
dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 1

TOE100G-IP on Silicom NIC reference design
Rev1.0 16-Dec-22

1 Introduction ...2

2 UserLogic (Hardware) ...6
2.1 AxiSSw2to1 ..8

2.2 TOE100G-IP ...10

2.3 TxDMA2TOEIF ... 11
2.4 TOE2RxDMAIF ...16

2.5 RegSwitch ..23
2.6 TOEDMAReg ..24

3 The host software ...27

3.1 Framework ..28
3.1.1 Device interface ..28

3.1.2 Shell ...31
3.2 Application ..38

3.2.1 Display parameters ...40

3.2.2 Reset IP ...41
3.2.3 Half duplex test ...42

3.2.4 Full duplex test..46
3.2.5 Function list in application ...49

4 Test Software on the target..57

4.1 “tcpdatatest” for half duplex test ...57
4.2 “tcp_client_txrx_single” for full duplex test ..59

5 Revision History ..61

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 2

1 Introduction

Figure 1-1 Standard NIC and Silicom with TOE100G-IP NIC comparison

The left side of Figure 1-1 shows the host system that plugs-in the standard NIC to PCIe interface.
The NIC implements the low-level protocol to handle the Ethernet packet and then transferred to
the Main memory via PCIe interface. To control the NIC hardware, the NIC driver provided by the
NIC vendor must be run on each OS. The driver is applied by the standard library that implements
the standard network protocol such as TCP/IP, UDP, and ARP for building or decoding the
Ethernet packet following the standard protocol. Therefore, the application can process the
payload data following the requirement without handling the lower-layer protocol. In the system
that uses TCP/IP protocol, the Main memory is required for storing TCP payload data or Ethernet
packet for transferring data with the Driver. Therefore, CPU has many tasks for handling - process
the application layer, TCP protocol, IP protocol, and the driver. Sometimes, ARP protocol must be
applied to handle the MAC address table. Consequently, the performance result when running the
test application for transferring TCP/IP packet on the standard NIC system shows the limited
speed which is much less than the peak bandwidth of 100G Ethernet.

The right side of Figure 1-1 shows the purposed host system that uses Silicom NIC by using
FPGA. The FPGA is the programmable logic that can design the offload engine. In this reference
design, it implements the full offload engine for TCP/IP protocol by integrating DG TOE100G-IP.
Silicom NIC provides the PacketMover framework that applies the full feature of the standard NIC
and provides the programmable user logic for customizing the Ethernet packet processor.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 3

This reference design integrates two TOE100G-IPs into the user logic, so TCP/IP packet of two
TCP sessions that are controlled by TOE100G-IP can be transferred at the maximum speed of
100G Ethernet (about 1200 MB/s). TOE100G-IP implements TCP/IP protocol of one TCP session
by pure-hardware logic. The user data of TOE100G-IP is TCP payload data that is stored to the
Main memory via PCIe interface. By using pure-hardware logic, the system does not require the
standard library for TCP/IP processing. While other TCP sessions or other protocols are
processed by using the standard NIC logic and driver that is provided by Silicom without using
TOE100G-IP. Transfer performance by using the standard NIC logic shows less performance. In
conclusion, this reference design is the SMART NIC that can configure two high-speed TCP ports
for special application while other features of the standard NIC are still supported.

The details of fb2CGhh@KU15P FPGA Card are described in more details from the following site.
https://www.silicom-usa.com/pr/server-adapters/programmable-fpga-server-adapter/fpga-xilinx-b
ased-2/fb2cghhku15p-fpga-card/

The information about PacketMover framework by Silicom which is the base design can be
checked from the following site.
https://www.silicom.dk/product-details/packetmover-fpga-acceleration/

Note: Though TOE100G-IP supports ARP protocol, this reference design forwards the ARP
packet to be handled by the standard NIC logic, not TOE100G-IP.

https://www.silicom-usa.com/pr/server-adapters/programmable-fpga-server-adapter/fpga-xilinx-based-2/fb2cghhku15p-fpga-card/
https://www.silicom-usa.com/pr/server-adapters/programmable-fpga-server-adapter/fpga-xilinx-based-2/fb2cghhku15p-fpga-card/
https://www.silicom.dk/product-details/packetmover-fpga-acceleration/

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 4

Figure 1-2 Silicom PacketMover with DG TOE100G-IP system

The Silicom PacketMover with DG TOE100G-IP design can be separated to two systems – the
hardware system on FPGA card and the host CPU system which runs Ubuntu OS (Linux). The
FPGA card connects to the host by using PCIe interface. The PacketMover hardware system is
the complete FPGA framework for supporting the standard NIC feature with the Custom Packet
Processor. As shown in Figure 1-2, the Frame Forwarder can be configured by the user to
determine the destination to forward the received Ethernet packet from 100G Ethernet connection.
There are two destinations in the system - Filtered Frame Interface for Custom Packet Processor
or Standard NIC Interface. Also, the Frame Forwarder allows the Custom Packet Processor to
select the Ethernet connection number (no.0 or no.1 of 100G Ethernet connection) for
transmitting Ethernet packet.

Two TOE100G-IPs are applied for processing TCP/IP packet of two TCP sessions. TOE100G-IP
is the full offload engine of TCP/IP protocol without CPU and DDR requirement, so DDR4
Controller is removed for resource optimization. The TCP payload data that is user data of
TOE100G-IP is transferred with DMA buffer on the host system via MCDMA interface. While the
register interface is applied to configure the TOE100G-IP parameters for transferring the Ethernet
packet with TCP payload data. Also, this interface is applied to read TOE100G-IP status. The
application on the host system is also developed for using two TOE100G-IPs to transfer TCP/IP
packet at very high-speed rate.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 5

Figure 1-3 ACL Filter setting for UserLogic

Silicom packet mover platform allows the user to configure the received frame filter by setting ACL
(Access Control Lists). As shown in Figure 1-3, the rule of this reference design is to forward the
received packet of QSFP#0 to the UserLogic (two TOE100G-IPs) when all following conditions
are met.

• Target MAC address = FPGA MAC address that is set to TOE100G-IP

• Target IP address = FPGA IP address that is set to TOE100G-IP

• Target Port number = FPGA Port of TOE100G-IP#0 or TOE100G-IP#1

• Protocol type = TCP protocol
If some conditions do not match such as TCP port, the packet is forwarded to Standard NIC
interface instead. While all received packets from QSFP#1 connector are forwarded to Standard
NIC interface. On the other hand, all transmitted Ethernet packets generated by UserLogic are
forwarded to QSFP#0 only while the standard NIC interface has the logic to determine the
Ethernet port for forwarding the transmitted packet that is QSFP#0 or QSFP#1. Therefore, all
packets that are transferred on QSFP#1 connector are handled by the Standard NIC interface
while the packets of two TCP sessions that are transferred on QSFP#0 connector are handled by
UserLogic.

Silicom PacketMover with DG TOE100G-IP is run on Ubuntu 20.04 LTS OS and based on Silicom
PacketMover Release 1.4.0. To run the demo, the best performance can be achieved when the
target system (another side of TOE100G Ethernet connection) is the FPGA card that integrates
TOE100G-IP. Up to 12300 MB/s can be achieved by using two FPGA cards with TOE100G-IP
transferring data each other. While the performance is much reduced when the target system is
the PC with standard NIC. However, the performance by using standard NIC can be improved
when using two TCP sessions.

In this document, topic 2 shows the details of the UserLogic hardware design. Topic 3 describes
the software implementing on the host CPU system. The last topic is the details of test application
on the target system for half-duplex test and full-duplex test.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 6

2 UserLogic (Hardware)

Figure 2-1 UserLogic block diagram

UserLogic has three interfaces. First is 512-bit AXI Stream I/F for transferring Ethernet packet
(MacRx I/F and MacTx I/F). Second is 64-bit Reg I/F for parameter setting (CFGWr I/F) and status
monitoring (CFGRd I/F). Third is 512-bit AXI Stream I/F for transferring TCP payload data
(DMATx I/F and DMARx I/F). The UserLogic consists of two TOE hardware sets for handling
TCP/IP packets of two TCP sessions at high-speed performance. Each TOE hardware set
consists of TOE100G-IP, TOEDMAReg, TxDMA2TOEIF, and TOE2RxDMAIF. Therefore, when
connecting with three interfaces, it requires the switch logics to select one of two TOE hardware
sets, i.e., AxiSSw2to1 for both 512-bit AXI Stream I/Fs and RegSwitch for 64-bit Reg I/F.
Note: UserLogic can be modified to increase or decrease the number of TCP sessions by
adjusting the number of the TOE hardware sets. Also, the switch logics must be modified to
support the updated number of the TOE hardware sets.

MacRx I/F directly connects to two TOE100G-IPs without more filtering logics because each
TOE100G-IP has its own packet filtering that can be configured the network parameters. While
the transmitted Ethernet packet from each TOE100G-IP is fed to AxiSSw2to1 (MacTx) for
forwarding the packet to Ethernet MAC via MacTx I/F. If two TOE100G-IPs send the packet at the
same time, the transmitted packet of the second TOE100G-IP is transferred after finishing
transferring the packet of the first TOE100G-IP.

Before starting the operation, the parameters of each TOE100G-IP and DMA engine
(TxDMA2TOEIF and TOE2RxDMAIF) are configured via 64-bit Reg I/F. RegSwitch decodes the
address in the request to select the active TOEDMAReg. TOEDMAReg module connects to the
control interface of three modules for operating each TCP session, i.e., TOE100G-IP Reg I/F,
TxDMA2TOEIF, and TOE2RxDMAIF.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 7

For transmit direction, the host system prepares the transmitted data (TCP payload data) to the
Main memory and then sends the command request to UserLogic to start the operation.
TxDMA2TOEIF transfers the payload data from the Main memory via 512-bit DMA Tx I/F to
TxFIFO I/F of TOE100G-IP. Next, TOE100G-IP builds and transmits Ethernet packet that includes
TCP payload data to AxiSSw2to1 (MacTx) via TxMAC I/F which is the interface of Ethernet MAC.
The parameters to run this operation such as the initial address of the main memory, total transmit
data size, and transmit packet size are configured by CFGWr I/F before starting the operation.
While the status to check the operation progress can be monitored by CFGRd I/F.

On the other hand, the received Ethernet packet from Ethernet MAC is forwarded to TOE100G-IP
via MacRx I/F. When the Ethernet packet is valid, TOE100G-IP extracts TCP payload data from
the received Ethernet packet and then forwards to TOE2RxDMA I/F. Next, the TOE2RxDMAIF
waits until the main memory is free and then uploads TCP payload data to the main memory. After
that, the host system reads the payload data from the Main memory for data processing. Similar
to transmit operation, the initial address of the main memory and total transfer data size are
configured by CFGWr I/F before starting the operation. Also, the operation progress is monitored
by CFGRd I/F. To upload the data to the Main memory, AxiSSw2to1 (DMARx) is applied to select
the active TOE2RxDMAIF for transferring the data to the Main memory via 512-bit DMARx I/F.

Two clock domains are applied in the UserLogic. The Ethernet MAC I/F uses mac_clk domain
which is equal to 300 MHz while the DMA I/F and CFG I/F use pci_clk domain which is equal to
250 MHz. Therefore, CDC (clock domain crossing) is implemented inside TOE100G-IP. More
details of each hardware module inside the UserLogic are described as follows.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 8

2.1 AxiSSw2to1

Figure 2-2 AxiSSw2to1 interface

This module is the 2-to-1 switch logic of AXI-ST interface. There are the parameters that can be
configured to select the width of the data and user signals. In this reference design, the data
width of MacTx interface and DMARx interface are 512 bits while the data width of user signal
for MacTx interface and DMARx interface are 1 bit and 81 bits, respectively.

AxiSSw2to1 transfers the data from two Masters (Ch#0 and Ch#1) to one Slave. If two
channels send the request to transfer the data at the same time, AxiSSw2to1 selects the higher
priority channel and starts transferring the data stream until end of the packet. After that, the
priority is switched to another channel and then the data stream of another channel is
transferred until end of the packet.

The AxiSSw2to1 logic uses “rChSel” to be the control signal to select the active AxiSSl I/F (the
interface to connect to the external Master). When two channels are requested in Idle condition,
rChSel changes the value to the new channel after finishing the current channel transferring.
More details are shown in Figure 2-3.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 9

Figure 2-3 AxiSSw2to1 timing diagram

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 10

1. When two user sends the new packet by asserting AxiSSlValid to ‘1’ at the same time and

the module is in Idle, rChSel (the signal to indicate the active channel) does not change the
value to forward the data from the same channel to the Slave. In Figure 2-3, the Ch#0 is
selected, so AxiSSlReady of the selected channel (Ch#0) is asserted to ‘1’ to accept the first
data.

