
dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 1

TOE100G-IP on Alveo card reference design
Rev1.0 21-Sep-22

1 Introduction ... 2
2 TOE100DMATest (Hardware) ... 4

2.1 100G Ethernet Subsystem (100G BASE-SR) ... 5
2.2 TOE100G-IP ... 5
2.1 AxiDMACtrl512 ... 6

2.1.1 MtMainCtrl .. 8
2.1.2 AxiMtPRd ... 11

2.1.3 AxiMtPWr ... 14
2.2 LAxi2Reg .. 20

2.2.1 SAXIReg .. 21

2.2.2 UserReg ... 23
3 The host software ... 27

3.1 Framework .. 28

3.1.1 Device interface ... 28
3.1.2 Shell ... 31

3.2 Application .. 37
3.2.1 Display parameters .. 39
3.2.2 Reset IP ... 39

3.2.3 Send data test .. 40
3.2.4 Receive data test ... 41

3.2.5 Full duplex test ... 43
3.2.6 Function list in application .. 45

4 Test Software on the target ... 51

4.1 “tcpdatatest” for half duplex test.. 51
4.2 “tcp_client_txrx(_40G)” for full duplex test .. 53

5 Revision History .. 55

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 2

1 Introduction

Figure 1-1 Ethernet card and Accelerator card comparison

The left side of Figure 1-1 shows the general solution when 100G Ethernet is required in the host
PC. 100G Ethernet card is plugged-in to PCIe slot and then the user designs the test application
on the software platform that has the library to handle TCP, IP, and ARP protocol. The device
driver is provided by the 100G Ethernet card vendor to operate with the OS. Generally, the
performance result on the test application when transferring the data via 100G Ethernet is limited
by CPU task and the host system resource, so the maximum throughput of 100G Ethernet is not
achieved.

The right side of Figure 1-1 is the Accelerator system that uses the Alveo Accelerator card to be
the network interface card instead. TOE100G-IP by Design Gateway is integrated to be offload
engine for TCP/IP protocol. TOE100G-IP offloads CPU to handle TCP, IP, and ARP protocol, so
the TCP payload data is DMA transferred to Main memory, instead of Ethernet frame that is the
output from EMAC. Also, the platform to transfer the data with the Main memory by using DMA
engine via PCIe interface is specially developed by Xilinx. Therefore, the performance result
when using the Accelerator card with TOE100G-IP is much better than using Ethernet card.

The TOE100G-IP on Alveo card reference design shows the complete solution on the hardware
and the software to transfer TCP payload data on one TCP session with high-speed performance.
The software application on the host system is developed by C++ languages, so it is easy for the
user to integrate and modify the software to match with the system requirement.

Please see more details how to prepare the host system for running the Alveo accelerator card
from the following site.
https://www.xilinx.com/products/boards-and-kits/alveo.html

https://www.xilinx.com/products/boards-and-kits/alveo.html

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 3

Design Gateway also provides the development host system for Alveo card – Turnkey Accelerator
System. Please check more details from our website.
https://dgway.com/AcceleratorCards.html

Figure 1-2 Test environment

The architecture of the TOE100G-IP demo on Alveo card can be separated into two systems - the
host system which runs Ubuntu OS (Linux) and the hardware system which contains the
TOE100DMA (FPGA logic). Two systems are connected through PCIe. The low layer on both the
host system and the hardware system are handled and managed by Xilinx Runtime Library (XRT)
and Vitis target platform. To transfer the TCP/IP payload data at 100Gb speed on the host system,
the data is generated by the application with the memory allocation for transferring the data. The
memory uses multiple buffering to maximize the TCP/IP transmission performance.

To run the demo, the target system can be either Test PC with Ethernet card or TOE100G-IP on
another system. To use Test PC with Ethernet card, Design Gateway provides the test
applications – “tcpdatatest” and “tcp_client_txrx” for the half-duplex transfer (send or receive data)
and the full-duplex transfer (send and receive data at the same time by using one TCP session).
The test applications are provided on both Windows 10 OS and Ubuntu 20.04 OS. However,
using the test applications and the 100G Ethernet card show limited transfer performance. To
achieve the maximum performance on 100G Ethernet, the target system should be TOE100G-IP
on another system.

In the document, topic 2 shows the details of the hardware design on Alveo card. Topic 3
describes the software implementing on the Accelerator system. The last topic is the details of
test application on the target system for half-duplex test and full-duplex test.

https://dgway.com/AcceleratorCards.html

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 4

2 TOE100DMATest (Hardware)

Figure 2-1 TOE100DMATest block diagram

The platform provides two interface types for the hardware kernel – AXI4 for transferring data with
the Main memory and AXI4-Lite for register access which is generally applied to be control/status
signals of the hardware kernel. AxiDMACtrl512 is the DMA engine for transferring data in two
directions. The first one is to read the data from the Main memory and then forward to
TOE100G-IP via FIFO (AxiTxFifo). After that, the TCP/IP packet is transmitted to the target
system. The TCP payload data on the host memory is prepared by the test application. The
second one is to receive the data from TOE100G-IP via FIFO (AxiRxFifo) and then write it to the
Main memory. The test application on the host system reads the data from the Main memory with
or without data verification.

AXI4-Lite bus, the platform interface, connects to LAxi2Reg module which is the adapter to
convert AXI4-Lite bus to be Register interface for Control/Status signals. In TOE100DMATest
kernel, it maps the register interface of AxiDMACtrl512 and TOE100G-IP to LAxi2Reg, so the test
application can set the test parameters and monitor the test progress of the hardware.

TOE100G-IP connects with 100G Ethernet Subsystem via 512-bit AXI4-ST bus for connecting
with the 100G Ethernet hardware connection. The Ethernet Subsystem uses MacClk domain
which is equal to 322.266 MHz while the AXI interface of the platform uses ap_clk that is
configured by the platform. In this demo, ap_clk is configured to be equal to 320 MHz for
high-performance operation. CDC (Clock-crossing domain) is implemented inside TOE100G-IP.
According to TOE100G-IP datasheet, clock frequency of user interface (ap_clk) must be more
than or equal to 220 MHz. More details of each hardware module inside the TOE100DMATest are
described as follows.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 5

2.1 100G Ethernet Subsystem (100G BASE-SR)

This module implements EMAC and PCS/PMA logic of 100G Ethernet. The physical interface
on FPGA board can be applied by QSFP28 or 4xSFP28 for 100Gb BASE-SR standard. The
user interface for connecting with EMAC is 512-bit AXI4-stream interface running at
322.265625 MHz. This IP core is generated by using Xilinx IP wizard. More details of the core
are described in the following link.

PG203: UltraScale+ Devices Integrated 100G Ethernet Subsystem Product Guide

https://www.xilinx.com/products/intellectual-property/cmac_usplus.html

Note: In this demo, 100G Ethernet Subsystem enables RS-FEC feature, so please confirm
the network equipment of the test environment for running this demo that it can support
RS-FEC.

2.2 TOE100G-IP

TOE100G-IP implements TCP/IP stack to be the offload engine for transferring TCP/IP
packet with the network device. User interface has two signal groups, i.e., control signals and
data signals. Register interface is applied to set control registers and monitor status signals
while Data signals are accessed by using FIFO interface. The interface with 100G EMAC is
512-bit AXI4-ST interface. More details are described in datasheet.
https://dgway.com/products/IP/TOE100G-IP/dg_toe100gip_data_sheet_xilinx.pdf

https://www.xilinx.com/products/intellectual-property/cmac_usplus.html
https://dgway.com/products/IP/TOE100G-IP/dg_toe100gip_data_sheet_xilinx.pdf
https://dgway.com/products/IP/TOE100G-IP/dg_toe100gip_data_sheet_xilinx.pdf

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 6

2.1 AxiDMACtrl512

The TOE100G-IP supports full-duplex transfer test, so it is possible that data on AXI4 bus is
transferred in both directions at the same time for sending and receiving data with
TOE100G-IP. The test application on the host system must allocate two buffers (Tx buffer and
Rx buffer) for each transfer direction. To achieve the high performance, each buffer should be
split to many areas to allow the hardware and the software to operate parallelly. This
reference design, each buffer consists of four areas – quad buffering (Tx Buffer#0-#3 and Rx
Buffer#0-#3), as shown in Figure 2-2.

Note: Typically, using double buffer should be enough for CPU and DMACtrl transferring the
data with the Main memory at different area as parallel processing. However, four areas are
applied to add more safe time gap when CPU or DMACtrl pauses data transmission for long
time.

Figure 2-2 Quad buffering for DMA engine

The order to use each buffer area for both Tx and Rx Buffer is fixed to be #0 -> #1 -> #2 -> #3
-> #0.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 7

For Tx transfer, the Main memory is written by the test application on the host system and
read by the DMA engine (DMACtrl). The sequence of the operation is described as follows.
1) The CPU prepares the test data (dummy or incremental pattern) in the first area of the

Main memory (Tx buffer#0). After filling the last data, the Valid status of this memory area
(TxValid#0) is asserted.

2) If there is remaining data for transferring and the next memory area is free, the CPU starts
writing the test data to the next area (Tx buffer#1). At the same time, DMACtrl detects the
new memory area is valid and then it starts reading until the last data is read.

3) After finishing reading the last data, Clear status (TxClr#0) is asserted by DMACtrl to free
the current memory area. If the next memory area is valid (TxValid#1 is asserted),
DMACtrl starts the new operation. Repat step 1) – 3) until total data is transferred.

On the other hand, the Main memory is written by DMACtrl and read by the test application for
Rx transfer. The sequence of the operation is described as follows.
1) The DMACtrl prepares the test data in the first area of the Main memory (Rx buffer#0).

After filling the last data, the Valid status of this memory area (RxValid#0) is asserted.
2) If there is remaining data for transferring and the next memory area is free, the DMACtrl

starts writing the test data to the next area (Rx buffer#1). At the same time, CPU detects
the new memory area is valid and then it starts reading until the last data is read.

3) After finishing reading the last data, Clear status (RxClr#0) is asserted by CPU to free the
current memory area. If the next memory area is valid (RxValid#1 is asserted), CPU starts
the new operation. Repeat step 1) – 3) until total data is transferred.

As Tx transfer and Rx transfer are operated individually, the AxiDMACtrl512 is designed by
using three submodules for controlling Tx and Rx transfer separately, i.e., MtMainCtrl,
AxiMtPRd, and AxiMtPWr.

Figure 2-3 AxiDMACtrl512 Block Diagram

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 8

MtMainCtrl has the registers to store the test parameters, set by CPU. After decoding the test
parameters, MtMainCtrl generates the request with the parameters for AxiMtPRd and
AxiMtPWr to start Tx transfer and Rx transfer, respectively. AxiMtPRd generates the memory
read request to the host system via AXI4 I/F to read the data from the Main memory
(TxBuffer#0-#3) and transfer to AxiTxFifo. On the other hand, AxiMtPWr generates the
memory write request to write data from AxiRxFifo to the Main memory (RxBuffer#0-#3) via
AXI4 I/F. More details of each submodule are described as follows

2.1.1 MtMainCtrl
MtMainCtrl is designed to generate a command request to AxiMtPWr and AxiMtPRd for
transfer the data of each buffer area. Therefore, when the total transfer size that is requested
by the user is more than the buffer size area, multiple command requests are created by
MtMainCtrl to AxiMtPWr/AxiMtPRd. It needs to have two individual submodules for
generating command request to AxiMtPWr and AxiMtPRd. The operation to generate request
to AxiMtPWr and AxiMtPRd are similar, so the same submodule, called AxiMtPCmd, is
applied. This document shows the operation of AxiMtPCmd to control AxiMtPRd in Tx transfer
and AxiMtPWr in Rx transfer by using timing diagram (Figure 2-4 and Figure 2-5).

