 BRAM Tile
25GbE (Kintex-US+)	350MHz	864 CLBs	36 BRAM Tile
40GbE (Kintex-US)	300MHz	959 CLBs	34.5 BRAM Tile
100GbE (Alveo)	350MHz	1999 CLBs	53 BRAM Tile


TOExxG-IP core standalone compilation result

This result is based on maximum buffer size setting.
User can save memory resource by smaller buffer size setting

Performance (100GbE)

Half-Duplex 100GbE transfer result of two FPGAs communication

2021/8/2 Design Gateway Page 25

Performance (each line rate)

Line rate	Half-duplex	Full-duplex	condition
1GbE	116MByte/s	103MByte/s	FPGA-PC xfer
10GbE	1,200MByte/s	924MByte/s	FPGA-PC xfer
25GbE	3,098MByte/s	3,096MByte/s	2 FPGA Boards xfer
40GbE	4,907MByte/s	4,858MByte/s	2 FPGA Boards xfer
100GbE	12,389MByte/s	11,177MByte/s	2 FPGA Boards xfer

TOExxG-IP core performance result of each line rate

Conclusion

- High Speed data transfer via TOExxG-IP core
 - Practically fastest speed with guaranteed TCP protocol
- Fully hard-wired logic for complicated TCP process
 - Automatic re-send/re-order/duplicated data truncation
- Easy User I/F via register and FIFO
 - Simple enough to build CPU-less system
- Reference design with real operation available
 - Steady development with "design and check" in parallel

TOExxG-IP shall strongly support product development to achieve maximum network use!

2021/8/2 Design Gateway Page 27

For more detail

- Detailed documents available on the web site.
 - https://dgway.com/TOE-IP_X_E.html
- Contact
 - Design Gateway Co,. Ltd.
 - E-mail : ip-sales@design-gateway.com
 - FAX: +66-2-261-2290

Revision History

Rev.	Date	Description
2.0XE	August 2, 2021	English version for all line up introduction initial release

2021/8/2 Design Gateway Page 29