2. The input signals of the selected channel (Ch#0), i.e., AxiSSlLast[0] (end-of-packet) and
AxiSSlData[511:0] (512-bit data) are loaded to be the output signals to the external Slave via
Master I/F (AxiSMtLast and AxiSMtData, respectively). Also, AxiSMtValid is asserted to ‘1’ to
start sending the new packet to the Slave.

3. When the Slave is not ready to receive data by de-asserting AxiSMtReady to ‘0’, all output
signals of Master I/F hold the same value. Also, AxiSSlReady of the active channel is
de-asserted to ‘0’ to hold the input signals from the Master.

4. After the Slave re-asserts AxiSMtReady to accept the data, the output signals to the Slave
load the next value from the internal latch register (rMtDataLat). The internal latch register
loads the data from the active source when AxiSSlReady is asserted to ‘1’ to store the
unsent data to the Slave when the Slave pauses data transmission.

5. After the final data of a packet from the active channel is accepted, the next active channel is
scanned. If AxiSSlValid of another channel is asserted, rChSel will switch the value. In
Figure 2-3, the next active channel is Ch#1 (rChSel=‘1’) to accept the data from Ch#1.

6. The input signals (AxiSSlLast and AxiSSlData) of the active channel (Ch#1) are forwarded
to be the output signals of the Slave (AxiSMtLast and AxiSMtData) until the final data of a
packet is transferred.

2.2 TOE100G-IP

TOE100G-IP implements TCP/IP stack to be the offload engine for transferring TCP/IP packet
with the network device. User interface has two signal groups, i.e., control signals and data
signals. Register interface is applied to set control registers and monitor status signals while
data signals are accessed by using FIFO interface. The interface with 100G EMAC is 512-bit
AXI4-ST interface. More details are described in datasheet.
https://dgway.com/products/IP/TOE100G-IP/dg_toe100gip_data_sheet_xilinx.pdf

https://dgway.com/products/IP/TOE100G-IP/dg_toe100gip_data_sheet_xilinx.pdf
https://dgway.com/products/IP/TOE100G-IP/dg_toe100gip_data_sheet_xilinx.pdf

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 11

2.3 TxDMA2TOEIF

TxDMA2TOEIP is designed to receive data from MCDMA via DMATxI/F and then forward them
to TOE100G-IP via TxFIFO I/F. There is 512 KB buffer in this module to store data for
transferring to TOE100G-IP, called TxDMABuf. TxDMABuf is applied to be double buffer by
splitting to two areas (Area#0 and Area#1) or 256 KB size per area. The write process of
TxDMABuf is handled by CPU while the read process of TxDMABuf for transferring data to
TOE100G-IP is run parallelly with the write process, as shown in Figure 2-4.

Figure 2-4 Double buffer inside TxDMA2TOEIF

TxDMABuf status is monitored by using two control signals, BufRdy and BufClr which are
two-bit signals (each bit is referred to each buffer area). CPU asserts BufRdy[i] to ‘1’ (‘i’ is the
index of TxDMABuf area) to inform that the write process is running at this area. When the read
logic detects that BufRdy of the next area is asserted and the write pointer shows some data is
available, it starts transferring data of that TxDMABuf area to TOE100G-IP. After finishing
reading data in each area, BufClr[i] (‘i’ is the index of TxDMABuf area) is asserted to ‘1’ for one
cycle to clear BufRdy flag to ‘0’. Therefore, CPU needs to confirm that TxDMABuf area is free
(BufRdy[i]=‘0’) before writing the new data and asserting BufRdy[i] to ‘1’. While the read logic
needs to confirm that BufRdy[i]=’1’ and write pointer shows some data is valid before reading
the new data.

The operation is started when the start pulse is asserted along with the total transfer size that
must be aligned to 64-byte or 256-bit (the data bus size). After that, the internal signals of this
module load their initial value and then the data starts transferring. The data from MCDMA
which is stored to TxDMABuf is forwarded to TOE100G-IP until the amount of transferred data
is equal to the set value. Finally, Busy flag is de-asserted to ‘0’ after the operation is done.

Each TxDMA2TOEIF uses one DMA channel for transferring TCP payload data of each
session with MCDMA. The UserLogic contains two TxDMA2TOEIF modules for supporting two
TCP sessions, so two DMA channels – DMA Ch#0 and DMA Ch#8 are applied. User can
update the DMA channel number for usage by modifying the parameter assignment to
TxDMA2TOEIF module in HDL code.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 12

Figure 2-5 TxDMA2TOEIF block diagram

As shown in Figure 2-5, the logic inside TxDMA2TOEIF is divided to two groups, Write RAM
group and Read RAM group that are colored by blue and red, respectively. Start flag
(TxDMA2TOEStart) is applied to reset and load the internal signals. Total transfer size
(TxDMA2TOESize) is loaded to WrData Counter which counts total amount of Write data to
TxDMABuf. If the new data (TxDMAData) of the configured DMA channel (TxDMACh) is
received by asserting TxDMAValid to ‘1’, the write enable of TxDMABuf (rBufWrEn) is asserted
to store the data (rBufWrData) to TxDMABuf. Also, rBufWrEn is applied to be count enable of
the WrData counter. However, rBufWrEn is not asserted if the data is received before the start
flag is asserted or after the operation is done. The write address of TxDMABuf (rBufWrAddr) is
also counted by rBufWrEn to store the new data in the next address.

The write address (rBufWrAddr) and the read address (rBufRdAddr) are used to calculate total
amount of data inside TxDMABuf (wBufDataCnt). Though the buffer depth is 8192 which can
use 13-bit address signal, the address signal is designed by 14 bits to determine the buffer
status that is full or empty. When TxDMABuf is not empty and TOE100G-IP is ready, rBufRdEn
is asserted to read the data from TxDMABuf. rBufRdAddr is up-counted to read the next data
after rBufRdEn is asserted. The read data from TxDMABuf is transferred to TCPTxFfWrData of
TOE100G-IP directly. While the write enable to TOE100G-IP (TCPTxFfWrEn) is created by
connecting rBufRdEn with two D Flip-Flops for data synchronizing. After reading the last data
of each area, rBufRdEnd of that area is asserted to ‘1’. This signal is applied to generate a
pulse of TxDMA2TOEBufClr.

Busy flag (TxDMA2TOEBusy) is asserted after TxDMA2TOEStart is asserted. It is de-asserted
after the last data is read and forwarded to TOE100G-IP completely. The last read data is
detected by checking WrTrnCnt=0 (no remaining write data) and rBufRdEnd of the last active
area (checked by rLastCh) is asserted. Besides, RdData Counter is designed to show the
amount of completed data (TxDMA2TOECurSize) for user monitoring.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 13

Timing diagram of the logic for writing RAM is shown in Figure 2-6 while timing diagram of the
logic for reading RAM is shown in Figure 2-7. In this example, user sets total transfer size to
4097, so the first buffer area (Area#0) stores 256-Kbyte data (4096 x 512-bit) and the second
buffer area (Area#1) stores 64-byte data (512-bit).

Figure 2-6 TxDMA2TOEIF (Write RAM) timing diagram

1. When TxDMA2TOEStart is asserted to ‘1’, the internal signals are initialized. rWrTrnCnt

loads the initial value from TxDMA2TOESize while rBufWrAddr is reset to 0. Also,
TxDMA2TOEBusy is asserted to ‘1’ while operating until the operation is finished.

2. When the new data is received (TxDMAValid=’1’ and TxDMACh=Set parameter),
rBufWrEn is asserted to ‘1’ to write the new rTxDMAData that is loaded by TxDMAData to
TxDMABuf.

3. Also, rBufWrEn is applied to be the counter enable of several signals such as rBufWrAddr
which is increased to store the next data to the buffer at the next address. Also, rWrTrnCnt
is decreased to count the remaining transfer size in Write process.

4. DMA engine can pause data transmission by de-asserting TxDMAValid to ‘0’. After that,
rBufWrEn is de-asserted to ‘0’ in the next cycle to pause writing data to the buffer.

5. After the last data is received and stored to the buffer (rBufWrEn=’1’ and rWrTrnCnt=1),
rBufWrEn is de-asserted to ‘0’. The write operation is done. rBufWrEn can be re-asserted
to ‘1’ when the new request is asserted and rWrTrnCnt loads the new value which is not
equal to 0.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 14

Figure 2-7 TxDMA2TOEIF (Read RAM) timing diagram

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 15

1. When TxDMA2TOEStart is asserted to ‘1’, the internal signals are initialized. rBufRdAddr

is reset to 0 and rLastCh calculates the last buffer area used for this request. In this
example, the last buffer area is Area#1, so rLastCh is asserted to ‘1’. rWrTrnCntZero is
asserted to ‘1’ when rWrTrnCnt is equal to 0 to inform that the write operation is done.

2. The read operation is started when there is some data stored to the buffer (monitored by
wBufDataCnt≠0) and this data is not last data (wBufDataCnt=1 and rBufRdEn=’1’).
rBufRdEn is asserted to ‘1’ to start reading data from the buffer.

3. The read latency time of the buffer is equal to 2, so the first data (D0) read from the buffer
is valid on TCPTxFfWrData after rBufRdEn is asserted for two clock cycles. To
synchronous with the data bus, TCPTxFfWrEn is created by adding two-cycle latency time
to rBufRdEn. Besides, rBufRdEn is applied to count the read address of the buffer
(rBufRdAddr) to point the next address after finishing reading each data from the buffer.

4. If TOE100G-IP is not ready to receive the data by asserting TCPTxFfFull to ‘1’, rBufRdEn
is de-asserted to ‘0’ to pause reading data and forwarding data to TOE100G-IP.

5. The end flag of the buffer (rBufRdEnd) has two bits to be the status of two buffer areas
(bit[0]: Area#0 and bit[1]: Area#1). The active buffer area for read process can be decoded
by rBufRdAddr[13] (‘0’-Area#0, ‘1’-Area#1). rBufRdEnd is asserted by one of two
conditions.
a. The last address of each buffer area is read (rBufRdAddr[12:0]=FFFh or 4095 and

rBufRdEn=’1’).
b. The last data of this request is read by checking the write process is done

(rWrTrnCntZero=’1’) and the last data is read (wBufDataCnt=1 and rBufRdEn=’1’).
6. Similar to rBufRdEnd, TxDMA2TOEBufClr and TxDMA2TOEBufRdy have two bits to be

the status of two buffer areas. TxDMA2TOEBufClr of the active area is asserted to ‘1’
when TxDMA2TOEBufRdy and rBufRdEnd are asserted to ‘1’ (the last data of this active
buffer is read). This signal is applied to de-assert TxDMA2TOEBufRdy in the next cycle to
allow the write process starts.

7. After the last data is read from the buffer (rBufRdEn=’1’ and wBufDataCnt=1), rBufRdEn is
de-asserted to ‘0’ to stop reading the data from the buffer.

8. If both write process and read process are done, TxDMA2TOEBusy is de-asserted to ‘0’.
The write process is done when rWrTrnCntZero is asserted to ‘1’. While the read process
is done when TxDMA2TOEBufClr of the last active area (decoded by rLastCh) is asserted
to ‘1’.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 16

2.4 TOE2RxDMAIF

TOE2RxDMAIF is designed to receive data from TOE100G-IP and then forward to MCDMA for
storing TCP payload data to the main memory at Rx buffer area. The Rx buffer area is split to
two areas – Area#0 and Area#1 for handling by double buffer style. Rx buffer is controlled by
using two flags, BufValid and BufClr.

Figure 2-8 Double buffer for Rx buffering from TOE100G-IP

BufValid and BufClr are two-bit signals, bit[0]-Area#0 and [1]-Area#1. The buffer size of each
area is the parameter that is configured by the software on the host system. When the
hardware finishes writing all data to each Rx buffer area, it asserts BufValid[i] to ‘1’ (‘i’ is the
index of Rx buffer area). After that, the software on the host system that detects the flag
asserted starts reading the data from the Rx buffer. After all data of each Rx buffer area is
completely read out, the CPU asserts BufClr[i] to ‘1’ (‘i’ is the index of Rx buffer area). BufClr[i]
is applied to de-assert BufValid[i] to ‘0’ to allow the hardware logic to write the new data at this
buffer area. The hardware logic always confirms that the active buffer is free (BufValid[i]=‘0’)
before starting writing data. While the CPU needs to confirm the active area has the data
(BufValid[i]=’1’) before starting reading data from the Rx buffer.