The details of Figure 2-4 are described as follows.
1) UserTxStart is asserted by CPU to start reading the data from the Main memory. The first

area to read is area#0 (TxBuffer#0). Thus, UserTxBufSel which shows the active buffer
area is reset to 00b. The user input parameters – UserBufSize (buffer size of each area)
and UserTxSize (total transfer size of this request) are loaded to the internal logic.
UserTxBusy is asserted to ‘1’ to show that the Tx request is accepted and the operation
begins. The state enters to stChkSize.
Note: In Figure 2-4, total size value is equal to N + N1 to show that the transfer size of the
last loop (N1) can be any value that is less than or equal to N (buffer size).

2) In stChkSize, the remaining transfer size (rTrnCnt) is read. If the read value is not equal to
0, the state continues to stChkBuf. Otherwise, the state returns to stIdle (step 9).

3) In stChkBuf, the buffer status (UserTxBufValid) of the active area is read. Each bit of
UserTxBufValid is mapped to show the status of each area. When the active area is
area#0, bit[0] is read. If UserTxBufValid is asserted to ‘1’, the state enters to stGenCmd.

4) In stGenCmd, the parameters of AxiMtPRd I/F are prepared. AxiMtPRdAddr is equal to
the start address of the active area of Tx buffer (TxBufAddr#0). Also, AxiMtPRdLen is
equal to UserBufSize (N) for every run loop, except the last loop which is equal to the
remaining value (N1). Then, AxiMtPRdReq is asserted to ‘1’ to send the request to
AxiMtPRd.

5) After that, AxiPRdBusy is asserted to ‘1’ to confirm the request is accepted. The state
enters to stWtEnd to wait until the operation of AxiPRd is done.

6) When AxiPRdBusy is de-asserted to ‘0’, the state changes to the last state - stUpParam.
7) In stUpParam, the internal signals are updated. rTrnCnt decreases the value to show the

remaining transfer length. UserTxBufSel is increased to show the next active area of Tx
Buffer. UserTxBufClr of the active area (area#0) is asserted to ‘1’ for one cycle to clear
UserTxBufValid flag. Therefore, UserTxBufValid of the active area is de-asserted in the
next clock cycle. Next, the state returns to stChkSize.

8) The next state is determined by rTrnCnt Value.
a. If rTrnCnt ≠ 0, repeat step 2) – 7) to read the data from the next area of Tx buffer. When

the next buffer is TxBuffer#1, use bit1 of UserTxBufValid and UserTxBufClr to operate.
b. If rTrnCnt = 0, the state returns to stIdle. After that, UserTxBusy is de-asserted to ‘0’.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 9

Figure 2-4 Tx transfer of MtMainCtrl timing diagram

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 10

Figure 2-5 Rx transfer of MtMainCtrl timing diagram

Figure 2-5 shows the details for Rx transfer operation which the request is generated to
AxiMtPWr and Rx buffer is applied. The work flow of Rx transfer is almost similar to Tx transfer,
but it uses Rx parameter and AxiMtPWr interface. The description in Figure 2-5 shows only
the different point between Rx transfer and Tx transfer. The transfer direction of Rx buffer is
inversed from Tx buffer, so UserRxBufValid is asserted by MtMainCtrl and UserRxBufClr is
the input from CPU.

1) In stChkBuf, UserRxBufValid of the active area must be de-asserted to ‘0’ (no data

available) before asserting the request to AxiMtPWr. After that, the data is written to the
Main memory.

2) After AxiMtPWr finishes writing the data in each loop, UserRxBufValid of the active area is
asserted to ‘1’.

3) When CPU finishes reading the data from the Main memory, UserRxBufClr is asserted.
After that, the buffer status is empty.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 11

2.1.2 AxiMtPRd

Figure 2-6 AxiMtPRd Block diagram

According to AXI4 standard, AXIAr I/F which is applied to send the read command request
and AXIr I/F which is applied to transfer the data stream can be operated parallelly. Therefore,
the logic inside AxiMtPRd is designed to send the new read command request via AXIAr I/F
without waiting the data returned via AXIr I/F to achieve the best performance.

The operation is started when the user asserts AxiMtPRdReq along with AxiMtPRdLen (Total
transfer length in 64-byte unit) and AxiMtPRdAddr (Start address of the Main memory in byte
unit). After that, the read command request (AXIArValid) is generated by the State machine
(Block no.1). Block no.2 is the logic to set the transfer size (AXIArLen) of each command
request which can be equal to three values – 1, 8, or 64. Length Counter loads the total length
from user (AxiMtPRdLen) before starting the operation. It calculates the remaining transfer
size (rAxiRemCnt) after generating each request to AXIAr I/F. The remaining transfer size is
fed to ReqLenCal to find the maximum transfer size of each request (rReqBurstSize).
However, it needs to check the current address (AXIArAddr[11:6]) to confirm that this transfer
does not cross the address boundary, designed by BurstLenCal block. The actual transfer
size (AXIArLen) may be less than rReqBurstSize value if the current address is not aligned to
the requested transfer size. Block no.3 is the address counter that calculates the next start
address (AXIArAddr) after generating each command request to AXIAr I/F.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 12

Block no.4 is the flow control logic to pause the new request that is generated by State
machine. Two factors must be calculated before sending the new request. First is the actual
free space size that is available in AxiTxFIFO (rAxiFfFreeCnt), calculated by FIFOCountCal.
The current value of FIFO data counter (AxiFfWrCnt) is read and then added by the amount of
data that is requested but does not transfer to be the usage size. The free space size is
computed by using NOT logic to the used size. The new request is generated when the free
space size is enough for storing the data of the new request. The second factor is the number
of command request that does not receive the data (rAxiQTrnCnt), calculated by Queue
Counter. The counter is up-counted when the new command request is asserted and
down-counted when the last data of each request is received. AxiMtPRd uses 4-bit Queue
counter, so State machine can create up to 15 commands (rAxiQTrnCnt=1111b) without
waiting the new data is transferred on AxirData. The last block, Block no.5, shows the data
path that is directly mapped from Axir I/F to AxiFIFO I/F.

Figure 2-7 shows the timing diagram of AxiMtPRd logic when the user command request sets
total transfer size to 65 and the start address on AxiPRdAddr (A0) is aligned to 64-byte unit.
Two read command requests are generated by AxiMtPRd. First request is 64-beat transfer
while the second request is 1-beat transfer. The details are described as follows.

Figure 2-7 AxiMtPRd Timing diagram

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 13

1) The new command request (AxiMtPRdReq) is asserted to ‘1’ along with the valid

AxiMtPRdAddr (the start address of Main memory) and AxiMtPRdLen (total transfer size in
64-byte unit). AxiMtPRd asserts AxiMtPRdBusy to ‘1’ to accept the request. Meanwhile,
AXIArAddr loads the initial value from AxiMtPRdAddr and rAxiRemCnt loads the initial
value from AxiMtPRdLen.

2) After AxiMtPRdBusy is asserted, rState enters to stWtCalLen to start calculating the
transfer size of this command request, sent to AXIAr I/F. If rAxiRemCnt is more than or
equal to 64, rReqBurstSize (the maximum request size) is set to 64. Otherwise, it is set by
rAxiRemCnt. rReqBurstSize and the lower bit of AxiArAddr are read to calculate
rAxiBurstSize. rAxiBurstSize may be less than rReqBurstSize if the lower bit of AxiArAddr
is not aligned to rReqBurstSize. The state holds in stWtCalLen for two clock cycles to wait
until rAxiBurstSize is valid before entering to stChkFfRdy.

3) In stChkFfRdy, it holds in this state to wait until the FIFO has enough free space for this
transfer (rAxiFfFreeCnt ≥ rAxiBurstSize) when there is remaining command request to
generate (rAxiRemCnt≠0). After that, it enters to stGenReq.
Note: Step 7 shows the example when all command request is generated.

4) The new command request is generated when rState enters to stGenReq which is
one-cycle state. In the next clock, rState enters to stWtReqOK. AXIArValid is asserted and
AXIArLen loads the value from the calculation unit. AXIAr I/F output signals hold the value
until the request is accepted by asserting AXIArReady to ‘1’.

5) When the command request is accepted (AXIArValid=’1’ and AXIArReady=’1’), AXIArAddr
is updated to the next value and rAxiQTrnCnt is incremented. While rAxiFfFreeCnt is
decreased by the current transfer size (64).
Note: rAxiFfFreeCnt is decreased when the request is sent to compensate the amount of
the data that does not received from the latest request.

6) After AXIArValid is de-asserted to ‘0’, rState returns to stWtCalLen to wait until the next
transfer size (rAxiBurstSize) is valid. Step 2) – 6) are repeated to generate the second
request to AXIAr I/F.

7) In stChkFfRdy, if there is no more command request to generate (rReqBurstCnt=0), rState
holds the value to wait until all data are transferred completely (rAxiQTrnCnt=0).

8) The data interface is run independently. The data transfer can be started any time. When
the last data of each request is received (AXIrLast=’1’ and AXIrValid=’1’), rAxiQTrnCnt is
decremented. While rAxiFfFreeCnt is incremented every cycle that AXIrValid is asserted.
Finally, when the last data is received, rAxiQTrnCnt is equal to 0 and rAxiFfFreeCnt (the
free size) is equal to the NOT value of AxiFfWrCnt (the used size).

9) After the operation is done, rState returns to stIdle and then AxiRdBusy is de-asserted to
‘0’. After that, MtMainCtrl can send the new command to AxiMtPRd.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 14

2.1.3 AxiMtPWr

Figure 2-8 AxiMtPWr Block diagram

Similar to AxiMtPRd module, the write command request via AXIAw I/F can be generated
without starting data transferring via AXIw I/F. Therefore, the logics for controlling the AXIAw
I/F and AXIw I/F are designed individually. As shown in Figure 2-8, the logic inside AxiMtPWr
can be divided to three parts. First is the logic for interface with AXIAw I/F which is shown in
Block no.1 – no.4. Second is Block no.5 which is the small FWFT FIFO that stores the transfer
length which is requested to AXIAw I/F for controlling data transfer in the AXIw I/F. Finally,
Block no.6 and no.7 are the logic for interface with AXIw I/F.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 15

Block no.1 is the State machine that is the core engine to generate the write command
request (AXIAwValid) to AXIAw I/F. The operation of the State machine is almost similar to the
State machine inside AxiMtPRd. The busy flag (AxiMtPWrBusy) is asserted after the user
request (AxiMtPWrReq) is asserted to ‘1’. The operation is done and AxiMtPWrBusy is
de-asserted when all write responses are received via AXIB I/F. Block no.2 is the logic to
calculate the transfer length (AXIAwLen) of each command request. This block uses the
same logic as Block no.2 inside AxiMtPRd module. Three transfer sizes are supported – 1, 8,
or 64, depending on the remaining transfer size (rAxiRemCnt) and the lower bit of the current
address (AxiAwAddr[11:6]). Block no.3 - the address counter also uses the same logic as
AxiMtPRd module. Block no.4 is the flow control logic to determine the amount of data that is
stored in AxiRxFIFO. The actual remaining data size (rAxiFfAllCnt) is calculated by reading
the current data count of AxiRxFIFO (AxiFfRdCnt) and then subtracted by the amount of data
that is requested but does not transfer. The new command request can be generated when
rAxiFfAllCnt is more than or equal to rAxiBurstSize. While AxiMtPRd uses Queue Counter,
AxiMtPWr uses Resp Counter to check if the operation is done. The Resp Counter is
incremented when the Write request is asserted and then decremented when the write
response is received (AXIBValid=’1’). If rAxiWtRespCnt = 0, the data of all command request
is transferred completely.

