
dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 1 

 

TOE10G-IP with CPU reference design 
Rev1.8  10-Oct-23 

1 Introduction .......................................................................................................................2 

2 Hardware overview ...........................................................................................................3 
2.1 10GBASE-R PHY........................................................................................................4 

2.2 10G EMAC..................................................................................................................6 
2.3 TOE10G-IP .................................................................................................................6 

2.4 CPU and Peripherals ...................................................................................................7 

2.4.1 AsyncAvlReg ........................................................................................................8 
2.4.2 UserReg .............................................................................................................10 

3 CPU Firmware on FPGA .................................................................................................15 
3.1 Display parameters ...................................................................................................16 

3.2 Reset IP ....................................................................................................................16 

3.3 Send data test ...........................................................................................................17 
3.4 Receive data test ......................................................................................................18 

3.5 Full duplex test ..........................................................................................................19 
3.6 Function list in User application .................................................................................20 

4 Test Software on PC .......................................................................................................22 

4.1 “tcpdatatest” for half duplex test .................................................................................22 
4.2 “tcp_client_txrx_xg” for full duplex test .......................................................................24 

5 Revision History ..............................................................................................................26 
 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 2 

 

1 Introduction 
The TCP/IP is the Internet Protocol Suite for networking application, consisting of four layers: 
Application, Transport, Internet, and Network Access. Figure 1-1 shows how the Network Access 
layer is split into two sublayers, Link and Physical, to link them with the hardware implementation 
using an FPGA.  
 

 
Figure 1-1 TCP/IP Protocol Layer 

 
The TOE10G-IP implements the Transport and Internet layer of TCP/IP Protocol using full 
hardwire logic, without the need for a CPU or DDR. This allows the user logic to be designed for 
processing the TCP payload data at the user interface of TOE10G-IP. The TOE10G-IP is 
responsible for building an Ethernet packet that contains the TCP payload data from the user and 
transmitting it to the Ethernet MAC (EMAC). If the user data size is too large to fit in one Ethernet 
packet, the TOE10G-IP will split the data into multiple packets to send it. To construct a complete 
Ethernet packet, the TOE10G-IP must process and append the TCP/IP header to the packet 
before transmitting. On the other hand, when the TOE10G-IP receives an Ethernet packet from 
EMAC, it extracts and verifies the packet. If the packet is valid, the TOE10G-IP extracts TCP 
payload data from the packet and forwards it to the user logic. Otherwise, the packet is rejected. 
 
The lower layer protocols are implemented by EMAC-IP and PCS/PMA-IP. PCS/PMA-IP is 
provided by Intel FPGA while EMAC-IP can be implemented by DG 10GEMAC-IP or Intel FPGA 
EMAC-IP. 
 
The reference design includes a simple user logic, TOE10G-IP, and Ethernet MAC for data 
transfer using TCP/IP protocol. The data can be transferred with the target, which may be a PC or 
another FPGA with integrating TOE10G-IP. Design Gateway provides two test applications on the 
PC for testing the demo using one TCP session, “tcpdatatest” for half-duplex (send or receive 
data test) and “tcp_client_txrx_xg” for full-duplex (send and receive data simultaneously) using 
one TCP session. 
 
To provide flexibility in testing, the user set the test parameters and control the operation of 
TOE10G-IP demo via JTAG UART, which is integrated with a CPU system The user can monitor 
the current status and set test parameters through the console. The CPU firmware is built using a 
simple bare-metal OS. More details of the demo are described below. 
 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 3 

 

2 Hardware overview 
 

 
Figure 2-1 Demo Block Diagram 

 
In the test environment, two devices are used to transfer data over 10G Ethernet connection. The 
first device is an FPGA which is initialized in Client mode, and the second device can be a PC or 
another FPGA which is initialized in Server mode. Two test applications (tcpdatatest and 
tcp_client_txrx_xg) are provided for transferring data between the PC and FPGA. 
 