To transfer the data to DMARx I/F with achieving high throughput, TOE2RxDMAIF fixes the
transfer size of each packet to 8 Kbyte data block, except the last data block that may be less
than 8 Kbyte size. Therefore, the Rx buffer size must be aligned to 8 Kbyte unit. To start the
operation, the start pulse is asserted along with the total transfer size that must be aligned to
64-byte or 256-bit (the data bus size). After that, all received data from TOE100G-IP is
transferred to the Rx buffer via DMARx I/F. The operation is done when total amount of
transferred data is equal to the set value. While the operation is not completed, busy flag is
asserted to ‘1’.

Similar to TxDMA2TOEIF, each TOE2RxDMAIF uses one DMA channel for transferring data
with MCDMA. In this system, two TOE2RxDMAIF are applied for supporting two TCP sessions.
Therefore, two DMA channels – DMA Ch#0 and DMA Ch#8 are applied. The DMA channel
number for using in each TOE2RxDMAIF can be assigned by the parameters in HDL code.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 17

Figure 2-9 TOE2RxDMAIF Block Diagram

Figure 2-9 shows the logic diagram inside TOE2RxDMAIF. It consists of three groups. First is
the logic for user interface. Second is the logic for transferring the data from TOE100G-IP to
DMARx I/F via RxFIFO. Last is the logic for buffer handling.

The logic has three counters for controlling transfer size. First is “Total Data Counter” which
controls total amount of data for this request. The data is transferred from TOE100G-IP to Rx
buffer via DMARx I/F which is split to two buffer areas. Therefore, it needs to have a second
counter – BufSize Counter to count the data size that is stored to Rx buffer. At the end of each
buffer area, the logic needs to check the next buffer status before starting transferring data.
The data interface for transferring via DMARx I/F is AXI stream that needs to send the data in
packet format. This reference design fixes the packet size to be 8 Kbyte size, except the last
transfer which can be less than 8 Kbyte. Therefore, the third counter – Burst Counter is applied
to control the data size of each packet. For simple design, the buffer size must be aligned to 8
Kbyte size which is the packet size.

More details of block no.1, no.2, and no.3 in Figure 2-9 are described as follows.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 18

As shown in Block no.1, Start pulse (TOE2RxDMAStart) is accepted when the logic is Idle
(busy flag – TOE2RxDMABusy=’0’). After that, State machine enters to the next state for
starting operation and the busy flag is asserted to ‘1’. Total transfer size (TOE2RxDMATotSize)
is loaded to Total data counter” to check the amount of data in this request. Before starting
transferring data in each loop, the state machine waits until the amount of data inside the
internal FIFO (RxFIFO) and the remaining transfer size (rRemTrnCnt) are enough. Also, the
BufValid flag of the active Rx buffer area, selected by rBufSel, must be de-asserted to ‘0’ (the
Rx buffer is free). If both RxFIFO and Rx buffer are ready, the state changes from stChkFfRdy
to stStartTrn for transferring data from RxFIFO to DMARx I/F (Rx buffer I/F). Total data counter
(rRemTrnCnt) decreases the value to show the remaining transfer size after starting each
transfer loop (one loop transfers one packet that is called burst size). The operation is done
and the state returns to stIdle when all data is completely transferred. Finally, busy flag is
de-asserted to ‘0’.

Block no.2 shows the data path that is forwarded from TOE100G-IP to DMARx I/F. The FWFT
FIFO (RxFIFO) is integrated to be the data buffer. The FIFO depth is 512 while the data width is
512. Therefore, the buffer can store up to 4 packets (when the packet size is 8 Kbytes). On the
right side of Block no.2, the data is read from TOE100G-IP when the TOE100G-IP FIFO is not
empty (TOEFfRdEmpty=’0’) and RxFIFO is not full (RxFfDataCnt<504). The read FIFO
process is controlled by the state machine. The burst size of each transfer loop is determined
by rRemTrnCnt that is always equal to 8 Kbyte size, except the last loop which is equal to
rRemTrnCnt. The burst size result is set to the Burst Counter in stChkFfRdy state. After that,
the state enters to stStartTrn to start reading the first data from RxFIFO. The data is read from
RxFIFO by asserting wFfRdAck to ‘1’ and then forwarded to DMARx I/F by asserting
RxDMAValid to ‘1’. The data transmission can be paused by DMARx I/F when RxDMAReady is
de-asserted to ‘0’. When the last data of each transfer loop is read from RxFIFO, RxDMALast is
asserted. After that, the state machine returns to stChkFfRdy to prepare the next loop transfer.

Block no.3 is the logic to select the Rx buffer area by using rBufSel (‘0’-Area#0, ‘1’-Area#1).
The buffer size (TOE2RxDMABufSize) is loaded to BufSize counter before the operation is
started. The counter shows the remaining transfer size of this buffer area. It decreases by the
burst size at the start time of each transfer loop. If the current loop is the last transfer of this
buffer area, rBufWrEnd is asserted. After that, the active buffer area (rBufSel) is toggled to
switch the active buffer area. After the last data is transferred to DMARx I/F completely,
TOE2RxDMABufValid is asserted to ‘1’ to inform that the data of this buffer area is ready for the
host system for reading. The host system asserts TOE2RxDMABufClr to ‘1’ when finishing
reading data of each area. After that, BufValid is de-asserted to ‘0’ which means this Rx buffer
area is free for TOE2RxDMAIF writing the new received data.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 19

Figure 2-10 shows timing diagram for handling the control and status signals of this module
when the user sets transfer size to 260 (512-bit unit) and buffer size to 256 (512-bit unit).
Therefore, the operation is run for three loops. The first loop and the second loop transfers 128
data (8Kbyte) by using Rx buffer#0. While the final loop transfers the remaining data (4 data) by
using Rx buffer#1.

Figure 2-10 Command I/F of TOE2RxDMAIF Timing diagram

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 20

1) When the new command request (TOE2RxDMAStart) is asserted to ‘1’ along with the valid

TOE2RxDMATotSize (the total transfer size in 64-byte unit) and TOE2RxDMABufSize (Rx
buffer size in 64-byte unit), TOE2RxDMABusy is asserted to ‘1’ to accept the request.
Meanwhile, two data counters to count the remaining transfer size (rRemTrnCnt) and the
remaining buffer size (rBufDataCnt) load the initial value from TOE2RxDMATotSize and
TOE2RxDMABufSize, respectively. The first area of Rx buffer is Rx buffer#0, so rBufSel is
reset by ‘0’. After that, the state enters to stChkFfRdy.

2) In stChkFfRdy, the state waits until the amount of data in FIFO is enough (RxFfDataCnt ≥
128 when the current loop is not the last loop) and the Rx buffer is free
(TOE2RxDMABufValid[i]=’0’; i is the index of Rx buffer area that is assigned by rBufSel).
After that, the state enters to stStartTrn.

3) The state stays in stStartTrn for one clock cycle for updating the counters. rRemTrnCnt and
rBufDataCnt are decreased by the burst size of each loop which is fixed to 128, except the
last loop which is equal to the remaining size. After that, the state enters to stTrnData.

4) In stTrnData, the data is transferred from FIFO to Rx buffer. When the last data of each
transfer loop is completely transferred to Rx buffer (RxDMALast=’1’ and
RxDMAReady=’1’), the state returns to stChkFfRdy to check the remaining transfer size. If
there is remained data for transferring, it prepares the next loop parameters. Otherwise,
the operation is finished (step 9).

5) This example shows the operation when the buffer size is set to 256. Therefore, the
second transfer loop is the last transfer for this buffer area. rBufWrEnd is asserted to ‘1’
when rBufDataCnt=128.

6) When the last data of this buffer area is transferred completely (RxDMALast=’1’,
RxDMAReady=’1’, and rBufWrEnd=’1’), the active buffer is switched (rBufSel is toggled).
Also, the buffer valid flag of this Rx buffer area (TOE2RxDMABufValid[0]) is asserted to ‘1’.

7) This example shows the last transfer loop that is not aligned to 128. The remaining transfer
size of the last loop is 4, so the burst size is set to 4. In this case, the state changes from
stChkFfRdy to stStartTrn when the amount of data in FIFO (RxFfDataCnt) is more than or
equal to the last transfer size (rRemTrnCnt).

8) If the host system completely reads all data from each Rx buffer area, it will assert
TOE2RxDMABufClr of that area to ‘1’. When BufClr is asserted to ‘1’, the selected Rx
buffer area is free by de-asserting TOE2RxDMABufValid to ‘0’.

9) After all data is transferred completely, rRemTrnCnt is equal to 0. The state changes from
stChkFfRdy to stIdle. After that, TOE2RxDMABusy is de-asserted to ‘0’.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 21

Figure 2-11 shows timing diagram of data interface. The data is transferred from RxFIFO to
Rx buffer via DMARx I/F. The example shows the details when transferring 128 data and the
beginning time of the last loop which the burst size is equal to 4.

Figure 2-11 Data I/F of TOE2RxDMAIF Timing diagram

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 22

1) When the state is stChkFfRdy, the burst counter (rRdBurstCnt) calculates the burst size of

this transfer loop which is equal to 128, except the last loop.
2) After the state changes from stChkFfRdy to stStartTrn, the first data of this transfer loop is

read from RxFIFO by asserting rFfRdTrn[0] and wFfRdAck to ‘1’. rFfRdTrn[0] is asserted
until the last data of this loop is transferred. While wFfRdAck is asserted to read the first
data by checking the rising edge of rFfRdTrn[0]. RxFIFO is FWFT type, so FfRdData is
valid at the same clock cycle as wFfRdAck asserted.

3) RxDMAData loads the first read data from RxFIFO (FfRdData) for transferring to the Rx
buffer by asserting RxDMAValid to ‘1’.

4) When each data is read from RxFIFO by asserting wFfRdAck to ‘1’, the burst counter
(rRdBurstCnt) is down-counted to show the remaining size in this loop.

5) When the Rx buffer is not ready to receive data by de-asserting RxDMAReady to ‘0’,
wFfRdAck is de-asserted to ‘0’ to pause reading data from RxFIFO. Also, RxDMAData
holds the same value until RxDMAReady is re-asserted to ‘1’.

6) After the last data of this transfer loop is read from RxFIFO (wFfRdAck=’1’ and
rRdBurstCnt=1), rFfRdTrn[0] is de-asserted to ‘0’. Also, RxDMALast is asserted to ‘1’ to
inform that the last data is transferred on DMARx I/F.

7) After RxDMAReady is asserted to ‘1’ to accept the last data, RxDMAValid and RxDMALast
are de-asserted to ‘0’.

8) When the remaining transfer size of the last loop, checked by rRemTrnCnt, is less than 128,
rRdBurstCnt loads the value from rRemTrnCnt. In this example, the transfer size of the last
is equal to 4, so rRdBurstCnt is set to 4.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 23

2.5 RegSwitch

Figure 2-12 RegSwitch block diagram

RegSwitch module is designed to connect two register modules (TOEDMAReg) to CFGWr/Rd
I/F. Each TOEDMAReg is mapped to different area, so the switch logic decodes the upper bits
of the address for selecting the active module. The data size of CFGWr/Rd interface is 64 bits
while the data size of TOEDMAReg is 32 bits. For simple design, this module ignores the upper
word (bit[63:32]) for the write access. While zero is padded to the upper word for the read
access. The mapped address for each TOEDMAReg is shown as follows.

1) 0x0000 – 0x01FF: TOEDMAReg#0
2) 0x0200 – 0x02FF: TOEDMAReg#1

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 24

2.6 TOEDMAReg

Figure 2-13 TOEDMAReg block diagram

TOEDMAReg consists of many registers for interfacing with the hardware submodules, i.e.,
TOE100G-IP, TxDMA2TOEIF, and TOE2RxDMAIF. The address for write or read access is
decoded by Address decoder to select the active register. There are four address areas, as
shown in Figure 2-13.

1) 0x0000 – 0x00FF: TOE100G-IP register interface area
2) 0x0100 – 0x011F: TOE100G-IP status area
3) 0x0120 – 0x013F: TxDMA2TOEIF control and status area
4) 0x0140 – 0x017F: TOE2RxDMAIF control and status area

Address decoder decodes the upper bits of TOEDMARegWrAddr and TOEDMARegRdAddr
for selecting the active address area while the lower bits is applied to select the active register
in each area. There are many status registers in TOEDMAReg, so multi-level multiplexers are
applied to select the read value. In this design, the latency time of read data is equal to two
clock cycles, so TOEDMARegRdValid is created by adding two D Flip-flops to
TOEDMARegRdReq. More details of the address mapping within TOEDMAReg module are
shown in Table 2-1.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 25

Table 2-1 Register map Definition

Address

Wr/Rd

Register Name

(Label in the MultiTOE100DMATest.c)

Description

BA+0x0000 – BA+0x00FF: TOE100GIP register interface (Write/Read access)

BA+0x0000 DG_TOEIP_RST_INTREG_OFFSET

Mapped to RST register within TOE100G-IP.