As shown in Block no.5, small FWFT FIFO is integrated to store the transfer length of each
Write request to AXIAw I/F. The data interface inside Block no.6 reads this value to control the
transfer size of each data transfer loop. FIFO depth is 16, so the State machine can generate
up to 16 write command requests (FIFO depth) without starting transferring data to AXIw I/F.

Block no.6 is the logic which loads the transfer length of each request from LenFifo and then
reads the data from AxiRxFIFO for transferring to AXIw I/F. AxiRxFIFO is FWFT type, so the
read enable is called AxiFfRdAck (read acknowledge). The core signal of this block is
rAxiFfRdTrn which is asserted while transferring the data. The operation begins by asserting
rAxiFfRdTrn to ‘1’ when empty flag of LenFIFO is de-asserted and the data interface returns
to Idle (AXIwValid=’0’ or the last data is sent). The operation is done by de-asserting
rAxiFfRdTrn to ‘0’ when the last data is read from AxiRxFIFO (RdLastDet is found). Burst
Counter is designed to count the transfer size of each request. It loads the initial value from
LenFIFO and then decreases the value when each data is read from AxiRxFIFO
(AxiFfRdAck=’1’). The last data is detected by monitoring rRdBurstCnt=0. When AXIw I/F is
not ready to receive the data (AXIwReady=’0’), AxiFfRdAck is de-asserted to pause reading
the next data from AxiRxFIFO.

Lastly, Block no.7 is the output register to transfer the data to AXIw I/F. AXIwValid is always
asserted to ‘1’ from the first data to the final data of each request size. Therefore, it is asserted
when detecting rising edge of rAxiFfRdTrn (the data of new request is started). Also, it is
de-asserted to ‘0’ after transferring the final data completely. AXIwLast is asserted to ‘1’ when
the last data is read from AxiRxFIFO. To synchronous with AXIwValid, the read data from
AxiRxFIFO (AxiFfRdData) must store to Latch register before forwarding to AXIwData.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 16

Figure 2-9 shows timing diagram of command interface (AXIAw I/F) which is controlled by the
State machine. It shows the example when user sets transfer size to 65 and the start address
(AxiMtPWrAddr) is aligned to 64-byte unit. Therefore, two write command requests are
created – 64-beat transfer and 1-beat transfer, respectively.

Figure 2-9 Command I/F of AxiMtPWr Timing diagram

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 17

1) The new command request (AxiMtPWrReq) is asserted to ‘1’ along with the valid

AxiMtPWrAddr (the start address of Main memory) and AxiMtPWrLen (total transfer size in
64-byte unit). AxiMtPWr asserts AxiMtPWrBusy to ‘1’ to accept the request. Meanwhile,
AXIAwAddr loads the initial value from AxiMtPWrAddr and rAxiRemCnt loads the initial
value from AxiMtPWrLen.

2) After AxiMtPWrBusy is asserted, rState enters to stWtCalLen to start calculating the
transfer size of this command request to AXIAw I/F. If rAxiRemCnt is more than or equal to
64, rReqBurstSize (the maximum request size) is set to 64. Otherwise, it is set by
rAxiRemCnt. rReqBurstSize and the lower bit of AxiAwAddr are read to calculate
rAxiBurstSize. rAxiBurstSize may be less than rReqBurstSize if the lower bit of AxiArAddr
is not aligned to rReqBurstSize. The state holds in stWtCalLen for two clock cycles to wait
until rAxiBurstSize is valid before entering to stChkFfRdy.

3) In stChkFfRdy, it holds in this state to wait until the FIFO has enough data for this transfer
(rAxiFfAllCnt≥rAxiBurstSize). After that, it enters to stGenReq.

4) The new command request is generated when rState enters to stGenReq which is
one-cycle state. In the next clock, rState enters to stWtReqOK. AXIAwValid is asserted and
AXIAwLen loads the value from the calculation unit. AXIAw I/F output signals hold the
value until the request is accepted by asserting AXIAwReady to ‘1’. While
rState=stGenReq, the transfer length (rAxiBurstSize-1) is written to LenFifo by asserting
LenFfWrEn to ‘1’. Also, rAxiWtRespCnt is incremented.

5) When the command request is accepted (AXIAwValid=’1’ and AXIAwReady=’1’),
AXIAwAddr is updated to the next value and rAxiFfAllCnt is decreased by the current
transfer size (64).
Note: rAxiFfAllCnt is decreased when the request is sent to compensate the amount of the
data that does not received from the latest request. After each data is received from
AxiRxFIFO (AxiFfRdAck=’1’), rAxiFfAllCnt is incremented to reduce the amount of
compensated data.

6) After AXIAwValid is de-asserted to ‘0’, rState reads the next request size (rReqBurstSize).
a. If rReqBurstSize≠0, it returns to stWtCalLen and step 2) – 6) are repeated for operating

the next request.
b. If rReqBurstSize=0, rState returns to stIdle.

7) After all data are transferred completely and all responses are received, rAxiWtRespCnt is
equal to 0 and then rAxiWrBusy is de-asserted to ‘0’. After that, MtMainCtrl can send the
new command to AxiMtPWr.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 18

Figure 2-10 shows timing diagram of data interface (AXIw I/F) which is designed to transfer
the data from AxiRxFIFO which is FWFT type to AXIw I/F. The example shows two data
transfers, i.e., 64-beat transfer and 1-beat transfer, matched to Figure 2-9.

Figure 2-10 Command I/F of AxiMtPWr Timing diagram

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 19

1) After the new command request is generated to AXIAw I/F, the empty flag of LenFifo

(LenFfEmpty) is de-asserted to ‘0’. The data interface starts the operation by asserting
rAxiFfRdTrn[0] to ‘1’. Before asserting rAxiFfRdTrn[0], it needs to match one of two
conditions. The data interface is Idle (AXIwValid=’0’, shown in this step) or the last data is
completely transferred (AXIwValid=’1’ and AXIwLast=’1’, shown in step 5). At the same
time as rAxiFfRdTrn[0] asserted, AxiFfRdAck is also asserted to ‘1’ to read the next data
from AxiRxFIFO. While there is no data transferring, rRdBurstCnt always loads the initial
value from LenFfRdData. After that, rAxiFfRdTrn[0] is always asserted to ‘1’ until reading
the last data of this transfer (D63) from AxiRxFIFO. While rRdBurstCnt is down-counted
when AxiFfRdAck=’1’ to show the amount of remaining data in this transfer.

2) Next, rAxiRdTrn[1] which is rAxiRdTrn[0] with one-clock latency is asserted to ‘1’. By
detecting the rising edge of rAxiRdTrn[0], it mentions that the first data from AxiRxFIFO is
ready. Therefore, AXIwValid is asserted to ‘1’ and AXIwData loads the value from
AxiFfRdData. After that, AXIwValid is always asserted to ‘1’ until the last data is transferred.
AXIwData loads the remaining data when the new data is read from AxiRxFIFO by
checking AXIwReady=’1’ (AXIwReady=’1’ can be represented to AxiFfRdAck=’1’).

3) When AXIw I/F is not ready to receive the data by de-asserting AXIwReady to ‘0’, the data
interface must pause the transmission by de-asserting AxiFfRdAck to ‘0’. AXIwData and
other AXIw I/F signals hold the same value until AXIwReady is re-asserted to ‘1’.

4) As the last data is read from AxiRxFIFO (AxiFfRdAck=’1’ and rRdBurstCnt=0),
LenFfRdAck is asserted to ‘1’ to flush the current data and read the next data from LenFifo.
In the next clock, rAxiFfRdTrn[0] is de-asserted to ‘0’ and the last data is transferred to
AXIw I/F (AXIwLast=’1’ and AXIwData=D63).

5) After the last data is accepted by AXIw I/F (AXIwLast=’1’ and AXIwReady=’1’), AXIwValid
is de-asserted to ‘0’ and rAxiWtRespCnt is decremented. Also, if LenFifo has more data
(LenFfEmpty=’0’), step 1 – step 5 are repeated to start the next data transfer which is
1-beat transfer.

6) After all data is completely transferred, rAxiWtRespCnt is equal to zero. Next, AxiWrBusy
is de-asserted to ‘0’ to show user that the operation is done.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 20

2.2 LAxi2Reg

AXI4-Lite is the interface of the hardware kernel for accessing the hardware registers. CPU
uses this interface to set the parameters to the hardware and also monitor the hardware
status while operating. 32-bit data bus size is applied. LAxi2Reg is run on application clock
domain that is configured by the tool.

Figure 2-11 LAxi2Reg interface

LAxi2Reg consists of SAXIReg and UserReg. SAXIReg converts the AXI4-Lite signals to be
the simple register interface which has 32-bit data bus size (similar to AXI4-Lite data bus size).
UserReg includes the register file of the parameters and the status of the submodules. More
details of SAXIReg and UserReg are described as follows.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 21

2.2.1 SAXIReg

Figure 2-12 SAXIReg Interface

The signal on AXI4-Lite bus interface can be split into five groups, i.e., LAxiAw* (Write
address channel), LAxiw* (Write data channel), LAxiB* (Write response channel), LAxiAr*
(Read address channel), and LAxir* (Read data channel). More details to build custom logic
for AXI4-Lite bus is described in following document.
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_
slave_rev1.pdf

According to AXI4-Lite standard, the write channel and the read channel are operated
independently. Also, the control and data interface of each channel are run separately. The
logic inside SAXIReg to interface with AXI4-Lite bus is split into four groups, i.e., Write control
logic, Write data logic, Read control logic, and Read data logic as shown in the left side of
Figure 2-12. Write control I/F and Write data I/F of AXI4-Lite bus are latched and transferred
to be Write register interface. Similarly, Read control I/F of AXI4-Lite bus are latched and
transferred to be Read register interface. While the returned data from Register Read I/F is
transferred to AXI4-Lite bus. In register interface, RegAddr is shared signal for write and read
access. Therefore, it loads the address from LAxiAw for write access or LAxiAr for read
access.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-13.

https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf
https://forums.xilinx.com/xlnx/attachments/xlnx/NewUser/34911/1/designing_a_custom_axi_slave_rev1.pdf

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 22

Figure 2-13 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be 4-byte data enable. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, respectively.

2) To read register, SAXIReg asserts RegRdReq to ’1’ with the valid value of RegAddr. 32-bit
data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. Therefore, the
address can be used for selecting the returned data by using multiple multiplexers.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, SAXIReg forwards the read value to LAxir* interface.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 23

2.2.2 UserReg

Figure 2-14 UserReg block diagram

UserReg consists of many registers for interfacing with the hardware submodules, i.e.,
TOE100G-IP, Ethernet system, and AxiDMACtrl512. The address for write or read access is
decoded by Address decoder to select the active register. There are four addressing areas,
as shown in Figure 2-14.

