

Ultimate 10GbE network solution!

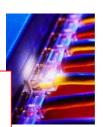
19 February 2021

Design Gateway

Page 1

Agenda

- 10GbE&TCP/IP Overview
 - Advantage and Disadvantage of TCP on 10GbE
- TOE10G-IP core overview
- TOE10G-IP core description
 - Initialization
 - High-speed transmit
 - High-speed reception
- User I/F, Buffer size parameterization
- Reference design
- Resource usage and real performance



10GbE Overview

What is 10GbE (10Giga-bit Ethernet)?

- Industrial standard high-speed network
- 10Gbps transfer speed
- Many connection type

TOE10G-IP is applicable to all 10GbE standard

Connection Type	Merit	Demerit	Note	
Optical Cable	Low latency (100ns) Long distance	Expensive	Needs optical module and cable	
Direct Attach	Low cost	Short distance (5- 7m maximum)	Direct insertion to SFP+ socket	
10GBASE-T	Low cost Popular (RJ-45)	High latency (2us)	Special coding (LDPC)	
100bC connection ture				

10GbE connection type

19 February 2021

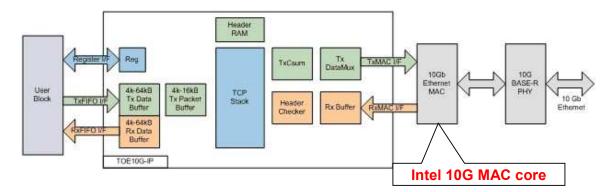
Design Gateway

Page 3

Advantage of TCP/IP on 10GbE

- Advantage of TCP/IP
 - Standard Ethernet protocol
 - Guaranteed data reliability
 - Major OS provides protocol stack

- Disadvantage of TCP/IP
 - Heavy CPU load due to complicated TCP process
 - Difficult to raise performance(30-40% efficiency)
 - Needs expensive high performance CPU
- **TOE10G-IP** core can provide ideal solution!


Design Gateway

- TCP/IP off-loading engine for 10GbE
- Inserts between user logic and Intel 10G MAC module
- Fully hard-wired TCP control for both Tx and Rx
- Supports Full Duplex communication

TOE10G-IP core block diagram

19 February 2021

Design Gateway

Page 5

Arria 10

DG TOE10G-IP core Advantage 1

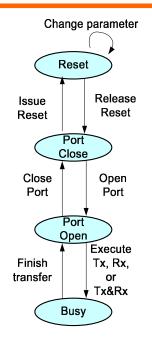
- Fully hard-wired TCP/IP protocol control
 - Possible to build CPU-less network system
 - Zero load for CPU
- Ultra high speed for both of Tx and Rx direction
 - About 1200MByte/sec real transfer speed
- Guarantee transfer data reliability
 - Tx: Automatic retry when No-ACK, Duplicate-ACK, timeout
 - Rx: Automatic ACK control by Sequence number calculation

TOE10G-IP core Advantage 2

Selectable data buffer size

- Selectable buffer size of memory usage vs. performance
- Compatible with Intel MAC core (LL Ethernet 10G MAC)
 - Also supports low cost 10GEMAC-IP from DesignGateway
- Many reference design on Intel evaluation board
 - Full project for standard Intel board
 - Free SOF-file for evaluation before purchase
 - All source code (except IP-core) in design project
 - Multiple Sessions design available for Server Application
- Supports 10GBASE-T as well as 10GBASE-R
 - Applicable to low cost Cat6 cable and RJ45 connector

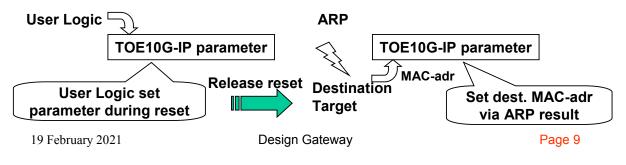
19 February 2021


Design Gateway

Page 7

TOE10G-IP core Operation

- Set parameter (IP-adr&MAC-adr, etc) during Reset
- Release Reset then initialize including ARP
- Idle state after initialization finish, wait command
- Port open by either of Active (Client) or Passive (Server) mode
- Tx and Rx operates individually (full-duplex)
- If want change parameter, move to Reset state (transfer/packet length can change except Busy)