BA+0x0008 DG_TOEIP_CMD_INTREG_OFFSET

Mapped to CMD register within TOE100G-IP.

BA+0x0010 DG_TOEIP_SML_INTREG_OFFSET

Mapped to SML register within TOE100G-IP.

BA+0x0018 DG_TOEIP_SMH_INTREG_OFFSET

Mapped to SMH register within TOE100G-IP.

BA+0x0020 DG_TOEIP_DIP_INTREG_OFFSET

Mapped to DIP register within TOE100G-IP.

BA+0x0028 DG_TOEIP_SIP_INTREG_OFFSET

Mapped to SIP register within TOE100G-IP.

BA+0x0030 DG_TOEIP_DPN_INTREG_OFFSET

Mapped to DPN register within TOE100G-IP.

BA+0x0038 DG_TOEIP_SPN_INTREG_OFFSET

Mapped to SPN register within TOE100G-IP.

BA+0x0040 DG_TOEIP_TDL_INTREG_OFFSET

Mapped to TDL register within TOE100G-IP.

BA+0x0048 DG_TOEIP_TMO_INTREG_OFFSET

Mapped to TMO register within TOE100G-IP.

BA+0x0050 DG_TOEIP_PKL_INTREG_OFFSET

Mapped to PKL register within TOE100G-IP.

BA+0x0058 DG_TOEIP_PSH_INTREG_OFFSET

Mapped to PSH register within TOE100G-IP.

BA+0x0060 DG_TOEIP_WIN_INTREG_OFFSET

Mapped to WIN register within TOE100G-IP.

BA+0x0068 DG_TOEIP_ETL_INTREG_OFFSET

Mapped to ETL register within TOE100G-IP.

BA+0x0070 DG_TOEIP_SRV_INTREG_OFFSET

Mapped to SRV register within TOE100G-IP.

BA+0x0078 DG_TOEIP_VER_INTREG_OFFSET

Mapped to VER register within TOE100G-IP.

BA+0x0080 DG_TOEIP_DML_INTREG_OFFSET

Mapped to DML register within TOE100G-IP.

BA+0x0088 DG_TOEIP_DMH_INTREG_OFFSET

Mapped to DMH register within TOE100G-IP.

BA+0x0100 – BA+0x011F: TOE100GIP status (Write/Read access)

BA+0x0100 TOE100G-IP status

DG_USER_STS_INTREG_OFFSET

Rd – [0]: Mapped to ConnOn from TOE100G-IP.

BA+0x0108 Connection interrupt

DG_USER_INT_INTREG_OFFSET

Wr - [0]: Set ‘1’ to clear the connection interrupt.

 [8]: Set ‘1’ to clear this bit which shows the latched value of TimerInt.

Rd – [0]: Interrupt when ConnOn changes the value.

 (‘0’: ConnOn does not change, ‘1’: ConnOn changes its value)

 [8]: Interrupt when TimerInt from TOE100GIP is asserted.

 (‘0’: TimerInt is not asserted, ‘1’: TimerInt is asserted to ‘1’)

Note: ConnOn value can be read from DG_TOEIP_CONNON_INTREG_OFFSET.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 26

Address

Wr/Rd

Register Name

(Label in the MultiTOE100DMATest.c)

Description

BA+0x0100 – BA+0x011F: TOE100GIP status (Write/Read access)

BA+0x0110 TOE100G-IP FIFO status

DG_USER_FFSTS_INTREG_OFFSET

Rd – [5:0]: Mapped to TCPRxFfLastRdCnt from TOE100G-IP.

Rd – [15:6]: Mapped to TCPRxFfRdCnt from TOE100G-IP.

Rd – [24]: Mapped to TCPTxFfFull from TOE100G-IP.

BA+0x0120 – BA+0x013F: TxDMA2TOEIF (Write/Read access)

BA+0x0120 TxDMA2TOEIF command

DG_TXDMA_COMMAND_INTREG_OFFSET

Wr – [0]: Start TxDMA2TOEIF operation. Asserted to ‘1’ to start transferring data on TxDMA2TOEIF.

This flag is auto-cleared.

Rd – [0]: Busy flag of TxDMA2TOEIF. Asserted to ‘1’ while TxDMA2TOEIF is operating.

BA+0x0128 Total transfer size of TxDMA2TOEIF

DG_TXDMA_TRNSIZE_INTREG_OFFSET

Wr – [31:0]: Total transfer size in 512-bit unit. Valid range is 1-0xFFFFFFFF.

Rd – [31:0]: Current amount of transferred data in 512-bit unit.

BA+0x0130 The control and status of TxDMA buffer inside TxDMA2TOEIF

DG_TXDMA_BUFFCTRL_INTREG_OFFSET

Wr – [1:0]: Buffer ready status. Asserted to ‘1’ when the TxDMA buffer of that area is ready for reading.

Each bit is the index of TxDMA buffer area. [0]-TxDMA buffer#0, [1]-TxDMA buffer#1.

Rd – [1:0]: Buffer status. ‘0’-TxDMA buffer is free or data is not ready, ‘1’-Data in TxDMA buffer is ready.

Each bit is the index of TxDMA buffer area. [0]-TxDMA buffer#0, [1]-TxDMA buffer#1.

This flag is de-asserted by the hardware after all data is completely read.

BA+0x0138 The data counter of TxDMA buffer inside TxDMA2TOEIF

DG_TXDMA_BUFFCNT_INTREF_OFFSET

Rd – [13:0]: Data counter of TxDMA buffer to show the amount of data in 512-bit unit

BA+0x0140 – BA+0x015F: TOE2RxDMAIF (Write/Read access)

BA+0x0140 TOE2RxDMAIF command

DG_RXDMA_COMMAND_INTREG_OFFSET

Wr – [0]: Start TOE2RxDMAIF operation. Asserted to ‘1’ to start transferring data on TOE2RxDMAIF.

This flag is auto-cleared.

Rd – [0]: Busy flag of TOE2RxDMAIF. Asserted to ‘1’ when TOE2RxDMAIF is operating.

BA+0x0148 Total transfer size of TOE2RxDMAIF

DG_RXDMA_TRNSIZE_INTREG_OFFSET

Wr – [31:0]: Total transfer size in 512-bit unit. Valid range is 1 - 0xFFFFFFFF.

Rd – [31:0]: Current amount of transferred data in 512-bit unit.

BA+0x0150 The size of each Rx buffer area

DG_RXDMA_BUFFSIZE_INTREG_OFFSET

Wr – [31:0]: The size of each Rx buffer area in 512-bit unit. Valid range is 0x80 - 0xFFFFFF80.

This value must be aligned to 64 or 8Kbyte unit.

Rd – [31:0]: The size of each Rx buffer area in 512-bit unit.

BA+0x0158 The control and status of Rx buffer

DG_RXDMA_BUFFCTRL_INTREG_ OFFSET

Wr – [1:0]: Clear buffer. Asserted to ‘1’ to clear the valid flag. After that, the Rx buffer is ready for storing new

data. Each bit is the index of Rx buffer area. [0]-Rx buffer#0, [1]-Rx buffer#1.

Rd – [1:0]: Buffer valid status. ‘0’-Rx buffer is free or not ready, ‘1’-Data in Rx buffer is valid for reading.

Each bit is the index of Rx buffer area. [0]-Rx buffer#0, [1]-Rx buffer#1.

This flag is asserted by the hardware after all data is completely written.
BA+0x0160 The data counter of FIFO inside TOE2RxDMAIF

DG_RXDMA_FFCNT_INTREG_OFFSET

Rd – [9:0]: Data counter of FIFO inside TOE2RxDMAIF to show the amount of data in 512-bit unit.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 27

3 The host software

Figure 3-1 The software architecture in TOE100G-IP on Silicom PacketMover platform

To implement TOE100G-IP on Silicom PacketMover platform, the new host software
(PacketMover_dgsoftware) are designed. It consists of two software categories - the application
(MultiTOE100DMATest) and the three frameworks (dg_shell, dg_iostream_console, and
dg_device_interface). “dg_shell” controls the user input (keyboard) and the output console
(monitor) by using “dg_iostream_console”. “dg_iostream_console” is designed by using specific
command for LinuxOS to handle the input stream and the output stream by its own control
sequence. While “dg_device_interface” is applied to control the hardware interface on Silicom
card through PacketMover API. It includes the functions to write/read hardware registers, manage
the device, and handle the process for memory allocation.

PacketMover API is a software interface for communicating with the hardware (FPGA) via PCIe
interface. Generally, the application uses PacketMover API to access the hardware register via
dg_device_interface. However, the application uses PacketMover API directly for Access Control
List (ACL) to configure the Frame Forwarder. More details about the PacketMover API can be
found from the following HTML file which is included in the Silicom released stuff.
>> 1_4_0\sw\PacketMover_SW_1_4_0\doc\index.html

This reference design uses PacketMover API version 1.4.0. Newer or former versions are
currently not supported. Please contact our sales if other versions are required.

More details of the software on the demo are describes as follows.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 28

3.1 Framework

This topic describes two software frameworks - the device interface and the shell. The device
interface framework makes a simple function for utilizing PacketMover API (Silicom) to
interface with the hardware. While the shell framework handles the input and output of the
console (Linux terminal) for user interface.

3.1.1 Device interface

Figure 3-2 Device interface framework

The device interface is used by the application for communicating with the hardware kernels
through PacketMover API provided by Silicom. The application uses the device interface to
create a connection, allocate the buffer, and write/read the hardware registers. As shown in
Figure 3-2, there are two source codes inside device_interface directories.

• “dg_device_interface.h”: Declare functions which are defined in C source file
(dg_device_interface.c). Also, it declares structs (object of variables) to use in this
framework.

• “dg_device_interface.c”: Declare functions which are not applied by others. It is designed
for the general hardware interface such as connecting the device, accessing the hardware
register, connecting user logic with DMA channel, and allocating/de-allocating the
memory.

The following functions use “ext_dma_example.c” which is Silicom’s example code to be a
reference code. These functions are not modified or slightly modified to use the multiple
DMA channels.
o static void _CheckFpgaPanics(SC_DeviceId deviceId, const char * fileName,

int lineNumber)
o static SC_Error ErrorHandler(const SC_ErrorInfo * pErrorInfo)
o static bool _NotOverlappingMemory(const char * name1, uint64_t start1, uint64_t end1,

const char * name2, uint64_t start2, uint64_t end2)
o static bool ExternalMemoriesSanityCheck(

const ExternalMemories * pExternalMemories)
o static bool AllocateExternalMemories(DeviceInterface* this, uint32_t number)
o static bool FreeExternalMemories(DeviceInterface* this, uint32_t number)
o int __PrintFunction(void * pContext, const char * format, ...)
o static void InitializeCommonInputParameters(DeviceInterface* this,

SL_DmaChannelCommonInputParameters* pCommon, uint32_t number)

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 29

Note: The number of TCP sessions by TOE100G-IP (MAXIMUM_SESSION_NUMBER) is
defined as the constant in the software header code – “2”. The value must be updated if
the user changes the number of supported sessions in the hardware.

The new function lists of the device interface framework are described as follows.

Device Connection

DeviceInterface * DevIf_CreateDeviceInterface(void)

Parameters None
Return value The struct (object) of device interface. There is one member called

ReturnCode. ReturnCode=True when it is completely connected.
Otherwise, ReturnCode is equal to False.

Description Use PacketMover API functions to connect with the hardware platform to
retrieve the device information such as the device ID. The device ID is
applied for writing/reading the hardware register. After that, it allocates
multiple blocks of external memories for later used in DMA application.

bool DevIf_CloseDeviceInterface(DeviceInterface* this)

Parameters this: Pointer to device interface object to be cleaned up
Return value True: The operation is successful

False: The operation failed

Description Use PacketMover API functions to disconnect the user logic and DMA
channel (if there is a connection), free the memory that is used in DMA,
close the connection with the hardware platform, and finally destruct the
object.

Write/Read Register

uint32_t DevIf_ReadIntReg(DeviceInterface* this, uint32_t index)
Parameters this: Pointer to device interface object

index: User logic register index (0-0x1FFFF)

Return value Read value from the hardware register
Description Use PacketMover API function to read the data in the hardware register,

specified by the index input. The actual address, 8-byte unit, is
calculated from the index input (Register index = Register byte address
in Table 2-1 / 8). Finally, return the read data to user.

void DevIf_WriteIntReg(DeviceInterface* this, uint32_t index, uint32_t value)

Parameters this: Pointer to device interface object
index: User logic register index (0-0x1FFFF)
value: 32-bit unsigned value for writing to the register

Return value None
Description Use PacketMover API function to write the value input to the hardware

register, specified by the index input. The actual address, 8-byte unit, is
calculated from the index input (Register index = Register byte address
in Table 2-1 / 8).