1) 0x0000 – 0x00FF: TOE100G-IP register interface area
2) 0x0100 – 0x01FF: TOE100G-IP status area
3) 0x0200 – 0x02FF: Ethernet system status area
4) 0x0400 – 0x07FF: AxiDMACtrl512 control and status area

Address decoder decodes the upper bits of RegAddr for selecting the active address area
while the lower bits is applied to select the active register in each area. The register file inside
UserReg is 32-bit data size and write byte enable (RegWrByteEn) is not used, so the CPU
must use 32-bit pointer for writing these registers. There are many status registers in
UserReg, so multi-level multiplexers are applied to return the read value. In this design, the
latency time of read data is equal to four clock cycles, so RegRdValid is created by
RegRdReq with asserting four D Flip-flops. More details of the address mapping within
UserReg module are shown in Table 2-1.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 24

Table 2-1 Register map Definition

Address

Wr/Rd

Register Name

(Label in the TOE100DMATest.cpp)

Description

BA+0x0000 – BA+0x00FF: TOE100GIP register interface (Write/Read access)

BA+0x0000 DG_TOEIP_RST_INTREG_OFFSET

Mapped to RST register within TOE100G-IP.

BA+0x0004 DG_TOEIP_CMD_INTREG_OFFSET

Mapped to CMD register within TOE100G-IP.

BA+0x0008 DG_TOEIP_SML_INTREG_OFFSET

Mapped to SML register within TOE100G-IP.

BA+0x000C DG_TOEIP_SMH_INTREG_OFFSET

Mapped to SMH register within TOE100G-IP.

BA+0x0010 DG_TOEIP_DIP_INTREG_OFFSET

Mapped to DIP register within TOE100G-IP.

BA+0x0014 DG_TOEIP_SIP_INTREG_OFFSET

Mapped to SIP register within TOE100G-IP.

BA+0x0018 DG_TOEIP_DPN_INTREG_OFFSET

Mapped to DPN register within TOE100G-IP.

BA+0x001C DG_TOEIP_SPN_INTREG_OFFSET

Mapped to SPN register within TOE100G-IP.

BA+0x0020 DG_TOEIP_TDL_INTREG_OFFSET

Mapped to TDL register within TOE100G-IP.

BA+0x0024 DG_TOEIP_TMO_INTREG_OFFSET

Mapped to TMO register within TOE100G-IP.

BA+0x0028 DG_TOEIP_PKL_INTREG_OFFSET

Mapped to PKL register within TOE100G-IP.

BA+0x002C DG_TOEIP_PSH_INTREG_OFFSET

Mapped to PSH register within TOE100G-IP.

BA+0x0030 DG_TOEIP_WIN_INTREG_OFFSET

Mapped to WIN register within TOE100G-IP.

BA+0x0034 DG_TOEIP_ETL_INTREG_OFFSET

Mapped to ETL register within TOE100G-IP.

BA+0x0038 DG_TOEIP_SRV_INTREG_OFFSET

Mapped to SRV register within TOE100G-IP.

BA+0x003C DG_TOEIP_VER_INTREG_OFFSET

Mapped to VER register within TOE100G-IP.

BA+0x0040 DG_TOEIP_DML_INTREG_OFFSET

Mapped to DML register within TOE100G-IP.

BA+0x0044 DG_TOEIP_DMH_INTREG_OFFSET

Mapped to DMH register within TOE100G-IP.

BA+0x0100 – BA+0x01FF: TOE100GIP status (Write/Read access)

BA+0x0100 TOE100G-IP status

DG_TOEIP_USERSTS_INTREG_OFFSET

Wr – [8]: Asserted to ‘1’ to clear this bit which shows the latched value of TimerInt.

Rd – [0]: Mapped ConnOn from TOE100G-IP.

Rd – [8]: Latched value of TimerInt output from IP (‘0’: Normal, ‘1’: TimerInt=’1’ is detected).

BA+0x0110 Connection interrupt

DG_TOEIP_USERINT_INTREG_OFFSET

Wr – [0]: Set ‘1’ to clear the connection interrupt.

Rd – [0]: Interrupt from Connon edge detection.

(‘1’: Detect edge of ConnOn signal from TOE100G-IP, ‘0’: ConnOn does not change the value.)

Note: ConnOn value can be read from DG_TOEIP_CONNON_INTREG_OFFSET.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 25

Address

Wr/Rd

Register Name

(Label in the TOE100DMATest.cpp)

Description

BA+0x0200 – BA+0x02FF: Ethernet status (Read access only)

BA+0x0200 Ethernet linkup status

DG_EMAC_USERSTS_INTREG_OFFSET

Rd – [0]: Ethernet linkup status from 100G Ethernet MAC (‘0’- Not linkup, ‘1’- Linkup).

BA+0x0204 IP Version of DG EMAC-IP

DG_EMAC_USERVER_INTREG_OFFSET

Rd – [31:0]: Mapped to IPVersion of DG-EMAC. Not used when DG-EMAC is not implemented.

BA+0x0400 – BA+0x07FF: AxiDMACtrl512 control and status (Write/Read access)

Note: BA+0x0600 – BA+0x06FF: Tx buffer parameters [Host -> Card]

 BA+0x0700 – BA+0x07FF: Rx buffer parameters [Card -> Host]

BA+0x0400 AxiDMACtrl512 reset

DG_DMA_RESET_OFFSET

Wr/Rd – [0]: Reset signal to AxiDMACtrl512 module (‘1’-Reset, ‘0’-Clear).

BA+0x0404 AxiDMACtrl512 command

DG_DMA_COMMAND_OFFSET

Wr – [0]: Start Tx transfer. Asserted to ‘1’ to start Tx transfer on AxiDMACtrl512. This flag is auto-cleared.

Wr – [1]: Start Rx transfer. Asserted to ‘1’ to start Rx transfer on AxiDMACtrl512. This flag is auto-cleared.

BA+0x0408 AxiDMACtrl512 status

DG_DMA_STATUS_OFFSET

Rd – [0]: Tx transfer busy flag. Asserted to ‘1’ when AxiDMACtrl512 is operating Tx transfer.

Rd – [1]: Rx transfer busy flag. Asserted to ‘1’ when AxiDMACtrl512 is operating Rx transfer.

Rd – [9:8]: The active area of Tx buffer that is in operating.

(00b-Tx buffer#0, 01b-Tx buffer#1, 10b-Tx buffer#2, 11b-Tx buffer#3)

Rd – [17:16]: The active area of Rx buffer that is in operating.

(00b-Rx buffer#0, 01b-Rx buffer#1, 10b-Rx buffer#2, 11b-Rx buffer#3)

BA+0x0410 Total transmit length of AxiDMACtrl512

DG_DMA_TOTAL_TRANSMIT_LENGTH_OFFSET

Wr – [31:0]: Total amount of data for Tx transfer in 512-bit unit. Valid range is 1-0xFFFFFFFF.

Rd – [31:0]: Current amount of data that is completely transmitted in 512-bit unit. Valid while operating.

BA+0x0414 Total receive length of AxiDMACtrl512

DG_DMA_TOTAL_RECEIVE_LENGTH_OFFSET

Wr – [31:0]: Total amount of data for Rx transfer in 512-bit unit. Valid range is 1-0xFFFFFFFF.

Rd – [31:0]: Current amount of data that is completely received in 512-bit unit. Valid while operating.

BA+0x0418 Tx buffer status of AxiDMACtrl512

DG_DMA_TXBUFFER_VALID_OFFSET

Wr/Rd – [3:0]: Each bit is mapped to show the status of each area for Tx buffer.

Bit[0], [1], [2], and [3] show the status of Tx buffer#0, #1, #2, and #3, respectively.

Wr: Asserted to ‘1’ when the data in Tx buffer#i is ready for Tx transfer.

Rd: ‘0’-No data stored in Tx buffer#1, ‘1’-Has data stored in Tx buffer#i.

In Tx transfer, this flag is asserted by CPU when the data is completely prepared.

It is de-asserted by the hardware kernel when all data is completely read.

BA+0x041C Rx buffer valid of AxiDMACtrl512

DG_DMA_RXBUFFER_VALID_OFFSET

Wr/Rd – [3:0]: Each bit is mapped to show the status of each area for Rx buffer.

Bit[0], [1], [2], and [3] show the status of Rx buffer#0, #1, #2, and #3, respectively.

Wr: Asserted to ‘1’ to clear this bit which shows data ready status of Rx buffer#i.

Rd: ‘0’-No data stored in Rx buffer#1, ‘1’-Has data stored in Rx buffer#i.

In Rx transfer, this flag is asserted by the hardware kernel when the data is completely prepared.

It is de-asserted by CPU when all data is completely read.

BA+0x0480 Buffer size of AxiDMACtrl512

DG_DMA_BUFFER_SIZE_OFFSET

Wr/Rd – [31:0]: Mapped to the buffer size in byte unit. Maximum size is 4GB.

Data bus size of DMA engine is 512 bits, so bit[5:0] of this register must be equal to 000000b.

Note: The hardware kernel loads this register when the reset flag (DG_DMA_RESET_OFFSET) is asserted.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 26

Address

Wr/Rd

Register Name

(Label in the TOE100DMATest.cpp)

Description

BA+0x0400 – BA+0x07FF: AxiDMACtrl512 control and status (Write/Read access)

Note: BA+0x0600 – BA+0x06FF: Tx buffer parameters [Host -> FPGA]

 BA+0x0700 – BA+0x07FF: Rx buffer parameters [FPGA -> Host]

BA+0x0600 – BA+0x060F: Tx buffer#0 parameters, BA+0x0610 – BA+0x061F: Tx buffer#1 parameters,

BA+0x0620 – BA+0x062F: Tx buffer#2 parameters, BA+0x0630 – BA+0x063F: Tx buffer#3 parameters

BA+0x0600 32-bit lower base address of Tx buffer#0 for AxiDMACtrl512

DG_DMA_TXBUFFER_LOW_ADDRESS_OFFSET(0)

Wr/Rd - [31:0]: Mapped to the 32-bit lower address of Tx buffer#0 in the host memory.

Loaded while AxiDMACtrl512 reset is active.

BA+0x0604 32-bit higher base address of Tx buffer#0 for AxiDMACtrl512

DG_DMA_TXBUFFER_HIGH_ADDRESS_OFFSET(0)

Wr/Rd - [31:0]: Mapped to the 32-bit higher address of Tx buffer#0 in the host memory.

Loaded while AxiDMACtrl512 reset is active.

BA+0x0610 -

BA+0x061F

Tx buffer#1 parameters for AxiDMACtrl512

0x0610: DG_DMA_TXBUFFER_LOW_ADDRESS_OFFSET(1)

0x0614: DG_DMA_TXBUFFER_HIGH_ADDRESS_OFFSET(1)

BA+0x0620 -

BA+0x062F

Tx buffer#2 parameters for AxiDMACtrl512

0x0620: DG_DMA_TXBUFFER_LOW_ADDRESS_OFFSET(2)

0x0624: DG_DMA_TXBUFFER_HIGH_ADDRESS_OFFSET(2)

BA+0x0630 -

BA+0x063F

Tx buffer#3 parameters for AxiDMACtrl512

0x0630: DG_DMA_TXBUFFER_LOW_ADDRESS_OFFSET(3)

0x0634: DG_DMA_TXBUFFER_HIGH_ADDRESS_OFFSET(3)

BA+0x0700 – BA+0x070F: Rx buffer#0 parameters, BA+0x0710 – BA+0x071F: Rx buffer#1 parameters,

BA+0x0720 – BA+0x072F: Rx buffer#2 parameters, BA+0x0730 – BA+0x073F: Rx buffer#3 parameters

BA+0x0700 32-bit lower base address of Rx buffer#0 for AxiDMACtrl512

DG_DMA_RXBUFFER_LOW_ADDRESS_OFFSET(0)

Wr/Rd - [31:0]: Mapped to the 32-bit lower address of Rx buffer#0 in the host memory

Loaded while AxiDMACtrl512 is in reset phase.