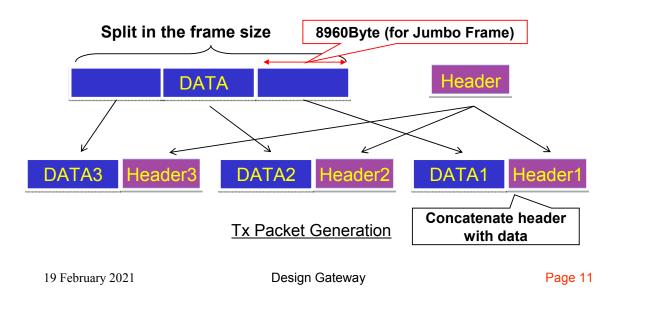


State Diagram

• Set parameter to TOE10G-IP

- User logic can set parameter during TOE10G-IP reset
- Set IP address, MAC address, and Port number
- Release reset after parameter setting finish
- TOE10G-IP executes ARP after reset release
 - Issue ARP to destination target
 - Get MAC-adr of the target via ARP result

High-Speed Tx


- Tx packet generation
 - User Logic writes Tx data to TxFIFO
 - Split Tx data in the frame size
 - Split TX data in the frame size
 Concatenate header with Tx data

- Automatic retransmit function
 - Check ACK reply from destination
 - Detect No-ACK, Duplicate-ACK, and Timeout
 - Resend same packet by such ACK error detection

- Generate header and concatenate it with Tx data
 - TOE10G-IP splits Tx data in the frame size
 - Generate checksum and sequence number in TOE10G-IP

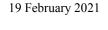
D•G

Automatic retransmit

- Retransmit function by dedicated FIFO
 - Proceed pointer by normal ACK reception
 - Rewind pointer by illegal ACK reception
 - TOE10G-IP controls pointer and retransmit operation

High-Speed Rx

Rx packet header check


 Ignore packet if destination is not TOE10G-IP or if checksum is wrong

Data reordering

- Reorder when sequence number skip is detected
- Avoid retransmit request for transfer efficiency
- If reordering is not possible, then send duplicate ACK

Duplicate data management

- Check duplicate data in Rx packet
- Retrieve original data by trimming duplicate data part

Design Gateway

Rx Packet Header Check

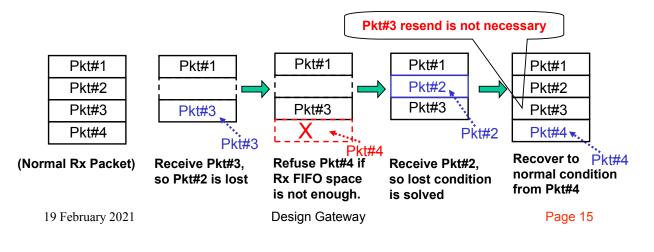
Page 13

Verify header check sum in Rx packet Also check following condition in TOE10G-IP

Byte Offset	Protoco	Description	Check condition
0-5	ICMP	Destination MAC adr	Match with MAC adr set by SML/SMH register
6-11	ICMP	Source MAC adr	Match with target MAC adr set by ARP
12-13	ICMP	Туре	= 0x0800 (IP packet)
14	IP	Version/Header	= 0x45 (IPv4, IP header len=20)
20	IP	Flag/Fragment OFS	= b"000000" (no fragment)
23	IP	Protocol Number	= 0x06(TCP packet)
26-29	IP	Source IP adr	Match with IP adr set by DIP register
30-33	IP	Destination IP adr	Match with IP adr set by SIP register
			Match with DPN register or extracted target port number in
34-35	TCP	Source port number	Passive Open
36-37	TCP	Destination port number	Match with port number set by SPN register
38-41	TCP	Sequence number	Possible value within TOE2-IP core can process this packet