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 30

User logic Management

bool DevIf_MountDMAUserLogic(DeviceInterface* this, uint32_t number, uint16_t
UserLogicChannelNumber)
Parameters this: Pointer to device interface object

number: Index of DMA channel in the device interface object
UserLogicChannelNumber: Index of user logic channel to create

Return value True: The operation is successful
False: The operation failed

Description Use PacketMover API functions and the utilization functions to allocate
the new user logic channel by using UserLogicChannelNumber input.
After that, set and initialize the DMA parameters and options of the DMA
channel, selected by number input. Finally, construct and start the DMA
channels for both Tx and Rx operation.

bool DevIf_DemountDMAUserLogic(DeviceInterface* this, uint32_t number)

Parameters this: Pointer to device interface object
number: Index of DMA channel in the device interface object

Return value True: The operation is successful
False: The operation failed

Description If the DMA channel (indexed by number input) is allocated, use
PacketMover API functions and the utilization functions to stop the DMA
channel, de-allocate user logic channels, and de-allocate the memories.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 31

3.1.2 Shell

Figure 3-3 Shell framework

The shell framework (dg_shell) handles the input and output stream on the Linux terminal
(Console). It retrieves keyboard input, manages the input string, parses the input data type,
and prints a string out to console. The shell framework uses an I/O stream console library
(dg_iostream_console) to work with the Linux terminal, i.e., changing the terminal
environment, getting the user keyboard input, and pushing the printed string output to
terminal.

As shown in Figure 3-3, there are two source codes for handling I/O stream console.

• “dg_iostream_console.h”: Declare functions and objects (structs) which are defined and
used in C source file (dg_iostream_console.c).

• “dg_iostream_console.c”: Design the general function to manage the input and output
stream on the Linux terminal environment such as writing a string on console, changing
the terminal setting for utilizing by the shell, restoring the terminal setting to the original
one, and getting the input character from the user through terminal. The function lists of
the I/O stream classes are described as follows.

Note: “KeyPressEnum” is a C enumeration declared in the header file
(dg_iostream_console.h). It contains the keyboard input type for processing in the shell
framework which are NORMAL, BACKSPACE, LEFTARROW, RIGHTARROW, DELETE,
TAB, EOL, and CONTROL.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 32

OutStreamConsole class

void OutStreamConsole_write(OutStreamConsole* self, const char* s, uint32_t
numChars)

Parameters self: Pointer to OutStreamConsole object (unused)
s: Pointer to the character for printing out on the console
numChars: The character length of “s”

Return value None
Description Call function (fwrite) to write the output (stdout) by the character “s”

which specifies the length from “numChars”. Next, flush the output to the
terminal.

void OutStreamConsole_erase(OutStreamConsole* self, uint32_t numChars)
Parameters self: Pointer to OutStreamConsole object (unused)

numChars: The number of characters to delete from the terminal
Return value None

Description Delete the currently displayed character on the terminal. The number of
characters to erase is defined by “numChars”.

InStreamConsole class

void InStreamConsole_NewSetting(InStreamConsole* self)

Parameters self: Pointer to InStreamConsole object
Return value None

Description Change the Linux terminal setting to non-echo mode and to process an
input from the terminal without endline character. The original setting is
stored to a local variable for restoring later.

void InStreamConsole_RestoreSetting(InStreamConsole* self)

Parameters self: Pointer to InStreamConsole object
Return value None

Description Restore the Linux terminal setting to the original setting by using a local
variable.

bool InStreamConsole_getChar(InStreamConsole* self, char* pChar)
Parameters self: Pointer to InStreamConsole object (unused)

pChar: Pointer to store the input character

Return value None
Description Get a character input from the Linux terminal and write to the pointer.

When using this function, it waits until an input is received.

void InStreamConsole_FlushInputStream(InStreamConsole* self)

Parameters self: Pointer to InStreamConsole object (unused)
Return value None

Description Flush the input stream for the Linux terminal. This function is
recommended to use before using “getChar” function.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 33

int InStreamConsole_GetInputCharLength(InStreamConsole* self)

Parameters self: Pointer to InStreamConsole object (unused)

Return value Number of input characters in the Linux terminal buffer
Description Get the number of user input characters in the Linux terminal buffer.

KeyPressEnum InStreamConsole_getKeyPress(InStreamConsole* self, char c)

Parameters self: Pointer to InStreamConsole object
c: Character input to determine the character type

Return value NORMAL: General character that can be printed
BACKSPACE, RIGHTARROW, LEFTARROW, DEL, TAB, EOL: Special
characters that have specific operation
CONTROL: Control character that does not have the operation

Description Determine the type of the input character and return the value.

The shell framework has two source codes, described as follows.

• “dg_shell.h”: Similar to the “dg_iostream_console.h” header file, it declares functions and
objects (structs) which are defined and used in C source file (dg_shell.c).

• “dg_shell.c”: Design the general function to simplify the input and output console

management function and to provide a utility function such as parsing a string to an
unsigned integer. Some functions are declared as a static in this file because it is not
designed to use or call by user. The function lists of the shell framework are described as
follows.

General Function

void Shell_Initialise(Shell* self, InStreamConsole* inputStream, OutStreamConsole*
outputStream)
Parameters self: Pointer to Shell object

inputStream: The input stream object
outputStream: The output stream object

Return value None

Description Load the pointers of the input stream object and the output stream object
to the local variables for using in the shell framework.

static void Shell_ClearInputBuffer(Shell* self)
Parameters self: Pointer to Shell object

Return value None
Description Clear the input buffer which is the internal variable.

char * Shell_GetStringPointer(Shell* self)
Parameters self: Pointer to Shell object

Return value Character pointer that points to the first character of the string
Description Map the internal character buffer that is used to store input stream to be

the first pointer of the string.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 34

bool Shell_GetInputLine(Shell* self)

Parameters self: Pointer to Shell object

Return value True: The operation is successful.
False: Fail to retrieve an input character using “getChar” function.

Description Clear the input buffer and the input stream by using
“Shell_ClearInputBuffer” and “InStreamConsole_FlushInputStream”.
After that, receive the input from the terminal (use
“InStreamConsole_getChar”). Return “False” if the operation failed.
Otherwise, return “True” and then process the input by using
“Shell_ProcessInputChar”. The input is read and processed until
end-of-line is detected.

bool Shell_FlushInputBuffer(Shell* self)
Parameters self: Pointer to Shell object

Return value True: The operation is successful (Always returns this value).
Description Flush the input buffer by calling “InStreamConsole_FlushInputStream”.

This function is applied to map the function of “dg_iostream_console” to
be used by the application.

bool Shell_IsAnyInputKey(Shell* self)
Parameters self: Pointer to Shell object

Return value True: Some inputs are received from the Linux terminal.
False: No received input from the terminal

Description Read the number of received input from the terminal by using
“InStreamConsole_GetInputCharLength”. Return “True” if the length is
greater than zero. Otherwise, return “False”.

int Shell_printf(Shell* self, const char* fmt, ...)
Parameters self: Pointer to Shell object

fmt: String that contains the text to be printed on the console
arguments: Additional arguments

Return value Number of input characters of the output buffer

Description This function is called to receive the input string with the argument and
then calculate the length for writing to the output stream. It is almost
similar to standard “printf” function, but displaying to the console through
the output stream.

Input Parsing Function

bool parseUInt32(Shell* self, char* pInputstr, uint32_t* pValue)
Parameters self: Pointer to Shell object (unused)

pInputstr: Pointer to the input string for processing
pValue: Pointer of 32-bit result after parsing

Return value True: The operation is successful
False: Fail to parse the input or other errors

Description Convert the input string of the decimal value to be 32-bit unsigned value.
The input range must not be more than FFFF_FFFFh.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 35

bool Shell_parseHex32(Shell* self, char* pInputstr, uint32_t* pValue)

Parameters self: Pointer to Shell object (unused)
pInputstr: Pointer to the input string for processing
pValue: Pointer of 32-bit result after parsing

Return value True: the operation is successful
False: Fail to parse the input string or other errors

Description Validate the input and then convert the input string of the hex value to be
32-bit unsigned value. User must add “0x” before the integer string (0-9
and A-F) for the hexadecimal input. The input range must not be more
than FFFF_FFFFh.

bool Shell_parseUInt64(Shell* self, char* pInputstr, uint64_t* pValue)

Parameters self: Pointer to Shell object (unused)
pInputstr: Pointer to the input string for processing
pValue: Pointer of 64-bit result after parsing

Return value True: the operation is successful
False: Fail to parse the input string or other errors

Description Convert the input string of the decimal value to be 64-bit unsigned value.
The input range must not be more than FFFF_FFFF_FFFF_FFFFh.

bool Shell_parseHex64(Shell* self, char* pInputstr, uint64_t* pValue)

Parameters self: Pointer to Shell object (unused)
pInputstr: Pointer to the input string for processing
pValue: Pointer of 64-bit result after parsing

Return value True: the operation is successful
False: Fail to parse the input string or other errors

Description Convert the input string of the hex value to be 64-bit unsigned value.
User must add “0x” before the integer string (0-9 and A-F) for the
hexadecimal input. The input range must not be more than
FFFF_FFFF_FFFF_FFFFh.

bool Shell_get_input_long(Shell* self, uint64_t* pValue)

Parameters self: Pointer to Shell object
pValue: Pointer of 64-bit result of the input from the terminal

Return value True: The operation is successful
False: Fail to retrieve an input character, to parse the input string, or
other errors

Description Call “Shell_GetInputLine” function to retrieve a string input and then call
“Shell_parseUInt64” or “Shell_parseHex64” to parse the input,
depending on the input format. Finally, return the result after parsing.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 36

bool Shell_get_ipv4_addr(Shell* self, uint32_t* pValue)

Parameters self: Pointer to Shell object
pValue: Pointer to return 32-bit IPv4 address value that is received from
the terminal

Return value True: The operation is successful
False: Fail to retrieve an input character, to parse the input string, or
other errors

Description Call “Shell_GetInputLine” function to retrieve a string input and then use
“Shell_parseIPv4” to verify the input format. Error is returned if the input
is invalid. Otherwise, the input is converted to 32-bit unsigned value to be
the returned result.

bool Shell_parseIPv4(Shell* self, char* pInputstr, uint32_t* pValue)
Parameters self: Pointer to Shell object

pInputstr: Pointer to the input string for processing
pValue: Pointer to return 32-bit IPv4 address value that is processed
from pInputstr

Return value True: The operation is successful
False: Fail to parse the input string or other errors

Description Check the input that it is IPv4 address string format. If it is valid, the input
is converted to be 32-bit unsigned value as a returned result. Otherwise,
the error is returned.

Input Key Processing Function

static void Shell_ProcessInputChar(Shell* self, char c)

Parameters self: Pointer to Shell object
c: Character input

Return value None

Description Use “InStreamConsole_getKeyPress” (function of InStreamConsole) to
determine the character type. Next, call the function depending on the
character type.

static void Shell_ProcessNormalChar(Shell* self, char c)

Parameters self: Pointer to Shell object
c: Character input

Return value None

Description Add the new character to the buffer and then print to the output stream.

static void Shell_ProcessBackspace(Shell* self)
Parameters self: Pointer to Shell object

Return value None

Description Delete the left side character and then print to the output stream.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 37

static void Shell_ProcessEOL(Shell* self)

Parameters self: Pointer to Shell object

Return value None
Description Add NULL to the buffer and then print to the output stream. After that, set

the local variable that show the end of line flag to be “True”. When
“Shell_GetInputLine” detects the end of line flag, the input buffer will be
cleared.

static void Shell_ProcessTab(Shell* self)

Parameters self: Pointer to Shell object
Return value None

Description Move the console cursor to the end of line input string.

static void Shell_ProcessLeftArrow(Shell* self)

Parameters self: Pointer to Shell object
Return value None

Description Move the console cursor to the left side for one position.

static void Shell_ProcessRightArrow(Shell* self)

Parameters self: Pointer to Shell object
Return value None

Description Move the console cursor to the right side for one position.

static void Shell_ProcessDel(Shell* self)

Parameters self: Pointer to Shell object
Return value None

Description Delete the character at the current position of the console and then print
to the output stream.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 38

3.2 Application

Figure 3-4 Application layer

The source code of the application is “MultiTOE100DMATest.c” file, as shown in Figure 3-4.
The main function is operated by following steps.