In the FPGA system, the TOE10G-IP connects with 10G Ethernet MAC and 10G Ethernet PHY to 
implement all TCP/IP layers. The user interface of the TOE10G-IP is connected to UserReg within 
Avl2Reg, which includes a Register file for interfacing with the Register interface, PattGen for 
sending test data via Tx FIFO interface, and PattVer for verifying test data via Rx FIFO interface. 
The Register file of UserReg is controlled by CPU firmware through the Avalon-MM bus. 
 
Besides, the reference design includes additional logic components. MacRegCtrl is designed to 
configure control register through Avalon-MM interface when using the Intel FPGA 10G EMAC-IP. 
SFPConfig is designed to configure the SFP+ transceiver when running the demo on Cyclone10 
GX board.  
 
The test design uses two clock domains: CpuClk for the CPU system and MacTxClk for the user 
interface of EMAC and TOE10G-IP. Therefore, AsyncAvlReg is designed to support 
asynchronous signal transferring between CpuClk and MacTxClk. More information about each 
module inside the TOE10CPUTest is described below. 
 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 4 

 
2.1 10GBASE-R PHY 

 
The Intel 10GBASE-R PHY is applied to connect with 10G SFP+ module. The user interface 
of the PHY is connected to 10G Ethernet MAC through a 64-bit XGMII interface running at 
156.25 MHz. Further details can be found in the following link. 
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interfa
ce-protocols/10g-base-r-pcs.html 
 
On the Cyclone10 GX board, the ‘SFP_TX_Disable’ signal on SFP+ transceiver is 
configured using an I/O Expander. This I/O Expander is controlled via two-line I2C bus 
protocol. Therefore, the SFPConfig module is designed to serve as an I2C master, 
responsible for setting ‘SFP_TX_Disable’ to 0b on the SFP+ transceiver. 

 

 
Figure 2-2 SFPConfig block diagram 

 
SFPConfig includes I2CCtrl, which acts as the I2C master controller, writing one-byte data to 
the register. In the I2CCtrl logic, the device number and clock divider are fixed values, and 
I2C clock (SCL) operates at 400 kHz. Within SFPConfig, a state machine configures two 
registers of the I/O expander: the configuration register (Addr=0x03) and the output port 
register (Addr=0x01). The default setting of ‘SFP_TXDIS’, assigned to P2, is set as the input 
port, but the design necessitates changing it to an output direction. Besides, the default 
output value of P2 output is 1b, but it needs to be changed to be 0b. In summary, the state 
machine operates in the following steps. 
1) It sets the configuration register of the P2 port to an output direction by assigning 

I2CStartAddr=0x03 (configuration register) and I2CDataOut=0xFB (Bit2=0b for output 
direction). 

2) It sets the output port register to 0xFB (data output at bit2=0b).  
 
Once the register configuration is completed, the SFPConfig module transitions to the Idle 
state. Therefore, the configuration of P2 occurs once after the system is powered on. The 
timing diagram for the I2CCtrl user interface is shown in Figure 2-3.  

https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/10g-base-r-pcs.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/10g-base-r-pcs.html


dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 5 

 

 
Figure 2-3 Timing diagram of I2CCtrl 

 
1) I2CCmdReq is set to 1b with valid values for I2CStartAddr and I2CDataOut. All inputs 

must remain unchanged until I2CCtrl asserts I2CCmdBusy to 1b. 
2) I2CCmdBusy is set to 1b after I2CCtrl has loaded all input parameters and initiated the 

write register operation. 
3) I2CCmdReq is set to 0b to clear the write request and prepares the parameters for the 

next operation. 
4) Once I2CCtrl completes the operation, I2CCmdBusy is de-asserted to 0b.  

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 6 

 
2.2 10G EMAC 
 

The 10G EMAC serves as the interface module between TOE10G-IP and the 10GBASE-R 
PHY. It employs a 64-bit Avalon stream interface with TOE10G-IP and a 64-bit XGMII 
interface running at 156.25 MHz with the 10GBASE-R PHY. Both DG 10G EMAC-IP and 
Intel FPGA 10G EMAC-IP can be used in the reference design. For more detailed 
information about the 10G EMAC IP, please refer to the following links. 
 