Design Gateway

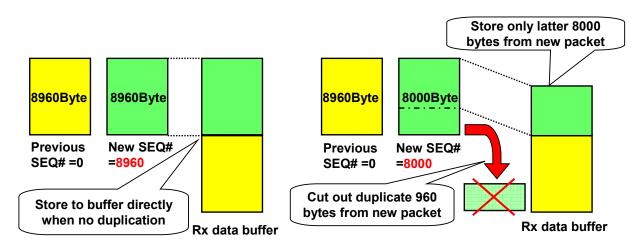
Header check condition in Rx packet

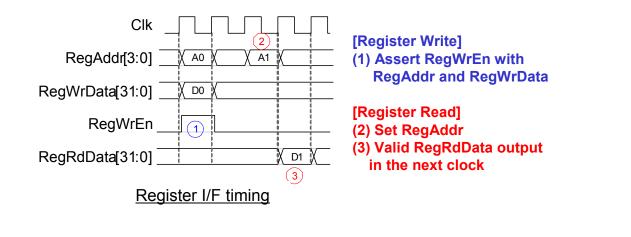


Function when SEQ number skip is detected

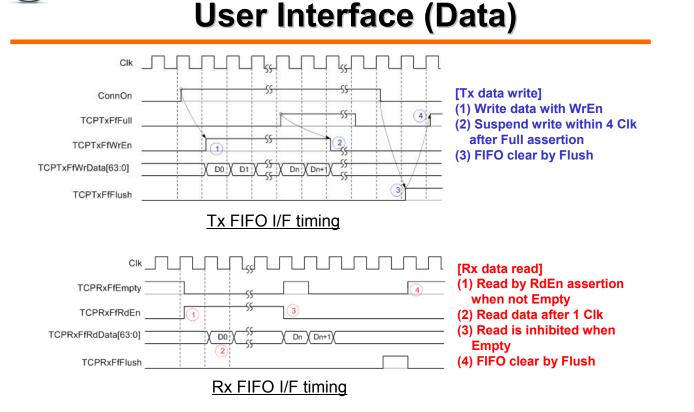
- Not accept any packet other than that can solve lost condition

Data reordering function


- Recover data contiguous from lost-solved packet
- Keep performance by suppress resend request


Duplicate data trimming

- Detect data duplication and correct automatically
 - Detect Rx data duplication by checking sequence number
 - Trim duplicate block and retrieve contiguous data


- 3 types of Register I/F, Tx FIFO I/F, and Rx FIFO I/F
 - Register I/F for initial parameter setting and Tx/Rx command
 - Tx FIFO I/F and Rx FIFO I/F is standard FIFO interface

Design Gateway

19 February 2021

TCP Officading Engine IP Core

Page 17

Buffer Capacity

• Parameterized 3 types of data buffer

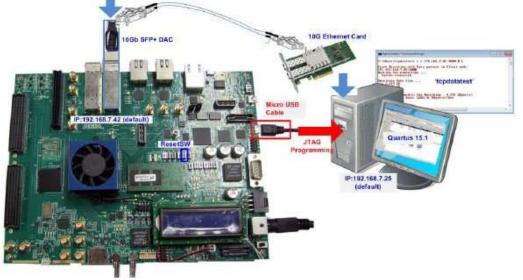
- (1) Tx Data Buffer: 4KBytes 64KBytes
- (2) Tx Packet Buffer: 4KBytes 16KBytes
- (3) Rx Data Buffer: 4KBytes 64KBytes

User can optimize resource usage and performance

Generic Name	Range	Description
TxBufBitWidth	9-13	Set Tx data buffer size in address bit width
		When set to 9, size is 4KBytes, when 13, 64Kbytes for example.
TxPacBitWidth	9-11	Set Tx packet buffer size in address bit width
		When set to 9, size is 4Kbytes, when 11, 16KBytes for example
RxBufBitWidth	9-13	Set Rx data buffer size in address bit width
		When set to 9, size is 4KBytes, when 13, 64KBytes for example.

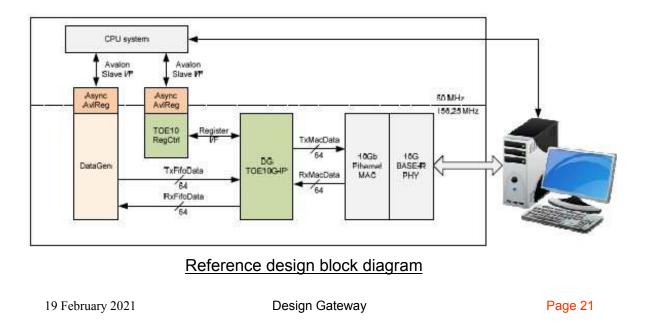
Buffer size is selectable by parameterization

19 February 2021


Design Gateway

Page 19

Free SOF File for Evaluation


- Bit file for evaluation with Intel standard board
 - Ready for A10SX,A10GX,C10GX,S10GX, IntelPAC board
 - Measure transfer speed performance and data reliability