Preparing Linux environment
1) Check whether the program is run as root or not. Terminate if it is not with root privilege.
2) Examine the physical connection of the network interface (“feth0”). Terminate if the

connection is not up or not running.
3) Start a signal handler to detect “CTRL+C” input from the user. If the key is found, the

termination process is run as below.
i) Reset the hardware in user logic area (TOE100G-IPs).
ii) Delete the packet filter rules in ACL (Access Control Lists).
iii) Close the device interface.
iv) Restore the terminal setting to the original setting.

4) Start a signal thread handler to detect user signal (“SIGUSR1”) which will be used later in a
test sequence for handling multi-threading.

5) Setup the system to interface with the Linux terminal.
i) Initialize the I/O stream and change terminal setting.
ii) Initialize the shell and then connect the shell to I/O stream.

Preparing the hardware system
1) Retrieve the IPv4 address and MAC address that have been set to the network interface

(“feth0”). Next, set the global variables (IPv4 and MAC address) in this application by these
retrieved values.

2) Connect the hardware platform through device interface framework. Setup the system to
interface with the hardware in the target device.

3) Examine that TOE100G-IP is available in the hardware kernel and print the IP information.
4) Use the Device interface to allocate two user logic channels with DMA features for both Tx

and Rx operation. Each user logic channel is applied for one TOE100G-IP connection to
operate one TCP session. The memory for DMA transferring is split for Tx operation and Rx
operation. Tx buffer for Tx operation uses 256 Kbyte region while Rx buffer for Rx operation
uses 1 Mbyte region.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 39

TOE100G-IP operation

Figure 3-5 System initialization in Client mode by using default parameters

1) Start the test operation of TOE100G-IP by displaying the welcome message.
2) Display the default parameters in the Client initialization mode. The MAC address and the

IP address are the value that retrieve from the network interface. The target MAC address is
not yet defined and displayed as “Undefined” while The target IP address shows the default
value.

3) User enters ‘x’ to start initialization process on Silicom NIC system with TOE100G-IP by
using the default parameters or enters other keys to change some parameters (more
details are described in topic 3.2.2 Reset menu). After that, start TOE100G-IP initialization
by following step.
i) Assert reset to TOE100G-IP and then delete ACL filter rules.
ii) Load the target MAC address from the ARP table cache. If the target IP address is not

found in the table, it will send ARP request to obtain the MAC address.
iii) Set the network parameters and test parameters to TOE100G-IP and de-assert reset to

TOE100G-IP. After that, the IP starts initialization process.
iv) Wait until the TOE100G-IP finishes the initialization process (DG_TOEIP_CMD_

INTREG_OFFSET[TOE index][0]=’0’).
v) Set ACL filter rules.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 40

4) Display complete message and the main menu on the console. There are four test

operations for user selection. More details of each menu are described as follows.

Figure 3-6 Main menu of the software application

3.2.1 Display parameters

This menu is applied to display current parameters of the system. There are two groups of
parameters, common parameter, and target parameters. The parameters of each group are
described in more details as follows.
1) Common parameters: Windows update threshold, Reverse packet enable, source MAC

address, and source IP address.
2) Target parameters: destination MAC address, destination IP address, source port, and

destination port.

The sequence of display parameters menu are as follows.
1) Read all network parameters from each variable in the software application.
2) Print out each variable. For the common parameters, it is printed in line format while the

target parameters are printed in the table format

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 41

3.2.2 Reset IP

This menu is applied to change network parameters of TOE100G-IPs such as port numbers.
After updating the network parameters on TOE100G-IP, the IP requires to re-initialize.
Besides, the software application needs to handle the ACL rules. The sequence to reset IP is
as follows.
Note: Changing IP address and MAC address of TOE100G-IP are not supported because
they retrieve from the network interface. It needs to change on the Linux console by “ifconfig”
before running the software application.

1) Display current parameter value on the console.
2) Ask user to skip (use current parameters) or set new parameter values.

i) Press ‘x’ to use the current parameters and skip to step 5.
ii) Press other keys to start parameters setting in the next step.

3) Receive new common parameters from user, i.e., Window Update Gap and Reverse
packet enable. If an input value is invalid, the parameter is not changed.

4) Receive the number of targets and parameters of each target from user, i.e., number of
sessions, Target IP address, and port numbers. If an input value is invalid, the input is not
changed except for the number of sessions which must be inputted by valid value.

5) Force reset to all IPs by setting DG_TOEIP_RST_INTREG_OFFSET[index][0]=‘1’.
6) Delete all ACL rules (packet filter rules) that have been set on the system by the software

application. It simply calls “deleteACLFilterRules” (described in topic 3.2.5).
7) Load Target MAC address by following step.

i) Use “getTargetMacAddress” (described in topic 3.2.5) to get the target MAC address
from ARP cache. Continue to step 8 if all target devices can be discovered. Otherwise,
proceed the next step.
Note: If the operation is successful, global variables who store the target MAC
addresses will be updated.

ii) Use “sendARPRequest” (described in topic 3.2.5) to send the ARP request to the
target device to get the target MAC address.

iii) Wait for 2 seconds. Continue to next step if the target MAC address is returned from
the ARP reply. Otherwise, return to step 7i) to re-process the Target MAC address.

8) Set all parameters to TOE100G-IPs register such as DG_TOEIP_SML_INTREG
_OFFSET[index] and DG_TOEIP_SMH_INTREG_OFFSET[index]. The initialization
mode of all TOE100G-IP in this design is fixed to “FIXED MAC” mode, assigned by
DG_TOEIP_SRV_INTREG_OFFSET[index].

9) De-assert IP reset by setting DG_TOEIP_RST_INTREG_OFFSET[index][0]=’0’. After that,
TOE100G-IP starts the initialization process.

10) Wait until all IPs complete the initialization process by monitoring IP busy flag
(DG_TOEIP_CMD_INTREG_OFFSET[index][0]) until all initialization process are
completed (busy flag is de-asserted to ‘0’).

11) Add new ACL rules with new parameters by using “addACLFilterRules” (described in topic
3.2.5).

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 42

3.2.3 Half duplex test

This menu transfers data in single direction for the initialized session. The user sets transfer
mode to be send data, receive data, or no operation to each session individually. Next, the
test parameters are received from user. The operation is cancelled if some inputs are invalid.
Note: The parameters for send data test and receive data test are shown as follows.
Send data test - Total transfer data size, packet size, enable/disable flag of pattern generation,
and connection mode (active mode or passive mode).
Receive data test – Total transfer data size, enable/disable flag of data verification mode, and
connection mode (active mode or passive mode).

Before transferring data, the software application reads the test parameters to calculate the
number of used buffers and the last buffer length for an unaligned-size transfer. Next, the
main thread creates a child thread (gen_txbuf_data for send data test or ver_rxbuf_data for
receive data test) to handle Tx buffer for sending the data or Rx buffer for receiving the data.
The flow control signals of Tx buffer and Rx buffer are different.

Three counters are applied to be flow control signals of Tx buffer. The first counter is request
counter which is applied to start the child thread for writing data to Tx buffer. This counter is
increased by the main thread when the Tx buffer area is not full. The second counter is
increased by the child thread to be the write counter after finishing filling the data to each Tx
buffer area. The child thread starts sending the data when the first counter is more than the
second counter. The last counter is completion counter that is increased by the main thread
when the hardware finishes reading data of each Tx buffer area, monitored by ready flag that
is de-asserted by the hardware. The full status of Tx buffer is calculated from the different
value of the request counter and the completion counter.

Similarly, Rx buffer operation is controlled by three counters. First is request counter which is
applied to start the child thread for reading data from Rx buffer. This counter is increased by
the main thread when the hardware finishes writing data to each Rx buffer area, monitored by
valid flag that is asserted by the hardware. Second is the read counter which is increased by
the child thread after finishing reading the data of each Rx buffer area. The last counter is
completion counter which is increased by the main thread after the main thread asserts clear
flag to free Rx buffer area.

To support multiple TCP sessions, the main thread assigns the state variable to define the
status for each session, i.e., WAIT_CONN (waits the new connection created), CONNECTED
(the connection is established and data can be transferred), CLOSED (the connection is
terminated), and ERROR (error situation is detected). More details of the operation in Half
duplex test menu for sending or receiving data are described as follows.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 43

1) Display target IP address and port number of each session and then receive test

parameters of that session from user. After that, validate all inputs. This step is repeated
for operating the next active session until the parameters of all active sessions are
received.

2) Display the recommended parameters of test application on PC following connection
mode.
i) For active connection mode, the parameters for running test application on PC by

server mode are displayed and then “Press any key to proceed” is displayed. It waits
until user runs the test application on PC and then user enters some keys to continue
the next step.

ii) For passive connection mode, the parameters for running test application on PC by
client mode are displayed.

3) Open connection following connection mode setting.
i) For active open, the software application sets DG_TOEIP_CMD_INTREG_OFFSET=

2 (Open port) and sets current state variable to WAIT_CONN.
ii) For passive open, the software application sets current state variable to WAIT_CONN.

4) Setup the software and hardware for DMA function to send or receive data with the
hardware. Repeat this step to setup all active sessions. The details of Send data test and
Receive data test are described as follows.

Send data test
i) Set total transfer size to DG_TXDMA_TRANSIZE_INTREG_OFFSET.
ii) Start Tx DMA hardware by setting DG_TXDMA_COMMAND_INTREG_OFFSET[0]=

’1'.
iii) Calculate the amount of data for the last buffer area and the total count of buffer areas

for storing all data.
iv) Store the test parameters to the arguments of the child thread (gen_txbuf_data).

Receive data test
i) Set Rx buffer size (DG_RXDMA_BUFFSIZE_INTREG_OFFSET) to be equal to 1 MB.
ii) Set total transfer size to DG_RXDMA_TRANSIZE_INTREG_OFFSET.
iii) Clear the Rx buffer status by setting DG_RXDMA_BUFFCTRL_INTREG_OFFSET

[1:0]=“11”.
iv) Start RX DMA hardware by setting DG_RXDMA_COMMAND_INTREG_OFFSET

[0]=‘1’.
v) Calculate the amount of data for the last buffer area and the total count of buffer areas

for storing all data.
vi) Store the test parameters to the arguments of the child thread (ver_rxbuf_data).

5) The initial state variable of both Send data test and Receive data test is equal to

WAIT_CONN. In this state, it waits until ConnOn signal changes its value
(DG_USER_INT_INTREG_OFFSET[0]=’1’). After that, the current state variable changes
to CONNECTED and creates a child thread (gen_txbuf_data or ver_rxbuf_data) for
sending data or receiving the data in buffers.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 44

6) The data can be transferred while the state variable is CONNECTED. The operation of

Send data test is completed when total data is transmitted. While the operation of Receive
data test is completed when the connection is terminated by the target system. After
finishing the operation, the current state variable changes to CLOSED. If some errors are
found, the current state variable enters to ERROR. More details of each transfer direction
are described as follows.

Send data test
The software application to operate Send data test controls the TOE100G-IP operation
and the Tx DMA operation independently. The operation is finished when the remaining
length variable is equal to 0 and Tx DMA operation is finished.
i) Read TOE100G-IP busy flag (DG_TOEIP_CMD_INTREG_OFFSET[0]), the

connection status (DG_USER_STS_INTREG_OFFSET[0]), the remaining transfer
length variable, and Tx DMA status (DG_TXDMA_COMMAND_
INTREG_OFFSET[0]).
a) If TOE100G-IP busy flag is asserted to ‘1’, skip to step ii). Otherwise, goes to step

b).
b) If the connection status is OFF, change the state variable to ERROR. Otherwise,

goes to step c).
c) If the remaining transfer length variable is equal to 0 and Tx DMA status is

de-asserted to ‘0’, it means the operation is completed. Run active close command
by setting DG_TOEIP_CMD_INTREG_OFFSET=3 and change the state variable
to CLOSED. If TOE100G-IP busy flag after sending close command is not asserted
to ‘1’, the state variable is set to ERROR. Continue to step d) if the operation is not
finished.

d) Read the remaining length variable and calculate total transfer size of TOE100G-IP
in this round. Start TOE100G-IP send operation by setting packet size (DG_
TOEIP_PKL_INTREG_OFFSET), total transfer size (DG_TOEIP_TDL_INTREG_
OFFSET), and Send command (DG_TOEIP_CMD_INTREG_OFFSET=0),
respectively. After that, the remaining length is decreased by total transfer size
value.
Note: The total transfer size of each round is set to 0xFFFF_FFC0 (maximum
length with 64-byte alignment), except the last round that is set to the remaining
length.

ii) Run Tx DMA operation by controlling three counters independently, described as
follows.
a) If the different value of the request counter and the completion counter is less than

2 (the number of Tx buffer area in this reference design), the request counter is
increased by the main thread to send the new request to the child thread. Also, the
ready flag of the new Tx buffer area (DG_TXDMA_BUFFCTRL_INTREG_
OFFSET[i] where ‘i’ is an index of Tx buffer area) is asserted to ‘1’ to allow the
hardware to read the data.