BA+0x0704 32-bit higher base address of Rx buffer#0 for AxiDMACtrl512

DG_DMA_RXBUFFER_HIGH_ADDRESS_OFFSET(0)

Wr/Rd - [31:0]: Mapped to the 32-bit higher address of Rx buffer#0 in the host memory.

Loaded while AxiDMACtrl512 is in reset phase.

BA+0x0710 -

BA+0x071F

Rx buffer#1 parameters for AxiDMACtrl512

0x0710: DG_DMA_RXBUFFER_LOW_ADDRESS_OFFSET(1)

0x0714: DG_DMA_RXBUFFER_HIGH_ADDRESS_OFFSET(1)

BA+0x0720 -

BA+0x072F

Rx buffer#2 parameters for AxiDMACtrl512

0x0720: DG_DMA_RXBUFFER_LOW_ADDRESS_OFFSET(2)

0x0724: DG_DMA_RXBUFFER_HIGH_ADDRESS_OFFSET(2)

BA+0x0730 -

BA+0x073F

Rx buffer#3 parameters for AxiDMACtrl512

0x0730: DG_DMA_RXBUFFER_LOW_ADDRESS_OFFSET(3)

0x0734: DG_DMA_RXBUFFER_HIGH_ADDRESS_OFFSET(3)

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 27

3 The host software

Figure 3-1 The software architecture in TOE100G-IP on Alveo card demo

The host software for this demo consists of two software categories – the application and the
framework. “TOE100DMATest” is the main application of this demo. While the framework has
three source codes. First is “dg_shell” which handles the user input (keyboard) and the output
console (monitor). The input stream and the output stream on the Linux OS has its own
control sequence, so the second framework – “dg_iostream_console” is designed by using
specific command for Linux OS to handle the stream. Last is “dg_device_interface” which is
applied to control the hardware interface on Alveo card by using Xilinx runtime (XRT). It
includes the functions to write/read hardware registers and handle the process for memory
allocation.

Xilinx Runtime Library (XRT) is the software interface for communicating between the
application and the hardware kernels. When the hardware kernels are implemented on Alveo
card, the interface is based on PCIe. More details about the Xilinx Runtime Library can be
found from the following link.
https://www.xilinx.com/products/design-tools/vitis/xrt.html

More details of the software on the demo are describes as follows.

https://www.xilinx.com/products/design-tools/vitis/xrt.html

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 28

3.1 Framework

There are two software frameworks that are designed for this demo, i.e., the device interface
and the shell. The device interface framework makes a simple function of utilizing the Xilinx
Runtime (XRT) for interfacing with the hardware kernels. While the shell framework handles
the input and output of the console (Linux terminal) for user interface.

3.1.1 Device interface

Figure 3-2 Device interface framework

The device interface is used by the application for communicating with the hardware kernels
through Xilinx Runtime Library (XRT). The application uses it to create a connection, to
allocate the buffer, and to write/read the hardware registers. As shown in Figure 3-2, there are
three source codes inside device_interface directories.

• “dg_device_interface_error_codes.h”: Define the returned value of the function for the
device interface which may be “OK” status or error codes. The returned value of some
functions in this class is referred to these definitions. The values are listed as follows
- DG_OK
- DG_DEV_INTERFACE_ERROR_FAIL_TO_ASSOCIATE_WITH_XRT
- DG_DEV_INTERFACE_ERROR_DEVICE_IS_NOT_OPENED
- DG_DEV_INTERFACE_ERROR_CANNOT_OPEN_DEVICE
- DG_DEV_INTERFACE_ERROR_CU_NAME_NOT_FOUND
- DG_DEV_INTERFACE_ERROR_HOST_MEMORY_INTERFACE_NOT_FOUND
- DG_DEV_INTERFACE_ERROR_IP_KERNEL_AND_HOST_MEMORY_MISMATCH
- DG_DEV_INTERFACE_ERROR_FAIL_ALLOCATEBUFFER

• “dg_device_interface.h”: Declare a class and functions which are defined in C++ source
file (dg_device_interface.cpp). The header file determines which function can be or
cannot be called from other class. Also, it declares variables in the class with the initial
value if it is specified.

• “dg_device_interface.cpp”: Design the general function for connecting the device,
accessing the hardware register, and allocating/de-allocating the host memory. The
function lists of the device interface framework are described as follows.
Note: The string of compute unit name (cu_name) is defined as the constant in the
software source code – “TOE100DMATest:TOE100DMATest”. This value must be
updated if the user changes the hardware kernel name.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 29

Device Connection

uint32_t CreateDeviceIF(void)

Parameters None

Return value DG_OK: Success, Error code: Error found

Description Use an XRT function to connect with the hardware platform to retrieve an
information such as the CU (Compute Unit) address. The CU address is
applied for writing/reading the hardware register. DG_OK is returned
when CU name is correct (TOE100DMATest:TOE100DMATest).
Otherwise, Error code is returned.

char* GetDeviceName(void)

Parameters None

Return value Character pointer of the device name

Description Return a device name that is obtained while initializing the device
interface from CreateDeviceIF function.

void Close(void)

Parameters None

Return value None

Description Use an XRT function to disconnect the software application from the
hardware if the connection is created.

Write/Read Register

uint32_t ReadIntReg(uint64_t offset)

Parameters offset: The address offset of the hardware register to be read

Return value Read value from the hardware register

Description Calculate the actual address by adding the CU address with the input
offset. Next, use an XRT function and the actual address to read the data
in the hardware register. Finally, return the read data back to user.

void WriteIntReg(uint64_t offset, uint32_t value)

Parameters offset: The address offset of the hardware register to be written
value: 32-bit unsigned value for writing to the register

Return value None

Description Calculate the actual address by adding the CU address with the input
offset. Next, use an XRT function and the actual address to write the
input value into the hardware register.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 30

Buffer Management

uint32_t AllocateBuffer(uint32_t sizeInBytes, void*& HostAddr, uint64_t* HWAddr)

Parameters sizeInBytes: The memory size for allocating in byte unit
HostAddr: The pointer of the virtual host base address
HWAddr: The pointer to the hardware base address.

Return value DG_OK: Success, Error code: Error found

Description Use an XRT function to retrieve an information of the hardware and then
use this information to verify the connection between the hardware
kernel and the host memory. After that, allocate the host memory via the
XRT function (the memory size is set by the input). Finally, update the
virtual host base address, hardware base address, and the local
variables of the host memory details.

void FreeBufferHostOnly(void)

Parameters None

Return value None

Description If the host memory is allocated, use an XRT function to free the host
memory and clear the local variables of the host memory details.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 31

3.1.2 Shell

Figure 3-3 Shell framework

The shell framework (dg_shell) handles the input and output stream on the Linux terminal
(Console). It retrieves keyboard input, manages the input string, parses the input data type,
and prints a string out to console. The shell framework uses an I/O stream console library
(dg_iostream_console) to work with the Linux terminal, i.e., changing the terminal
environment, getting the user keyboard input, and pushing the printed string output to
terminal.

As shown in Figure 3-3, there are two source codes for handling I/O stream console.

• “dg_iostream_console.h”: Declare a class and functions which are defined in C++ source
file (dg_iostream_console.cpp). The header file determines which function can be or
cannot be called from other class. Also, it declares variables in the class with the initial
value if it is specified.

• “dg_iostream_console.cpp”: Design the general function to manage the input and output
stream on the Linux terminal environment such as writing a string on console, changing
the terminal setting for utilizing by the shell, reverting the terminal setting to the original
one, and getting the input character from the user through terminal. The function lists of
the I/O stream classes are described as follows.

Note:
- When constructing the “InStreamConsole” object, it requires the pointer of the output

stream object.
- “KeyPressEnum” is a C++ enumeration declared in the header file

(dg_iostream_console.h). It contains the keyboard input type for processing in the
shell framework which are NORMAL, BACKSPACE, LEFTARROW, RIGHTARROW,
DELETE, TAB, EOL, and CONTROL.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 32

OutStreamConsole class

void write(const char* s, uint32_t numChars)

Parameters s: Pointer to the character for printing out on the console
numChars: The character length of “s”

Return value None

Description Call function (fwrite) to write the output (stdout) by the character “s”
which specifies the length from “numChars”. Next, flush the output to the
terminal.

void erase(uint32_t numChars)

Parameters numChars: The number of characters to delete from the terminal

Return value None

Description Delete the currently displayed character on the terminal which specifies
the length from “numChars”.

InStreamConsole class

void NewSetting(void)

Parameters None

Return value None

Description Change the Linux terminal setting to non-echo mode and to process an
input from the terminal without endline character. The original setting is
stored to a local variable for retrieving later.

void RestoreSetting(void)

Parameters None

Return value None

Description Restore the Linux terminal setting to the original setting by using a local
variable.

void getChar(char* pChar)

Parameters pChar: Pointer to store the input character

Return value None

Description Get a character input from the Linux terminal and write to the pointer.
When using this function, it waits until an input is received.

void FlushInputStream(void)

Parameters None

Return value None

Description Flush the input stream for the Linux terminal. This function is
recommended to use before using “getChar” function.

int GetInputCharLength(void)

Parameters None

Return value Number of input characters in the Linux terminal buffer

Description Determine the number of user input characters in the Linux terminal
buffer.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 33

KeyPressEnum getKeyPress(char c)

Parameters c: Character input to determine the character type.

Return value NORMAL: General character that can be printed
BACKSPACE, RIGHTARROW, LEFTARROW, DEL, TAB, EOL: Special
characters that has specific operation
CONTROL: Control character that does not have the operation

Description Determine the type of the input character and returns the value.

The shell framework has two source codes, described as follows.

• “dg_shell.h”: Similar to the “dg_iostream_console.h” header file, it declares a class,
functions and variables which are defined in C++ source file (dg_shell.cpp).

• “dg_shell.cpp”: Design the general function to simplify the input and output console

management function and to provide a utility function such as parsing a string to an
unsigned integer. The function lists of the shell framework are described as follows.

General Function

void Initialise(DG::InStreamConsole& inputStream, DG::OutStreamConsole&
outputStream)

Parameters inputStream: The input stream object
outputStream: The output stream object

Return value None

Description Load the pointers of the input stream object and the output stream output
to the local variables for using in the shell framework.

void ClearInputBuffer(void)

Parameters None

Return value None

Description Clear the input buffer which is the internal variable.

bool GetInputLine(char*& pStr)

Parameters pStr: The reference of the pointer of the input line string

Return value True: The operation is successful.
False: Fail to retrieve an input character using “getChar” function.

Description Clear the input buffer and the input stream by using “ClearInputBuffer”
and “FlushInputStream”. After that, receive the input from the terminal
(use “getChar”) and then process the input by using “ProcessInputChar”.
The input is read and processed until end-of-line is detected. Finally, set
the pointer to the first character of the input buffer.

bool FlushInputBuffer(void)

Parameters None

Return value True: The operation is successful (The function now returns only “True”).

Description Flush the input buffer by calling “FlushInputStream”. This function is
applied to map the function of “dg_iostream_console” for the application
using.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 34

bool IsAnyInputKey(void)

Parameters None

Return value True: Some inputs are received from the Linux terminal.
False: No received input from the terminal

Description Read the number of received input from the terminal by using
“GetInputCharLength”. Return “True” if the length is greater than zero.
Otherwise, return “False”.

int printf(const char* fmt, ...)