DG 10G EMAC-IP 
https://dgway.com/products/IP/10GEMAC-IP/dg_tengemacip_data_sheet_intel_en/ 
 
Intel FPGA 10G EMAC IP 
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interfa
ce-protocols/low-latency-10gbps-ethernet-mac.html 
 
When using the Intel FPGA 10G EMAC-IP, it is necessary to include MacRegCtrl to 
configure the 10G EMAC parameters through a 32-bit Avalon-MM bus interface. 
MacRegCtrl is designed as an Avalon-MM master for both writing and reading registers 
within the 10G EMAC IP. The details of the hardware inside MacRegCtrl are shown in Figure 
2-4. 

 

 
Figure 2-4 MacRegCtrl block diagram 

 
A state machine is designed to execute register write/read operation in the following 
sequence. 
1) Disable the transmit and receive paths of the EMAC. 
2) Wait until both transmit and receive paths are idle. 
3) Configure the receive module to remove CRC and padding. 
4) Disable the transmission of pause frames. 
5) Enable both the transmit and receive paths of the EMAC. 

 
2.3 TOE10G-IP 

 
TOE10G-IP implements TCP/IP stack and fully offload engine without requiring the CPU 
and the external memory. User interface has two signal groups - control signals and data 
signals. Control and status signals use Single-port RAM interface for write/read register 
access. Data signals use FIFO interface for transferring data stream in both directions. More 
information can be found from the datasheet. 
 
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_intel_en/ 

 

https://dgway.com/products/IP/10GEMAC-IP/dg_tengemacip_data_sheet_intel_en/
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/low-latency-10gbps-ethernet-mac.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/low-latency-10gbps-ethernet-mac.html
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_intel_en/


dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 7 

 
2.4 CPU and Peripherals 

 
The CPU system uses a 32-bit Avalon-MM bus as the interface to access peripherals such 
as the Timer and JTAG UART. The system also integrates an additional peripheral to access 
the test logic by assigning a unique base address and address range. To support CPU read 
and write operations, the hardware logic must comply with the Avalon-MM bus standard. 
Avl2Reg module, as shown in Figure 2-5, is designed to connect the CPU system via the 
Avalon-MM interface, in compliance with the standard. 

 

 
Figure 2-5 Avl2Reg block diagram 

 
Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg converts Avalon-MM signals 
into a Register interface with a 32-bit data bus size, similar to Avalon-MM data bus size. It 
also includes asynchronous logic to handle clock domain crossing between the CpuClk and 
MacTxClk domain.  
 
UserReg includes the Register file of the parameters and the status signals of test logics. 
Both the data interface and control interface of TOE10G-IP are connected to UserReg. More 
details of AsyncAvlReg and UserReg are described as follows. 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 8 

 
2.4.1 AsyncAvlReg 

 
Figure 2-6 AsyncAvlReg Interface 

 
The Avalon-MM bus interface signal can be grouped into three categories: Write channel 
(blue), Read channel (red), and Shared control channel (black). More details about the 
Avalon-MM interface specification can be found in the following document. 
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_a
valon_spec.pdf 
 
According to Avalon-MM specification, only one command (write or read) can be executed 
at a time. AsyncAvlReg’s logic is divided into three groups: Write control logic, Read control 
logic, and Flow control logic. The flow control logic asserts SAvlWaitReq to hold the next 
request from the Avalon-MM interface if the current request has not finished. Write control 
and Write data I/F of the Avalon-MM bus are latched and transferred to the Write register 
interface with clock domain crossing registers. Similarly, Read control I/F are latched and 
transferred to be Read register interface. Afterward, the data returned from Register Read 
I/F is transferred to Avalon-MM bus with using clock domain crossing registers. The Address 
I/F of Avalon-MM is also latched and transferred to the Address register interface. 
 