b) The child thread (gen_txbuf_data) starts filling the data to the new Tx buffer area
when the request counter is more than the write counter. After finishing filling data,
the write counter is increased.

c) When the hardware finishes reading all data from each Tx buffer area, the ready
flag (DG_TXDMA_BUFFCTRL_INTREG_OFFSET[i] where ‘i’ is an index of Tx
buffer area) will be de-asserted to ‘0’. If the ready flag of the latest read position is
de-asserted to ‘0’, the completion counter is increased.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 45

Receive data test
The software application to operate Receive data test controls the TOE100G-IP operation
and the Rx DMA operation independently. The operation is finished when the connection
status is OFF and Rx DMA operation is finished.
i) Read the connection status (DG_USER_STS_INTREG_OFFSET[0]) and Rx DMA

status (DG_RXDMA_COMMAND_INTREG_OFFSET[0]). If the connection is OFF
and Rx DMA is not busy, it means the read operation is completed and then the state
variable enters to CLOSED. Otherwise, continue to step ii) for transferring data.

ii) Run Rx DMA operation by controlling three counters independently, described as
follows.
a) When the hardware finishes writing data to read Rx buffer area, it will assert the

valid flag (DG_RXDMA_BUFFCTRL_INTREG_OFFSET[i] where ‘i’ is an index of
Rx buffer area) to ‘1’. If the main thread detects the new valid flag of the latest
position asserted and the different value of the request counter and the completion
counter is less than 2 (the total Rx buffer area), the request counter will be
increased by the main thread for sending the new request to the child thread.

b) The child thread (ver_rxbuf_data) starts reading the data from Rx buffer area when
the request counter is more than the read counter. The data is verified with the
expected value if the verification flag is enabled. After finishing, the read counter is
increased.

c) If the read counter is more than the completion counter, the main thread sets the
register to clear the valid flag of Rx buffer (DG_RXDMA_BUFFCTRL_INTREG_
OFFSET[i] where ‘i’ is an index of Rx buffer area). After that, the completion counter
is increased.

After the state variable of all request sessions are not equal to WAIT_CONN, the
connection status and the progress of the test operation of all request sessions are
displayed on the console every second. If the data is still transferred, total amount of
transmitted data and received data calculated by the software application are displayed on
the console.

7) Clear the interrupt from the connection status (DG_USER_INT_INTREG_OFFSET[0]=’1’)

and wait until the child thread (gen_txbuf_data or ver_rxbuf_data) finishes the operation.
8) Check data verification fail flag for the session that runs Receive data test. Display error

message if the error is found. Also, check the remaining data from Tx DMA hardware
(DG_TXDMA_BUFFCNT_INTREG_OFFSET) and Rx DMA hardware (DG_RXDMA_
FFCNT_INTREG_OFFSET). Display warning message if there are remaining data stored
in the buffer or FIFO.

9) Calculate performance and show test result on the console. After that, de-allocate the
memory that are used for the thread arguments.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 46

3.2.4 Full duplex test

This menu transfers data between the Silicom NIC system and the target device in both
directions. Four inputs are received from user, i.e., total transfer data size, packet size,
enable/disable flag of pattern generation/verification, and connection mode (active mode or
passive mode). When running the test, the transfer size that is set on both the Silicom NIC
system and the target device must be equal. If the target device is PC that runs
“tcp_client_txrx_single” application, the connection mode of the Silicon NIC system must be
set to passive.

Before transferring data, the software application reads test parameters to calculate the
number of used buffers and the last buffer length for an unaligned-size transfer. Next, the
main thread creates two child threads (gen_txbuf_data and ver_rxbuf_data) to handle Tx
buffer and Rx buffer individually. Similar to Half duplex test, the flow control signals of Tx
buffer and Rx buffer use three different counters. Please read more details of each counter
from topic 3.2.3 Half duplex test.

To support multiple TCP sessions, the main thread assigns the state variable to define the
status of each session - WAIT_CONN, CONNECTED, CLOSED, and ERROR. Please see
more descriptions of each state from topic 3.2.3 Half duplex test. More details of the operation
in Full duplex test menu are described as follows.

1) Display target IP address and port number of each session and then receive test

parameters of that session from user, similar to step 1) of Half duplex test.
2) Display the recommended parameters of test application on PC following connection

mode.
i) For passive connection mode, the parameters for running test application on PC by

client mode are displayed.
ii) For active connection mode, “Press any key to proceed” is displayed to wait until user

enters some keys to continue the next step.
3) Open connection following connection mode setting, similar to step 3) of Half duplex test
4) Setup the software and hardware for DMA function to send and receive data with the

hardware. Repeat this step to setup all active sessions. Please read more details from
step 4) of Half duplex test for both Send data test and Receive data test.

5) The initial state variable is set to WAIT_CONN to wait until ConnOn signal changes its
value (DG_USER_INT_INTREG_OFFSET[0]=’1’). After ConnOn is asserted (ON), the
current state variable enters to CONNECTED and then two child threads (gen_txbuf_data
and ver_rxbuf_data) are created for sending data and receiving the data in buffers.

6) The data can be transferred while the state variable is CONNECTED. The condition to
check the operation completion of the active connection mode is different from the passive
connection mode. In active connection mode, it waits until there is no remaining
transmitted data while the passive connection mode waits until the connection status
changes to OFF. Also, both Tx DMA status and Rx DMA status must be Idle for setting the
current state variable to CLOSED. If some errors are found, the current state variable
changes to ERROR.

The software application controls TOE100G-IP operation for transferring data in both
transfer directions. While two child threads for handling Tx DMA operation and Rx DMA
operation are run individually. More details for transferring data are described as follows.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 47

i) Read TOE100G-IP busy flag (DG_TOEIP_CMD_INTREG_OFFSET[0]), the

connection status (DG_USER_STS_INTREG_OFFSET[0]), the remaining transfer
length variable, and Tx DMA/Rx DMA status (DG_TXDMA/RXDMA_COMMAND_
INTREG_OFFSET[0]). The sequence of this step after reading these status signals of
active connection mode and passive connection mode is different, described as
follows.

Active connection mode
a) If TOE100G-IP busy flag is asserted to ‘1’, skip to step ii). Otherwise, goes to step

b).
b) If the connection status is OFF, change the state variable to ERROR. Otherwise,

goes to step c).
c) If the remaining transfer length variable is equal to 0 and Tx DMA/Rx DMA status

are de-asserted to ‘0’, it means the operation is completed. Run active close
command by setting DG_TOEIP_CMD_INTREG_OFFSET=3 and change the
state variable to CLOSED. If TOE100G-IP busy flag after sending close command
is not asserted to ‘1’, the state variable is set to ERROR. Continue to step d) if the
operation is not finished.

d) Read the remaining length variable and calculate total transfer size of TOE100G-IP
in this round. Start TOE100G-IP send operation by setting packet size (DG_
TOEIP_PKL_INTREG_OFFSET), total transfer size (DG_TOEIP_TDL_INTREG_
OFFSET), and Send command (DG_TOEIP_CMD_INTREG_OFFSET=0),
respectively. After that, the remaining length is decreased by total transfer size of
this round.

Passive connection mode
a) If the connection status is OFF and Tx DMA/Rx DMA status are de-asserted to ‘0’, it

means the operation is completed. Change the state variable to CLOSED.
b) If the remaining transfer length variable is not equal to 0 and TOE100G-IP busy flag

is de-asserted to ‘0’, it means TOE100G-IP is ready to send more data. Calculate
total transfer size of TOE100G-IP in this round and start TOE100G-IP send
operation by setting packet size (DG_TOEIP_PKL_INTREG_OFFSET), total
transfer size (DG_TOEIP_TDL_INTREG_OFFSET), and Send command
(DG_TOEIP_CMD_INTREG_OFFSET=0), respectively. After that, the remaining
length is decreased by total transfer size of this round.

Note: The total transfer size of each round for both Passive and Active connection
mode is set to the maximum length with packet size alignment (maximum length is
0xFFFF_FFC0, except the last round that is set to the remaining length.

ii) Run Tx DMA operation and Rx DMA operation by controlling three counters, similar to
step 6ii) of Half duplex test (both Send data test and Receive data test).

After the state variable of all request sessions are not equal to WAIT_CONN, the
connection status and the progress of the test operation of all request sessions are
displayed on the console every second. If the data is still transferred, total amount of
transmitted data and received data calculated by the software application are displayed on
the console.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 48

7) Clear the interrupt from the connection status (DG_USER_INT_INTREG_OFFSET[0]=’1’)

and wait until the child threads (gen_txbuf_data and ver_rxbuf_data) finish the operation.
8) Check data verification fail flag and Display error message if the error is found. Also, check

the remaining data from Tx DMA hardware (DG_TXDMA_BUFFCNT_INTREG_OFFSET)
and Rx DMA hardware (DG_RXDMA_FFCNT_INTREG_OFFSET). Display warning
message if there are remaining data stored in the buffer or FIFO.

9) Calculate performance and show test result on the console. After that, de-allocate the
memory that are used for the thread arguments.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 49

3.2.5 Function list in application

This topic describes the function list to run TOE100G-IP operation.

NIC Utilization Function

static bool checkLinkStatus(const char * interfaceName, bool * returnedStatus)

Parameters interfaceName: Network interface name (“feth0”)
returnedStatus: True – Ethernet link is up, False – Link is down.

Return value True: The interface operation is successful
False: Some errors are found

Description Use socket and icotl to check the network interface and the status. False
is returned if it fails to handle the socket or the status is unmatched.

static int getTargetMacAddress(uint32_t num_target, uint32_t num_session[], uint32_t *
successTargetNum, uint32_t * sizeOfSuccessTargetNum)

Parameters num_target: Total number of target devices
num_session: Array that represents number of sessions in each target
successTargetNum: Array to store target number that is successful
sizeOfSuccessTargetNum: Pointer to array size of successTargetNum

Return value 0: The operation is successful
-1: All MAC addresses are not fully obtained
-2, -3: Fatal failure while opening ARP cache file, handling socket, or
parsing string

Description Open the ARP cache file and skip the first line of the file. Next, iterate
through the file line by line to find the MAC address of our target devices.
Check the network interface name, target IP address, and hardware type
whether it is matched and correct or not. After that, convert the MAC
address string from the matched line and load to the target MAC address
and global variable. The target number that is found is stored to
“successTargetNum” and the size of found target
(sizeOfSuccessTargetNum) is updated. Next, scan the next index.
Return 0 if all target devices are found.
Return -1 when some of them or none are found.
Return -3 or -2 when error is found.

static int sendARPRequest(const char * interfaceName, uint32_t sourceIPAddress,
uint32_t targetIPAddress)
Parameters interfaceName: Network interface name (“feth0”)

sourceIPAddress: IPv4 address of the corresponded network interface
targetIPAddress: IPv4 address of the target device to discover

Return value 0: The operation is successful
-1: The operation failed

Description Open the socket and retrieve information of network interface such as
Ethernet interface index, MAC address for preparing the ARP request
packet. Next, construct the ARP request packet and fill the input target
IPv4 address for discovering the target device. After that, send the
packet through the socket. Finally, clean up the stuff such as socket.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 50

static bool deleteACLFilterRules(void)

Parameters None

Return value True: The operation is successful
False: The operation failed

Description Create a rule expression string for delete action with the rule number.
After that, use PacketMover API to convert the string and set the ACL
filter rule to the target device. If the packet filter rules have been set more
than once, repeat this sequence until the filtered rules are deleted.

static bool addACLFilterRules(void)
Parameters None

Return value True: The operation is successful
False: The operation failed

Description Convert IP and MAC address (global variables) to string format. Next,
create a rule expression string to allow the ACL forwarding the packet
that matches the given rule. The filter rule has several criteria, i.e.,
network interface number#0 only (“feth0”), MAC address, IPv4 address,
TCP/IP protocol, and source port. Next, use PacketMover API to convert
the string and set the ACL filter rule to the target device. If there are
multiple sessions, repeat the sequence to set the rules for the next
session until all filtered rules are added. Finally, count the number of
added filter rules as a global variable to be later used in
“deleteACLFilterRules” function.

Termination Function

void cleanup(void)

Parameters None
Return value None

Description This function is called for safety termination of the application. It resets
the hardware system by setting DG_TOEIP_RST_INTREG_OFFSET to
‘1’. Next, delete the packet filter rules that have been set to ACL. After
that, close the target device interface. Finally, restore the terminal setting
by using the original setting.

void sigintHandler(void)

Parameters None

Return value None
Description This function is run to terminate the application when user input

“CTRL+C”. “cleanup” function is called and then the application is exited.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 51

General Function

static void get_toeindex(uint32_t *num_target, uint32_t *num_session)
Parameters num_target: Pointer to number of targets

num_session: Pointer to the first element of the array indicating number
of sessions in each target.