Parameters fmt: String that contains the text to be printed on the console
arguments: Additional arguments

Return value Number of input characters of the output buffer

Description This function is called to receive the input string with the argument and
then calculate the length for writing to the output stream. It is almost
similar to standard “printf” function, but displaying to the console through
the output stream.

Input Parsing Function

bool parseUInt32(char* pInputstr, uint32_t* pValue)

Parameters pInputstr: Pointer to the input string for processing
pValue: Pointer of 32-bit result after parsing

Return value True: The operation is successful
False: Fail to parse the input or other errors

Description Convert the input string of the decimal value to be 32-bit unsigned value.
The input range must not be more than FFFF_FFFFh.

bool parseHex32(char* pInputstr, uint32_t* pValue)

Parameters pInputstr: Pointer to the input string for processing
pValue: Pointer of 32-bit result after parsing

Return value True: the operation is successful
False: Fail to parse the input string or other errors

Description Convert the input string of the hex value to be 32-bit unsigned value. The
input range must not be more than FFFF_FFFFh.

bool parseUInt64(char* pInputstr, uint64_t* pValue)

Parameters pInputstr: Pointer to the input string for processing
pValue: Pointer of 64-bit result after parsing

Return value True: the operation is successful
False: Fail to parse the input string or other errors

Description Convert the input string of the decimal value to be 64-bit unsigned value.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 35

bool parseHex64(char* pInputstr, uint64_t* pValue)

Parameters pInputstr: Pointer to the input string for processing
pValue: Pointer of 64-bit result after parsing

Return value True: the operation is successful
False: Fail to parse the input string or other errors

Description Convert the input string of the hex value to be 64-bit unsigned value.

bool get_input_long(uint64_t* pValue)

Parameters pValue: Pointer of 64-bit result of the input from the terminal

Return value True: The operation is successful
False: Fail to retrieve an input character, to parse the input string, or
other errors

Description Call “GetInputLine” function to retrieve a string input and then call
“parseUInt64” or “parseHex64” to parse the input, depending on the
input format. Finally, return the result after parsing.

bool get_ipv4_addr(uint32_t* pValue)

Parameters pValue: Pointer to return 32-bit IPv4 address value that is received from
the terminal

Return value True: The operation is successful
False: Fail to retrieve an input character, to parse the input string, or
other errors

Description Call “GetInputLine” function to retrieve a string input and then verify the
input format. Error is returned if the input is invalid. Otherwise, the input
is converted to 32-bit unsigned value to be the returned result.

Input Key Processing Function

void ProcessInputChar(char c)

Parameters c: Character input

Return value None

Description Use “keyPressEnum” (function of InStreamConsole) to determine the
character type. The function that is called for processing depends on the
character type.

void ProcessNormalChar(char c)

Parameters c: Character input
Return value None

Description Add the new character to the buffer and then print to the output stream.

void ProcessBackspace(void)

Parameters None

Return value None

Description Delete the left side character and then print to the output stream.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 36

void ProcessEOL(void)

Parameters None

Return value None

Description Add NULL to the buffer and then print to the output stream. After that, set
the local variable that show the end of line flag to be “true”. When
“GetInputLine” detects the end of line flag, the input buffer will be
cleared.

void ProcessTab(void)

Parameters None

Return value None

Description Move the console cursor to the end of line input string.

void ProcessLeftArrow(void)

Parameters None

Return value None

Description Move the console cursor to the left side for one position.

void ProcessRightArrow(void)

Parameters None

Return value None

Description Move the console cursor to the right side for one position.

void ProcessDel(void)

Parameters None

Return value None

Description Delete the character at the current position of the console and then print
to the output stream.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 37

3.2 Application

Figure 3-4 Application layer

The source code of the application is “TOE100DMATest.cpp” file, as shown in Figure 3-4. The
main function is operated by following steps.

1) Start a signal handler to detect “CTRL+C” input from the user. If the key is found, the

termination process is run as below.
i) Reset the hardware kernel (TOE100GDMATest).
ii) De-allocate the memory via XRT.
iii) Close the device interface.
iv) Restore the terminal setting to the original setting.

2) Connect the hardware platform through device interface framework. Setup the system to
interface with the hardware kernel and the Linux terminal.

3) Examine that TOE100G-IP is available in the hardware kernel and print the IP information.
4) Prepare the memory for the DMA feature by allocating 1 GB memory in the host system

through the device interface.
5) Setup input/output stream and the Linux terminal for the application using the shell object.
6) Start initializing TOE100G-IP in the hardware platform as below.

i) Wait until Ethernet link is established, read by DG_EMAC_STS_INTREG_OFFSET[0]
register.

ii) Display welcome message and then wait for the input from user to select the
initialization mode of TOE100G-IP. Three modes can be selected – Client, Server, or
Fixed-MAC.

• If the target device on another side of 100G Ethernet network is the PC, it is
recommended to initialize TOE100G-IP to Client mode. TOE100G-IP creates ARP
request packet and then the target device returns ARP replay packet.

• If the target device on another side of 100G Ethernet network is the system that
integrates TOE100G-IP, the mode on two TOE100G-IPs can be three formats, i.e.,
Server – Client, Client – Fixed MAC, or Fixed MAC – Fixed MAC.

iii) After user sets the initialization mode, the default parameters of that initialization mode
are shown on the console, as shown in Figure 3-5.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 38

Figure 3-5 System initialization in Client mode by using default parameters

iv) User enters ‘x’ to start initialization process on TOE100G-IP by using the default

parameters or enters other keys to change some parameters (more details are
described in topic 3.2.2 Reset menu).

v) Wait until TOE100G-IP finishes the IP initialization process, checked by
DG_TOEIP_CMD_INTREG[0]=’0’.

7) Start initializing DMA environment for both hardware platform and the software application,
described as below.
i) Assign variable to point to the allocated memory from device interface. There are two

pointer types. First is the host virtual memory address pointer that is used in the
application and another is the hardware memory address that is used by the hardware.
Both pointer types are pointed to the same memory location.

ii) Send a soft reset to the DMA logic in the hardware platform
(DG_DMA_RESET_OFFSET[0]=‘1’).

iii) Set the buffer size to the hardware register (DG_DMA_BUFFER_SIZE_OFFSET) and
then set the 64-bit hardware memory address of the transmit and receive buffer to the
hardware registers (DG_DMA_TX/RXBUFFER_LOW/HIGH_ADDRESS_OFFSET).
This reference design uses four memory areas, so the hardware registers of four areas
are set.

iv) De-assert the soft reset to DMA logic (DG_DMA_RESET_OFFSET[0]=‘0’).
8) After the hardware completes the initialization process, the main menu of the application is

displayed on the console, as shown in Figure 3-6. There are five test operations for user
selection. More details of each menu are described as follows.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 39

Figure 3-6 Main menu of the software application

3.2.1 Display parameters

This menu is applied to display current parameters of TOE100G-IP, i.e., the initialization
mode, Windows update threshold, Reverse packet enable, source MAC address, destination
IP address, source IP address, destination port, source port, and destination MAC address
(when using Fixed MAC mode). The sequence of display parameters menu is as follows.
1) Read all network parameters from each variable in the software application.
2) Print out each variable.

3.2.2 Reset IP

This menu is applied to change network parameters of TOE100G-IP such as IP address and
source port number. The software application asserts the TOE100G-IP reset before updating
the parameters to TOE100G-IP register. After that, the reset is de-asserted to start IP
initialization by using the updated parameters. The software application monitors busy flag to
wait until the initialization is completed. The sequence to reset IP is as follows.
1) Display current parameter value on the console.
2) Ask user to skip (use current parameters) or set new parameter values.

i) Press ‘x’ on keyboard to skip. The current parameters are used and continue to step 6.
ii) Press other keys to start setting parameters (continue to step 3).

3) Receive initialization mode from user.
i) If input mode is invalid or the input mode does not change, mode value will not change

and continue to step 4.
ii) If input mode is valid and changes from previous value, the current parameter set of

new mode is displayed on the console. Next, user inputs ‘x’ to use the current
parameters (continue to step 6) or inputs other keys to adjust some parameters
(continue to step 4).

4) Receive all the remaining parameters from user, i.e., FPGA MAC address and FPGA IP
address. If an input value is invalid, the parameter is not changed.

5) Force reset to IP by setting DG_TOEIP_RST_INTREG_OFFSET[0]=’1’.
6) Set all parameters to TOE100G-IP register such as DG_TOEIP_SML_INTREG_OFFSET

and DG_TOEIP_DIP_INTREG_OFFSET.
7) De-assert IP reset by setting DG_TOEIP_RST_INTREG_OFFSET[0]=’0’. After that,

TOE100G-IP starts the initialization process.
8) Monitor IP busy flag (DG_TOEIP_CMD_INTREG_OFFSET[0]) until the initialization

process is completed (busy flag is de-asserted to ‘0’).

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 40

3.2.3 Send data test

Four user inputs are received to set total transmit length, packet size, pattern data generation
mode (enable or disable), and connection mode (active open for client operation or passive
open for server operation). Before running the test, the software application creates a child
thread to write the 32-bit incremental data or dummy data to the transmit buffer (Tx buffer).
After that, the main thread sets control flag to the hardware register for reading the data from
the Tx buffer and then transferring to the TOE100G-IP for creating the data packet to the
target. The operation is finished when total data are transferred from the system to the target
completely.

To handle the flow control of the Tx buffer, three counters are applied. First is the write counter
of Tx buffer which is increased by the child thread after finishing writing data of each Tx buffer
area. Second is the request counter that is increased by the main thread after sending the
request to the hardware to start reading the new data from each Tx buffer area. Third is the
read counter of Tx buffer which is increased by the main thread when the hardware sets the
clear flag after finishing reading the data of each Tx buffer area. The sequence of Send data
test menu is as follows.

1) Receive transfer size, packet size, data generation mode, and connection mode from user
and verify if all inputs are valid.

2) Read current parameters and then display the recommended parameters of “tcpdatatest”
(Test application on the Target PC) when the target device is another PC.

3) Open connection following connection mode setting.
i) For active open, the software application sets DG_TOEIP_CMD_INTREG_OFFSET=2

(Open port) and waits until ConnOn status is changed by checking the connection
interrupt status (DG_TOEIP_USERINT_INTREG_OFFSET[0]=‘1’). Error message is
displayed if TOE100G-IP finishes the operation without interrupt asserting.

ii) For passive open, the software application waits until connection is opened by the
Target device. Connection interrupt status (DG_TOEIP_USERINT_INTREG_
OFFSET[0]) is monitored until it is equal to ‘1’.

4) Prepare the parameters and the software application for Transmit DMA feature.
i) Calculate the amount of data for the last Tx buffer area and the total count of Tx buffer

areas for storing all data.
ii) Create a child thread (gen_txbuf_data) for writing the data into the Tx buffer until all

data is filled completely.
5) Setup the hardware for DMA function.

i) Set the total transmit length to DG_DMA_TOTAL_TRANSMIT_LENGTH_OFFSET.
ii) Start Tx DMA engine hardware by setting DG_DMA_COMMAND_OFFSET[0]=‘1’.
iii) Set packet size to TOE100G-IP register (DG_TOEIP_PKL_INTREG_OFFSET).