The Register interface is compatible with the single-port RAM interface for write transactions. 
However, the read transaction of the Register interface is slightly modified from RAM 
interface by adding RdReq and RdValid signals to control the read latency time. Since the 
address of the Register interface is shared for write and read transactions, the user cannot 
write and read the register at the same time. The timing diagram of the Register interface is 
shown in Figure 2-7 

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf


dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 9 

 

 
Figure 2-7 Register interface timing diagram 

 
1) Timing diagram to write register is similar to that of a single-port RAM. The RegWrEn 

signal is set to 1b, along with a valid RegAddr (Register address in 32-bit units), 
RegWrData (write data for the register), and RegWrByteEn (write byte enable). The byte 
enable consists of four bits that indicate the validity of the byte data. For example, bit[0], 
[1], [2], and [3] are set to 1b when RegWrData[7:0], [15:8], [23:16], and [31:24] are valid, 
respectively. 

2) To read register, AsyncAvlReg sets the RegRdReq signal to 1b with a valid value for 
RegAddr. The 32-bit data is returned after the read request is received. The slave detects 
the RegRdReq signal being set to start the read transaction. In the read operation, the 
address value (RegAddr) remains unchanged until RegRdValid is set to 1b. The address 
can then be used to select the returned data using multiple layers of multiplexers. 

3) The slave returns the read data on RegRdData bus by setting the RegRdValid signal to 1b. 
After that, AsyncAvlReg forwards the read value to the SAvlRead interface. 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 10 

 
2.4.2 UserReg 

 

 
Figure 2-8 UserReg block diagram 

 
The UserReg module includes three functions: Register, Pattern generator (PattGen), and 
Pattern verification (PattVer). The Register block decodes the requested address from 
AsyncAxiReg and selects the active register for a write or read transaction. The PattGen 
block is designed to send 64-bit test data to TOE10G-IP following FIFO interface standard, 
while the PattVer block is designed to read and verify 64-bit data from TOE10G-IP following 
FIFO interface standard.  

 
Register Block 
The address range, mapped to UserReg, is split into two areas: TOE10G-IP register 
(0x0000-0x00FF) and UserReg register (0x1000-0x10FF). The Address decoder decodes 
the upper bits of RegAddr to select the active hardware. Since the Register file inside 
UserReg is 32-bit bus size, Write byte enable (RegWrByteEn) is not used. To write hardware 
registers, the CPU must use a 32-bit pointer to place a 32-bit valid value on the write data 
bus. 
 
For reading a register, a multiplexer selects the data to return to CPU by using the address. 
The lower bits of RegAddr are applied to select the active data within each Register area. 
While the upper bits are used to select the returned data from each Register area. The total 
latency time of read data is equal to one clock cycle, and RegRdValid is created by 
RegRdReq by asserting a D Flip-flop. More details of the address mapping within the 
UserReg module are shown in Table 2-1. 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 11 

 
Table 2-1 Register map Definition 

 
Address Register Name  Description  

Wr/Rd (Label in the “toe10gtest.c”) 

BA+0x0000 – BA+0x00FF: TOE10G-IP Register Area 

More details of each register are described in TOE10G-IP datasheet. 

BA+0x0000 TOE_RST_INTREG Mapped to RST register within TOE10G-IP 

BA+0x0004 TOE_CMD_INTREG Mapped to CMD register within TOE10G-IP 

BA+0x0008 TOE_SML_INTREG Mapped to SML register within TOE10G-IP 

BA+0x000C TOE_SMH_INTREG Mapped to SMH register within TOE10G-IP 

BA+0x0010 TOE_DIP_INTREG Mapped to DIP register within TOE10G-IP 

BA+0x0014 TOE_SIP_INTREG Mapped to SIP register within TOE10G-IP 

BA+0x0018 TOE_DPN_INTREG Mapped to DPN register within TOE10G-IP 

BA+0x001C TOE_SPN_INTREG Mapped to SPN register within TOE10G-IP 

BA+0x0020 TOE_TDL_INTREG Mapped to TDL register within TOE10G-IP 

BA+0x0024 TOE_TMO_INTREG Mapped to TMO register within TOE10G-IP 

BA+0x0028 TOE_PKL_INTREG Mapped to PKL register within TOE10G-IP 

BA+0x002C TOE_PSH_INTREG Mapped to PSH register within TOE10G-IP 

BA+0x0030 TOE_WIN_INTREG Mapped to WIN register within TOE10G-IP 

BA+0x0034 TOE_ETL_INTREG Mapped to ETL register within TOE10G-IP 

BA+0x0038 TOE_SRV_INTREG Mapped to SRV register within TOE10G-IP 

BA+0x003C TOE_VER_INTREG Mapped to VER register within TOE10G-IP 

BA+0x1000 – BA+0x10FF: UserReg control/status 

BA+0x1000 Total transmit length Wr [31:0] – Total transmitted size in Qword unit (64-bit).  