QuartusII design project for real operation

- All source code (except IP-core) included in full project

Reference design for Server Application
 – 8 Instances in one FPGA to support 8 sessions operation

Multiple Sessions reference design block diagram

Standard	Тх	Rx	Full-Duplex
10GBASE-R	1219MByte/s	1109MByte/s	800-1000MByte/s
10GBASE-T	1205MByte/s	1103MByte/s	800-1000MByte/s

TOE10G-IP core performance test result

Condition: reference design between PC and A10GX board

Packet size: 8960byte (Jumbo Frame)

Use "ASF-10G-T" from 10GTek for 10GBASE-T environment test

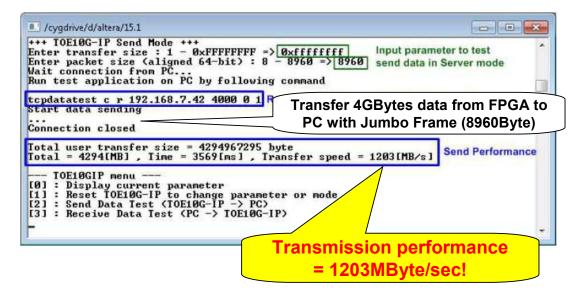
PC specification: CPU Inteli5-8500@3.00GHz, DDR4 16GB, Windows10Pro, NIC card: X550-T1(Intel) * Performance result varies in the range of 800-1000MB/s with each trial for full-duplex test

TOE10G-IP core standalone resource usage

– Condition = Maximum buffer setting

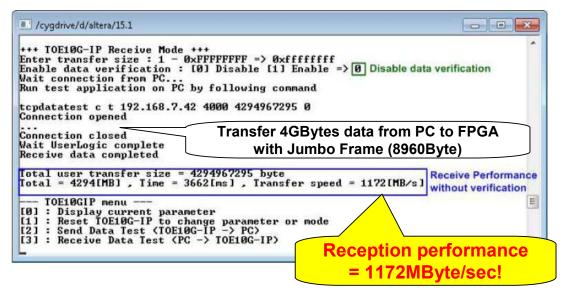
(TxDataBuf=RxDataBuf=64KB, TxPacketBuf=16KB)

Family	Example Device	Fmax (MHz)	ALMs ¹	Registers ¹	Pin	Block Memory bit ²	Design Tools
Arria 10 SX	10AS066N3F40E2SGE2	156.25	2,566	3,931	-	1,179,648	QuartusII16.0
Arria 10 GX	10AX115S2F45I2SG	156.25	2,453	3,491		1,179,648	QuartusII16.0
Cyclone 10 GX	10CX220Y7F80E5G	156.25	2,247	3,446	-	1,179,648	QuartusII18.0
Stratix 10 GX	1SG280HU2F50E2VGS1	156.25	2,928	3,523		1,179,648	QuartusII18.0
	ING-IP CORD eta	naalo	na con	nniistinn	rocul	T /	
TUE	<u>10G-IP core sta</u>	indalo		ipilation			


19 February 2021

Design Gateway

Page 25


Transmission Performance

Transmission (FPGA to PC) performance result using Arria10SoC Bd.

Reception Performance

Reception (PC to FPGA) performance result using Arria10SoC Bd.

19 February 2021

Design Gateway

Page 27

TOE10G-IP Application Market

- Data transfer in FA market
 - Medical video processing system
 - Sensor data logger measurement instrument
- Storage system using TCP such as NAS, iSCSI
 - TOE10G-IP replaces CPU for hard TCP processing
- Network product
 - Network printer for high speed print data download
 - Network camera for high speed video data upload

19 February 2021

Design Gateway

DGDESIGN

- Detailed documents available on the web site.
 - http://www.dgway.com/TOE10G-IP_A_E.html
- Contact
 - Design Gateway Co,. Ltd.
 - E-mail : ip-sales@design-gateway.com
 - FAX : +66-2-261-2290

19 February 2021

Of Real Property lies

Revision History

Rev.	Date	Description
1.0E	August 1, 2016	English version initial release
1.1E	February 8, 2017	Added multiple sessions design for server application reference
1.2E	February 19, 2021	Added 10GBASE-T support and A10GX,C10GX,S10GX family information