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 41

6) Control the data transmission of Tx buffer with TOE100G-IP and Tx DMA engine by

running the following steps as forever loop until all data is transmitted completely or some
errors are found.
i) Check if all data are completely transferred to TOE100G-IP. If not, continue to the next

step to prepare the next data transmission. Otherwise, skip to step 7).
ii) Check if TOE100G-IP finishes the operation of the previous Send command by reading

busy flag (DG_TOEIP_CMD_INTREG_OFFSET[0]=’0’) and remaining transfer length
(not equal to 0). If not, continue to the next step. Otherwise, prepare the next Send
command parameters for TOE100G-IP. The transfer size of TOE100G-IP
(DG_TOEIP_TDL_INTREG_OFFSET) is set to 4 GB, except the last loop that can be
less than 4 GB. After that, set the Send command to TOE100G-IP (DG_TOEIP_CMD_
INTREG_OFFSET[0]=0).

iii) Check if there is new data filled by the child thread (request counter < write counter). If
not, continue to the next step. Otherwise, set the valid flag of the new Tx buffer area to
the hardware (DG_DMA_TXBUFFER_VALID_OFFSET[i]=’1’ where ‘i’ is an index of the
new buffer area) and then increase the request counter.

iv) Check if there is new clear flag of Tx buffer returned by the hardware after finishing
reading the data from Tx buffer (DG_DMA_TXBUFFER_VALID_OFFSET). If not,
continue to the next step. Otherwise, increase the read counter.

v) Display the results on the console every second and return to step i).
7) Wait until the TOE100G-IP completes its operation by monitoring the busy flag

(DG_TOEIP_CMD_INTREG_OFFSET[0]=’0’).
8) Set close connection command to TOE100G-IP register (DG_TOEIP_CMD_INTREG_

OFFSET=3) and wait until the operation is successful by reading the connection interrupt
status (DG_TOEIP_USERINT_INTREG_OFFSET[0]=‘1’). Error message is displayed if
TOE100G-IP finishes the operation without interrupt asserting.

9) Wait until the child thread finishes the operation.
10) Calculate performance and show test result on the console.

3.2.4 Receive data test

User sets total amount of received data, data verification mode (enable or disable), and
connection mode (active open for client operation or passive open for server operation).
Before running the test, the software application creates a child thread to read data from the
receive buffer (Rx memory) which is written by the hardware. If the data verification mode is
enabled, the received data are verified by 32-bit incremental data. The operation is finished
when total data are received and the connection is closed by the target.

Similar to Send data test, three counters are applied to handle the flow control of the Rx buffer.
First is the write counter of Rx buffer which is increased by the main thread when the
hardware sets the new valid flag after finishing writing data to each Rx buffer area. Second is
the read counter of Rx buffer which is increased by the child thread after finishing reading
data of each Rx buffer area. Third is the complete counter which is increased by the main
thread after setting the clear flag to each Rx buffer area. The sequence of Receive data test
menu is as follows.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 42

1) Receive total transfer size, data verification mode, and connection mode from user input.

Verify that all inputs are valid.
2) Display the recommended parameters for running “tcpdatatest” when the target device is

another PC, similar to step 2 of Send data test.
3) Open connection following connection mode setting, similar to step 3 of Send data test.
4) Prepare the parameters and the software application for Receive DMA feature.

i) Calculate the amount of data for the last Rx buffer area and the total count of the Rx
buffer areas for storing all data.

ii) Create a child thread (ver_rxbuf_data) for reading and verifying the data from the Rx
buffers until all data is read completely.

5) Setup the hardware for DMA function.
i) Set the total receive length to DG_DMA_TOTAL_RECEIVE_LENGTH_OFFSET.
ii) Start Rx DMA engine hardware by setting DG_DMA_COMMAND_OFFSET[1]=‘1’.

6) Control the data transmission of Rx buffer with TOE100G-IP and Rx DMA engine by
running the following steps as forever loop until the connection is terminated or some
errors are found.

i) Check if the connection is terminated. If not, continue to the next step. Otherwise, wait
until the Rx DMA engine completes the operation (DG_DMA_STATUS_OFFSET[1]=‘0’)
and there is no more data in the Rx buffer for reading (DG_DMA_RXBUFFER_VALID
_OFFSET=0). After that, skip to the step 7).

ii) Check if there is the new valid flag of Rx buffer (DG_DMA_RXBUFFER_VALID_
OFFSET[i]=’1’ where ‘i’ is an index of the new buffer area) that is set by the hardware
after finishing writing the data to Rx buffer and Rx buffer is still not full. If not, continue to
the next step. Otherwise, increase the write counter. When the child thread detects the
updated write counter, it starts reading and verifying the data from Rx buffer (if the
verification flag is set). The read counter is updated by the thread after finishing the
operation.

iii) Check if the read counter is updated by the child thread (read counter > complete
counter). If not, continue to the next step. Otherwise, set clear flag of the new Rx buffer
area to the hardware (DG_DMA_RXBUFFER_VALID_OFFSET[i]=’1’ where ‘i’ is an
index of the new buffer area). After that, increase the complete counter by the main
thread.

iv) Display the results on the console every second and return to step i).
7) Wait until the child thread finishes the operation.
8) Display the error messages if the errors have occurred (data verification fail or total

received length mismatch).
9) Calculate performance and show test result on the console.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 43

3.2.5 Full duplex test

This menu transfers the data between the system and the target device in both directions by
using the same port number at the same time. Four inputs are received from user, i.e., total
data size for both transfer directions, transmit packet size, data generation/verification mode,
and connection mode (active open/close for client operation or passive open/close for server
operation). When running the test, the transfer size that is set on the system and the target
device must be equal. If the target device is PC that runs “tcp_client_txrx(_40G)” application,
the system must set the connection mode to be passive. The test runs in forever loop until the
user cancels operation by entering any keys on console at the end of each test round.

Two child threads are created for handling the transmit buffer (Tx buffer) and the receive
buffer (Rx buffer) individually. The flow control of each buffer is handled by using three
counters. For Tx buffer, it uses Tx write counter, Tx request counter, and Tx read counter.
While Rx buffer uses Rx write counter, Rx read counter, and Rx complete counter. The
function of the counter is similar to the description in Send data test and Receive data test.
The sequence of this test is as follows.

1) Receive total data size, packet size, data generation/verification mode, and connection

mode from the user and verify that all inputs are valid.
2) Display the recommended parameters for running “tcp_client_txrx_40G” when the target

device is another PC, similar to step 2 of Send data test.
3) Open connection following connection mode setting, similar to step 3 of Send data test.
4) Prepare the parameters and the software application for Tx DMA and Rx DMA features.

i) Calculate the amount of data for the last Tx/Rx buffer area and total count of the Tx/Rx
buffer areas for storing all data.

ii) Set packet size to TOE100G-IP register (DG_TOEIP_PKL_INTREG_OFFSET).
iii) Create two child threads - gen_txbuf_data and ver_rxbuf_data for writing the data to

Tx buffers and reading and verifying the data from Rx buffers, respectively.
5) Setup the hardware for DMA function.

i) Set the total transmit length and total receive length to the hardware registers
(DG_DMA_TOTAL_TRANSMIT/RECEIVE_LENGTH_OFFSET) by the same value.

ii) Start Tx and Rx DMA engine hardware by setting DG_DMA_COMMAND_OFFSET=3.
6) Control the data transmission of Tx buffer and Rx buffer with TOE100G-IP and DMA

engine by running the following steps as forever loop until all data is transferred
completely or some errors are found.
i) Check the condition to exit the loop which is different for the active mode and passive

mode. If the exit condition is met, skip to step 7). Otherwise, continue to the next step
to prepare the next data transmission. The exit condition of each mode is as follows.
a. For active mode, check read counter of Tx buffer and Tx remaining length to confirm

that all Tx data are transferred completely. Also, check that Rx buffer status is in Idle
condition and all flags of Rx buffer are cleared.

b. For passive mode, check that the connection is terminated. Also, Rx buffer status
must be Idle and all flags of Rx buffer are cleared. Error is found if there is remaining
data that is not transferred in Tx buffer.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 44

ii) Check if TOE100G-IP finishes the operation of the previous Send command by

reading busy flag (DG_TOEIP_CMD_INTREG_OFFSET[0]=’0’) and Tx remaining
length (not equal to 0). If not, continue to the next step. Otherwise, prepare the next
Send command parameters for TOE100G-IP. The transmit size of TOE100G-IP
(DG_TOEIP_TDL_INTREG_OFFSET) is set to the maximum value that is less than 4
GB and aligned to the transmit packet size, except the last loop that is set by Tx
remaining length. After that, set the Send command to TOE100G-IP (DG_TOEIP_
CMD_INTREG_OFFSET[0]=0).

iii) Check if there is new Tx data filled by the child thread (Tx request counter < Tx write
counter). If not, continue to the next step. Otherwise, set the valid flag of the new Tx
buffer area to the hardware (DG_DMA_TXBUFFER_VALID_OFFSET[i]=’1’ where ‘i’ is
an index of the new buffer area) and then increase the request counter.

iv) Check if there is new clear flag of Tx buffer returned by the hardware after finishing
reading the data from Tx buffer (DG_DMA_TXBUFFER_VALID_OFFSET). If not,
continue to the next step. Otherwise, increase the Tx read counter.

v) Check if there is the new valid flag of Rx buffer (DG_DMA_RXBUFFER_VALID_
OFFSET[i]=’1’ where ‘i’ is an index of the new buffer area) that is set by the hardware
after finishing writing the data to Rx buffer and Rx buffer is still not full. If not, continue
to the next step. Otherwise, increase the write counter. When the child thread detects
the updated Rx write counter, it starts reading and verifying the data from Rx buffer (if
the verification flag is set). Rx read counter is updated by the thread after finishing the
operation.

vi) Check if Rx read counter is updated by the child thread (Rx read counter > Rx
complete counter). If not, continue to the next step. Otherwise, set clear flag of the new
Rx buffer area to the hardware (DG_DMA_RXBUFFER_VALID_OFFSET[i]=’1’ where
‘i’ is an index of the new buffer area). After that, increase Rx complete counter by the
main thread.

vii) Display the results on the console every second and return to step i).
7) Wait until the TOE100G-IP completes its operation by monitoring the busy flag

(DG_TOEIP_CMD_INTREG_OFFSET[0]=‘0’).
8) Set close connection command to TOE100G-IP register if the connection mode is active

mode, similar to step 8 of Send data test.
9) Wait until the child threads (gen_txbuf_data and ver_rxbuf_data) finish the operation.
10) Display the error messages if the errors have occurred (data verification fail or total

transfer length mismatch).
11) Calculate performance and show test result on the console.
12) Display the message and wait for 2 seconds to allow the user entering the keys to end the

operation. If some keys are detected, exit the test. Otherwise, return to step 3) to repeat
the test.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 45

3.2.6 Function list in application

This topic describes the function list to run TOE100G-IP operation.

Timer Utilization Function

static void TimerStart(void)

Parameters None

Return value None

Description Start the clock and store the initial time for returning the elapsed time.

static void TimerStop(void)

Parameters None

Return value None

Description Stop the clock and store the current time to calculate the elapsed time.

template<typename dur_unit> static double TimerElapsed(void)

Parameters None

Return value The elapsed time value

Description Determine whether the clock is running or not. If the clock is stopped,
return the total time usage that is measured from calling TimerStart
function to calling TimerStop function. Otherwise, return the elapsed time
since the clock has been started.
Note: Time unit can be specified when calling the function. For example,
uses “timer.elapsed<std::chrono::seconds>()” to return in second unit.