Valid from 1-0xFFFFFFFF. 

Rd [31:0] – Current transmitted size in Qword unit (64-bit).  

The value is cleared to 0 when USER_CMD_INTREG is written by user. 

Wr/Rd (USER_TXLEN_INTREG) 

BA+0x1004 User command Wr  

[0] – Start transmitting. Set 0b to start transmitting.  

[1] – Data Verification enable  

(0b: Disable data verification, 1b: Enable data verification) 

Rd  

[0] – Tx Busy. (0b: Idle, 1b: Tx module is busy) 

[1] – Data verification error (0b: Normal, 1b: Error) 

This bit is auto-cleared when user starts new operation or reset. 

[2] – Mapped to ConnOn signal of TOE10G-IP 

Wr/Rd (USER_CMD_INTREG) 

BA+0x1008 User reset Wr  

[0] – Reset signal. Set 1b to reset the logic. This bit is auto-cleared to 0b. 

[8] – Set 1b to clear TimerInt latched value 

Rd  

[8] – Latched value of TimerInt output from IP 

(0b: Normal, 1b: TimerInt=1b is detected) 

This flag can be cleared by system reset condition or setting 

USER_RST_INTREG[8]=1b. 

[16] – Ethernet linkup status from Ethernet MAC 

(0b: Not linkup, 1b: Linkup) 

Wr/Rd (USER_RST_INTREG) 

BA+0x100C FIFO status Rd [2:0]: Mapped to TCPRxFfLastRdCnt signal of TOE10G-IP 

[15:3]: Mapped to TCPRxFfRdCnt signal of TOE10G-IP 

[24]: Mapped to TCPTxFfFull signal of TOE10G-IP 

Rd (USER_FFSTS_INTREG) 

BA+0x1010 Total receive length Rd [31:0] – Current received size from TOE10G-IP in Qword unit (64-bit).  

The value is cleared to 0 when USER_CMD_INTREG is written by user. Rd (USER_RXLEN_INTREG) 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 12 

 
Address Register Name  Description  

Wr/Rd (Label in the “toe10gtest.c”) 

BA+0x1000 – BA+0x10FF: UserReg control/status 

BA+0x1020 Connection interrupt Wr[0] – Set 1b to clear the connection interrupt (USER_INT_INTREG[0]) 

Rd[0] – Interrupt from ConnOn edge detection 

(1b: Detect edge of ConnOn signal from TOE10G-IP, 

0b: ConnOn does not change the value) 

Note: ConnOn value can be read from USER_CMD_INTREG[2]. 

Wr/Rd (USER_INT_INTREG) 

BA+0x1080 EMAC IP version Rd[31:0] – Mapped to IPVersion output from DG 10GEMAC-IP when the 

system integrates DG 10GEMAC-IP.  Rd (EMAC_VER_INTREG) 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 13 

 
Pattern Generator 
 
The logic diagram and timing diagram of Pattern Generator (PattGen) are illustrated in 
Figure 2-9 and Figure 2-10, respectively 

 

 
Figure 2-9 PattGen block 

 

 
Figure 2-10 PattGen Timing diagram 

 
When USER_CMD_INTREG[0] is set to 0b, PattGen initiates the operation of generating 
test data by setting rTxTrnEn to 1b. While rTxTrnEn remains set to 1b, TCPTxFfWrEn is 
controlled by TCPTxFfFull. If TCPTxFfFull is 1b, TCPTxFfWrEn is de-asserted to 0b. The 
data counter, rTotalTxCnt, checks the total amount of data sent to TOE10G-IP. The lower 
bits of rTotalTxCnt generate 32-bit incremental data for the TOETxFfWrData signal. Once all 
data has been transferred, equal to rSetTxSize, rTxTrnEn is de-asserted to 0b. 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 14 

 
Pattern Verification 
 
The logic diagram and timing diagram of Pattern Verification (PattVer) are illustrated in 
Figure 2-11 and Figure 2-12, respectively. The verification feature is executed when the 
verification flag (rVerifyEn) is enabled. 