Return value None

Description Use “num_toe” which is a global variable for total number of active
sessions to calculate number of targets and number of sessions in each
target. Sessions that have the same target IP address are considered as
the same target group and then total number of sessions in that target is
more than one.

Console Display Function

static uint32_t cal_strlen(uint32_t num)

Parameters num: 32-bit unsigned integer to be calculated

Return value String length of integer input. Valid from 1 to 10.
Description Calculate string length of the input when considered as string.

static void show_ipaddr(uint32_t ip_addr)

Parameters ip_addr: An IPv4 address in unsigned integer format to be displayed

Return value None
Description Display an IPv4 address from unsigned integer input. For example, the

input “0xC0A86401” is printed as “192.168.100.1”.

static void show_perf_line(uint32_t *test_mode)

Parameters test_mode: Pointer to array that stores test mode of each session which
can be No test (0), Send test (1), Receive test (2), or Full-duplex (3)

Return value None
Description Print straight line format for active sessions which is a part of the

displayed table.

static void show_perf_header(uint32_t *test_mode)

Parameters test_mode: Pointer to array that stores test mode of each session which
can be No test (0), Send test (1), Receive test (2), or Full-duplex (3)

Return value None

Description Print header of the performance table.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 52

static void show_cursize(uint32_t *test_mode, uint32_t *cur_state, uint64_t *cur_sent,
uint64_t *cur_recv)

Parameters test_mode: Pointer to array that stores test mode of each session which
can be No test (0), Send test (1), Receive test (2), or Full-duplex (3)
cur_state: Pointer to array that stores current state in each session
cur_sent: Pointer to array of the amount of current transmitted data in
each session
cur_recv: Pointer to array of the amount of current received data in each
session

Return value None
Description Print status and current transfer size of the active sessions into the table

format

static void show_result(uint32_t *test_mode, uint32_t *cur_state, uint64_t *tot_send,
uint64_t *tot_recv, uint64_t *total_len, uint32_t *err_recv_ver)
Parameters test_mode: Pointer to array that stores test mode of each session which

can be No test (0), Send test (1), Receive test (2), or Full-duplex (3)
cur_state: Pointer to array that stores current state in each session
tot_send: Pointer to array of total amount of transmitted data in each
session
tot_recv: Pointer to array of total amount of received data in each session
total_len: Pointer to array of setting transfer length in each session
err_recv_ver: Pointer to array of received data verification status

Return value None

Description Display total amount of transmitted/received data, its status, and the
performance of the active sessions. After that, calculate the sum of the
amount of transmitted data and received data of each session to
calculate total amount of transmitted data and received data for
displaying. Finally, display the result (total amount of transmitted data
and received data of all sessions) on the console in Byte, KByte, MByte,
GByte unit. Also, calculate and display the average performance.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 53

Thread Function

static void sigThreadHandler(int sig)
Parameters sig: signal input that sends to this function to be handled

Return value None
Description Call the signal handler to catch the signal for killing the thread next time.

After that, kill the thread where the signal is detected by using
“pthread_exit”.

static void *gen_txbuf_data(void *voidArg)
Parameters voidArg is the struct that contains following arguments.

• pTxDmaChannel: Pointer to the Tx DMA channel (Silicom)

• buf_reqcnt: Number of buffers that is requested for transferring data
(this argument is updated by the main thread while operating)

• buf_totalcnt: Total number of buffers to be written and sent

• last_buf_len: The length of last buffer in this operation (byte unit)

• gen_patt: TRUE-fill the pattern data, FALSE-not fill the pattern data

Return value None
Description To achieve the high-speed performance, the Tx packet size of Tx DMA

operation is fixed to 8 Kbytes and Tx buffer size in the hardware is fixed
to 256 Kbytes (32 times of packet size). The function is designed by
using PacketMover API.

The operation is finished when the write counter (buf_wrcnt) is more than
or equal to total counter (buf_totalcnt). The operation of this thread is
started when the request counter (buf_reqcnt) is more than the write
counter (buf_wrcnt). The first operation is setting the buffer size to 256
Kbytes, except the last request that is set by last_buf_len. To transfer
data to 256-Kbyte buffer, many packets may be transmitted. The packet
size is fixed to 8 Kbyte size, except the last packet size which is set to be
equal to the remaining size that may be less than 8 Kbytes. Next, the test
data is filled to Tx buffer if gen_patt is set to TRUE. Otherwise, dummy
data in Tx buffer is applied instead. After finishing filling data to the
current buffer, flush all packets to the hardware. Finally, update the write
counter by adding one to show the number of buffers that is completely
filled by this child thread. The memory is de-allocated after finishing the
operation.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 54

static void *ver_rxbuf_data(void *voidArg)

Parameters voidArg is the struct that contains following arguments.

• gen_patt: TRUE-fill the pattern data, FALSE-not fill the pattern data

• pRxDmaChannel: Pointer to the Rx DMA channel (Silicom)

• buf_reqcnt: Number of buffers that is requested for transferring data
(this argument is updated by the main thread while operating)

• buf_rdcnt: Number of buffers that is completely read by this function

• buf_totalcnt: Total number of buffers to be received and read

• last_buf_len: The length of last buffer in this operation (byte unit)

• ver_en: TRUE-verify the pattern data, FALSE-not verify the pattern
data

• ver_fail: TRUE-verification failed, FALSE-verification successful

• tot_recv_count: Amount of received data updated by this function
(byte unit)

Return value None

Description Rx buffer size is set to 1 Mbytes (128 of 8192 bytes). The function is
designed by using PacketMover API.

The operation is finished when the read counter (buf_rdcnt) is more than
or equal to total counter (buf_totalcnt). The operation is started when the
request counter (buf_reqcnt) is not equal to the read counter (buf_rdcnt).
The first operation is setting the buffer size to 1 Mbytes, except the last
request that is set by last_buf_len. The data is read and verified when
ver_en is set to TRUE. ver_fail is set to TRUE if the received data is not
equal to the expected value. When ver_en is set to FALSE, the data is
not verified. Each operation loop is completed when total amount of
received data in each loop is equal to the buffer size. After receiving all
data from the current buffer, update the read counter (buf_rdcnt) by
adding one to show the number of buffers that is completely read by this
child thread. The memory is de-allocated after finishing the operation.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 55

Miscellaneous Function

static void input_param(void)
Parameters None

Return value None
Description Receive test parameters from user for test parameters, i.e., Reverse

packet enable, Windows update threshold, the number of targets, Target
IP address, the number of sessions, FPGA port number, and Target port
number. After receiving and verifying all parameters, the current value of
all parameters is displayed by calling show_param function.

inline static uint32_t read_conon(uint32_t num)

Parameters num: An index of TOE100G-IP
Return value 0: Connection is OFF, 1: Connection is ON

Description Read value from DG_USER_STS_INTREG_OFFSET register of the
specified TOE100G-IP, defined by num input. After that, return only bit0
value to show connection status.

static void toe_tx_send(uint32_t toe_index, uint64_t *total_len, uint32_t *pac_size,
uint32_t *round_size)
Parameters toe_index: An index of TOE100G-IP

total_len: Pointer to the total transfer data size, used to send data
pac_size: Pointer to the packet size, used for assignment
round_size: Pointer to the round size, used to assign the maximum
transfer size per command
Note: All size arguments are assigned in 64-byte unit.

Return value None

Description Non-blocking function to assign the specific TOE100G-IP for send
command. Before setting the transfer size in the IP, firstly set the packet
size to the IP. After that, read the remaining transfer size (total_len). Total
transfer size that is set to the hardware is equal to round_size when
total_len is more than round_size. Otherwise, total transfer size to the
hardware is equal to total_len. Finally, write the send command to
TOE100G-IP to start the operation.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 56

Test Function

static void show_param(void)
Parameters None

Return value None
Description Display the current value of the network parameters set to TOE100G-IPs

such as IP addresses, MAC addresses, and port numbers, following
described in topic 3.2.1.

static bool init_param(void)
Parameters None

Return value True: The operation is successful
False: Error is found

Description This function is called to set the parameters and reset the IPs, following
described in topic 3.2.2.

static int dma_half_test(void)

Parameters None
Return value True: The operation is successful

False: Receive invalid input or error is found
Description Run half duplex test with DMA following description in topic 3.2.3.

This function uses gen_txbuf_data or ver_rxbuf_data as child thread.

static int dma_txrx_test(void)

Parameters None
Return value True: The operation is successful

False: Receive invalid input or error is found

Description Run Full duplex test with DMA following described in topic 3.2.4. This
function uses gen_txbuf_data and ver_rxbuf_data as child threads.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 57

4 Test Software on the target

4.1 “tcpdatatest” for half duplex test

Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to run on PC for sending or receiving TCP data via Ethernet as
Server or Client mode. PC of this demo should run in Client mode. User sets parameters to
select transfer direction and the mode. Six parameters are required as follows.
1) Mode: c –PC runs in Client mode and FPGA runs in Server mode
2) Dir: t – transmit mode (PC sends data to FPGA)

r – receive mode (PC receives data from FPGA)
3) ServerIP: IP address of FPGA when PC runs in Client mode
4) ServerPort: Port number of FPGA when PC runs in Client mode
5) ByteLen: Total transfer size in byte unit. This input is used in transmit mode only and

ignored in receive mode. In receive mode, the application is closed when the connection is
terminated. In transmit mode, ByteLen must be equal to the total transfer size that is set in
test menu of FPGA (receive data test in half-duplex test).

6) Pattern:
0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate incremental data in transmit mode or enable data verification in receive
mode.

Note: Window Scale: Optional parameter which is not used in the demo.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 58

Transmit data mode
Following sequence is the sequence when test application runs in transmit mode.
1) Get parameters from the user and verify that all inputs are valid.
2) Create the socket and set socket options.
3) Create the new connection by using Server IP address and Server port number.
4) Allocate memory to be send buffer.
5) Skip this step if the dummy pattern is selected. Otherwise, generate the incremental test

pattern to send buffer.
6) Send data out and read total sent data from the function.
7) Calculate remaining transfer size.
8) Print total transfer size every second.
9) Repeat step 5) – 8) until the remaining transfer size is 0.
10) Calculate total performance and print the result on the console.
11) Close the socket and free the memory.

Receive data mode
Following sequence is the sequence when test application runs in receive mode.

1) Follow the step 1) – 3) of Transmit data mode.
2) Allocate memory to be receive buffer.
3) Read data from the receive buffer and increase total amount of received data.
4) This step is skipped if data verification is disabled. Otherwise, received data is verified by

the incremental pattern. Error message is printed out when data is not correct.
5) Print total amount of received data every second.
6) Repeat step 3) – 5) until the connection is closed.
7) Calculate total performance and print the result on the console.
8) Close socket and free the memory.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 59

4.2 “tcp_client_txrx_single” for full duplex test

Figure 4-2 “tcp_client_txrx_single” application usage

“tcp_client_txrx_single” is designed to run on PC for sending and receiving TCP data through
Ethernet by using the same port number at the same time. The application is run in Client
mode, so user needs to input Server parameters (the network parameters of TOE100G-IP).
As shown in Figure 4-2, there are four parameters to run the application, described as follow.

1) ServerIP : IP address of FPGA
2) ServerPort : Port number of FPGA
3) ByteLen : Total transfer size in byte unit. This is total amount of transmitted data

and received data. This value must be equal to the transfer size set on FPGA for running
full-duplex test.

4) Verification:
0 – Generate dummy data for sending function and disable data verification for receiving
function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate incremental data for sending function and enable data verification for
receiving function.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 60

The sequence of test application is as follows.
1) Get parameters from the user and verify that the input is valid.
2) Create the socket and set socket options.
3) Create the new connection by using Server IP address and Server port number.
4) Allocate memory for send and receive buffer.
5) Generate incremental test pattern to send buffer when the test pattern is enabled. Skip this

step if dummy pattern is selected.
6) Send data out, read total sent data from the function, and calculate remaining send size.
7) Read data from the receive buffer and increase total amount of received data.
8) Skip this step if data verification is disabled. Otherwise, data is verified by incremental

pattern. Error message is printed out when data is not correct.
9) Print total amount of transmitted data and received data every second.
10) Repeat step 5) – 9) until total amount of transmitted data and received data are equal to

ByteLen, set by user.
11) Calculate performance and print the result on the console.
12) Close the socket.

dg_toe100gip_silicomnic_refdesign.doc

16-Dec-22 Page 61

5 Revision History

Revision Date Description

1.0 16-Dec-22 Initial version release