Termination Function

void cleanup(void)

Parameters None

Return value None

Description This function is called for safety termination of the application. It resets
the hardware system by setting DG_DMA_RESET_OFFSET and
DG_TOEIP_RST_INTREG_OFFSET to ‘1’. Next, de-allocate the
memory back to host via XRT. After that, close the target device
interface. Finally, restore the terminal setting by using the original setting.

void sigintHandler(void)

Parameters None

Return value None

Description This function is run to terminate the application when user input
“CTRL+C”. “cleanup” function is called and then the application is exited.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 46

Console Display Function

static char* code_to_string(uint32_t code)

Parameters code: Input value returned from the device interface function

Return value Pointer to the string of code after conversion

Description Convert the unsigned value to the string. The error code is defined in the
Device interface framework.

void show_cursize(uint64_t tx_len, uint64_t rx_len)

Parameters tx_len: Current transfer size of the transmitted data in byte unit
rx_len: Current transfer size of the received data in byte unit

Return value None

Description Display the current amount of transmitted data and received data in Byte,
KByte, or MByte unit.

void show_result(uint64_t tot_tx_len, uint64_t tot_rx_len, double time_val)

Parameters tot_tx_len: Total transfer size of the transmitted data in byte unit
tot_rx_len: Total transfer size of the received data in byte unit
time_val: Total time usage in millisecond unit

Return value None

Description Display total amount of transmitted data and received data. Next, Display
total time usage in sec unit. Finally, transfer performance is calculated
and displayed in MB/s unit.

void show_ipaddr(uint32_t ip_addr)

Parameters ip_addr: 32-bit IPv4 address

Return value None

Description Display IPv4 address in decimal unit, separated by dot character.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 47

Thread Function

void kill_thread(std::thread &t)

Parameters t: Pointer to a thread function that wanted to terminate

Return value None

Description Use to terminate the thread function immediately. Generally, this function
will be used when an error has occurred only.

void gen_txbuf_data(const std::atomic<uint32_t> &buf_rdcnt, std::atomic<uint32_t>
&buf_wrcnt, volatile uint32_t *head_ptr, const uint32_t buf_totalcnt, const uint32_t
last_buf_len, const bool gen_patt)

Parameters buf_rdcnt: Pointer to the read counter of Tx buffer
buf_wrcnt: Pointer to the write counter of Tx buffer
head_ptr: Pointer to the start address of Tx buffer
buf_totalcnt: Total count of Tx buffer area that is used in this operation
last_buf_len: Buffer size in byte unit of the last buffer in this operation
gen_patt: TRUE-fill the pattern data, FALSE-not fill the pattern data

Return value None

Description The operation is exited if buf_wrcnt is more than or equal to buf_totalcnt.
Before filling the new data, check that the Tx buffer is not full by reading
buf_wrcnt and buf_rdcnt. After that, calculate the start address to write
the data and total transfer length of this loop. If gen_patt is TRUE, fill the
incremental pattern to Tx buffer. Otherwise, skip the step to fill the data to
Tx buffer. Finally, increase the buf_wrcnt value.

void ver_rxbuf_data(const std::atomic<uint32_t> &buf_wrcnt, std::atomic<uint32_t>
&buf_rdcnt, volatile uint32_t *head_ptr, const uint32_t buf_totalcnt, const uint32_t
last_buf_len, const bool ver_en)

Parameters buf_wrcnt: Pointer to the write counter of Rx buffer
buf_rdcnt: Pointer to the read counter of Rx buffer
head_ptr: Pointer to the start address of Rx buffer
buf_totalcnt: Total count of Rx buffer area that is used in this operation
last_buf_len: Buffer size in byte unit of the last buffer in this operation
ver_en: TRUE-verify data, FALSE-not verify data

Return value None

Description The operation is exited if buf_rdcnt is more than or equal to buf_totalcnt.
To start the new operation, check that there is the new data stored in Rx
buffer (buf_rdcnt is less than buf_wrcnt). After that, calculate the start
address to read the data and total transfer length of this loop. If ver_en is
TRUE, the read data from Rx buffer is compared to the incremental
pattern. Otherwise, skip the step to verify the data in Rx buffer. Finally,
increase the buf_rdcnt value.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 48

Buffer Handler Function

inline bool check_txbuf_clear(uint32_t txbuf_ctrl, uint32_t index)

Parameters txbuf_ctrl: Read value of DG_DMA_TXBUFFER_VALID_OFFSET
index: The index of Tx buffer area

Return value TRUE: This Tx buffer area is free and ready to fill data
FALSE: This Tx buffer area is full

Description Checking whether the specified Tx buffer area is free or not by reading
txbuf_ctrl.

inline bool check_rxbuf_valid(uint32_t rxbuf_ctrl, uint32_t index)

Parameters rxbuf_ctrl: Read value of DG_DMA_RXBUFFER_VALID_OFFSET
index: The index of Rx buffer area

Return value TRUE: This Rx buffer area has the new data for reading
FALSE: This Rx buffer area does not have the new data

Description Checking whether the specified Rx buffer has the data or not by reading
rxbuf_ctrl.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 49

Miscellaneous Function

void wait_ethlink(void)

Parameters None

Return value None

Description Read DG_EMAC_USERSTS_INTREG_OFFSET[0] and wait until
ethernet connection is established.

void input_param(void)

Parameters None

Return value None

Description Receive test parameters from user for test parameters, i.e., Initialization
mode, FPGA MAC address, FPGA IP address, the number of targets,
ARP/ICMP Enable, Target MAC address (when run in Fixed-MAC
mode), Target IP address, FPGA port number, and Target port number.
After receiving and verifying all parameters, the current value of all
parameters is displayed by calling show_param function.

inline uint32_t read_conon(void)

Parameters None

Return value 0: Connection is OFF, 1: Connection is ON

Description Read value from DG_TOEIP_USERSTS_INTREG_OFFSET register
and return only bit0 value to show connection status.

int exec_port(uint32_t port_ctl, uint32_t mode_active)

Parameters port_ctl: 1-Open port, 0-Close port
mode_active: 1-Active open/close, 0-Passive open/close

Return value 0: The open/close connection is successful
-1: Fail to open/close the connection

Description For active mode, write DG_TOEIP_CMD_INTREG_OFFSET to open or
close connection, depending on port_ctl mode. After that, monitor
connection status interrupt from bit0 of DG_TOEIP_USERINT_
INTREG_OFFSET register until it is asserted. After that, the interrupt flag
is cleared.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 50

Test Function

void show_param(void)

Parameters None

Return value None

Description Display the current value of the network parameters set to TOE100G-IP
such as IP address, MAC address, and port number.

void init_param(void)

Parameters None

Return value None
Description This function is called to set the parameters and reset the IP, following

described in topic 3.2.2.

int dma_send_test(volatile uint32_t *mem_ptr)

Parameters mem_ptr: Pointer to Tx buffer

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Send data test following description in topic 3.2.3.
This function uses gen_txbuf_data as a child thread.

int dma_recv_test(volatile uint32_t *mem_ptr)

Parameters mem_ptr: Pointer to Rx buffer

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following description in topic 3.2.4.
This function uses ver_rxbuf_data as a child thread.

int dma_txrx_test(volatile uint32_t *txmem_ptr, volatile uint32_t *rxmem_ptr)

Parameters txmem_ptr: Pointer to Tx buffer
rxmem_ptr: Pointer to Rx buffer

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Full duplex test with DMA following described in topic 3.2.5. This
function uses gen_txbuf_data and ver_rxbuf_data as child threads.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 51

4 Test Software on the target

4.1 “tcpdatatest” for half duplex test

Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to run on PC for sending or receiving TCP data via Ethernet as
server or client mode. PC of this demo should run in client mode. User sets parameters to
select transfer direction and the mode. Six parameters are required as follows.
1) Mode: c –PC runs in Client mode and FPGA runs in Server mode
2) Dir: t – transmit mode (PC sends data to FPGA)

r – receive mode (PC receives data from FPGA)
3) ServerIP: IP address of FPGA when PC runs in Client mode (default is 192.168.7.42)
4) ServerPort: Port number of FPGA when PC runs in Client mode (default is 4000)
5) ByteLen: Total transfer size in byte unit. This input is used in transmit mode only and

ignored in receive mode. In receive mode, the application is closed when the connection is
terminated. In transmit mode, ByteLen must be equal to the total transfer size, set in
receive data test menu of FPGA.

6) Pattern:
0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate incremental data in transmit mode or enable data verification in receive
mode.

Note: Window Scale is the optional parameter which is not used in the demo. Also, this
parameter is not available in Linux application.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 52

Transmit data mode
Following sequence is the sequence when test application runs in transmit mode.
1) Get parameters from the user and verify that all inputs are valid.
2) Create the socket and set socket options.
3) Create the new connection by using server IP address and server port number.
4) Allocate memory to be send buffer.
5) Skip this step if the dummy pattern is selected. Otherwise, generate the incremental test

pattern to send buffer.
6) Send data out and read total sent data from the function.
7) Calculate remaining transfer size.
8) Print total transfer size every second.
9) Repeat step 5) – 8) until the remaining transfer size is 0.
10) Calculate total performance and print the result on the console.
11) Close the socket and free the memory.

Receive data mode
Following sequence is the sequence when test application runs in receive mode.

1) Follow the step 1) – 3) of Transmit data mode.
2) Allocate memory to be receive buffer.
3) Read data from the receive buffer and increase total amount of received data.
4) This step is skipped if data verification is disabled. Otherwise, received data is verified by

the incremental pattern. Error message is printed out when data is not correct.
5) Print total amount of received data every second.
6) Repeat step 3) – 5) until the connection is closed.
7) Calculate total performance and print the result on the console.
8) Close socket and free the memory.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 53

4.2 “tcp_client_txrx(_40G)” for full duplex test

Figure 4-2 “tcp_client_txrx_40G” application usage

“tcp_client_txrx_40G” (for Windows OS) or “tcp_client_txrx” (for Linux OS) application is
designed to run on PC for sending and receiving TCP data through Ethernet at the same time
by using the same port number. The application is run in Client mode, so user needs to input
the Server parameters (the network parameters of TOE100G-IP). As shown in Figure 4-2,
there are four parameters to run the application, described as follow.

1) ServerIP : IP address of FPGA
2) ServerPort : Port number of FPGA
3) ByteLen : Total transfer size in byte unit. This is total amount of transmitted data

and received data. This value must be equal to the transfer size set on FPGA for running
full-duplex test.

4) Verification:
0 – Generate dummy data for sending function and disable data verification for receiving
function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate incremental data for sending function and enable data verification for
receiving function.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 54

The sequence of test application is as follows.
1) Get parameters from the user and verify that the input is valid.
2) Create the socket and set socket options.
3) Create the new connection by using server IP address and server port number.
4) Allocate memory for send and receive buffer.
5) Generate incremental test pattern to send buffer when the test pattern is enabled. Skip this

step if dummy pattern is selected.
6) Send data out, read total send data from the function, and calculate remaining send size.
7) Read data from the receive buffer and increase total amount of received data.
8) Skip this step if data verification is disabled. Otherwise, data is verified by incremental

pattern. Error message is printed out when data is not correct.
9) Print total amount of transmitted data and received data every second.
10) Repeat step 5) – 9) until total amount of transmitted data and received data are equal to

ByteLen, set by user.
11) Calculate performance and print the result on the console.
12) Close the socket.
13) Sleep for 1 second to wait until the hardware completes the current test loop.
14) Run step 3) – 13) in forever loop. If verification is failed, the application is stopped.

dg_toe100gip_alveo_refdesign.doc

21-Sep-22 Page 55

5 Revision History

Revision Date Description

1.0 21-Sep-22 Initial version release