 

 
Figure 2-11 PattVer block 

 

 
Figure 2-12 PattVer Timing diagram 

 
When rVerifyEn is set to 1b, the verification logic is processed. It compares the received 
data (TCPRxFfRdData) with the expected data (wExpPatt). If comparison fails, rRdFail is 
asserted to 1b. The TCPRxFfRdEn signal is created by applying NOT logic to 
TCPRxFfRdEmpty. The data for comparison, TCPRxFfRdData, becomes valid in the next 
clock cycle. To count the total size of received data, rTotalRxCnt is enabled by rRxFfRdEn, 
which is delayed by one clock cycle from TCPRxFfRdEn. rTotalRxCnt are applied to 
generate wExpPatt for comparison with TCPRxFfRdData. Therefore, TCPRxFfRdData and 
wExpPatt are valid in the same clock cycle and can be compared using rRxFfRdEn signal. 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 15 

 

3 CPU Firmware on FPGA 
 
Upon FPGA boot-up, a welcome message is presented. The status of the Ethernet link 
(USER_RST_REG[16]) is continuously monitored until it is established. Following this, the user is 
prompts to select the initialization mode for TOE10G-IP, choosing between Client or Server mode. 

 
For initialization in Client mode, TOE10G-IP sends an ARP request packet to obtain the MAC 
address from the target device. In Server mode, TOE10G-IP awaits an ARP request packet to 
decode the MAC address and subsequently responds with an ARP reply packet to complete the 
initialization process. 

 
In scenarios involving two FPGA boards within the test environment, it is crucial that the 
initialization mode differs between the two TOE10G-IPs, with one functioning as a Client and the 
other as a Server. However, if the target device is a PC, rather than an FPGA with integrated 
TOE10G-IP, it is recommended to set the TOE10G-IP to Client mode.  

 
The CPU firmware on TOE10G-IP demo incorporates two default parameters for each 
initialization mode. Figure 3-1 provides an example of the initialization sequence following system 
boot-up. 
 

 
Figure 3-1 System initialization in Client mode by using default parameters 

 
The initialization sequence comprises four steps. 
1) Upon FPGA boot-up, the CPU polls the status of the Ethernet link (USER_RST_INTREG[16]). 

The CPU waits until the link is up, and then displays a welcome message to show IP 
information. 

2) The menu to select the initialization mode of TOE10G-IP is displayed, allowing the user to 
choose the Client or Server mode 

3) The CPU displays the default values of the network parameters. The details of how to change 
the parameter are provided in Reset parameters menu (refer to section 3.2). 

4) The CPU waits until the IP completes the initialization process by checking if busy status 
(TOE_CMD_INTREG[0]) is equal to 0b. After that, “IP initialization complete” is displayed with 
the main menu. There are five test operations in the main menu, and more details of each 
menu are described below. 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 16 

 
3.1 Display parameters 

This menu displays the current value of all TOE10G-IP parameters. The following steps are 
executed to display parameters. 
1) Read the initialization mode. 
2) Read all network parameters from each variable in the firmware following the initialization 

mode, i.e., Window update threshold, Reverse packet enable, source (FPGA) MAC 
address, source (FPGA) IP address, source (FPGA) port number, Target IP address, and 
Target port number.  
Note: The source parameters are the FPGA parameters set to TOE10G-IP, while the 
Target parameters are the parameters of a PC or another FPGA. 

3) Print out each variable. 
 
3.2 Reset IP 

This menu is used to change some TOE10G-IP parameters, such as IP address and source 
port number. After setting the updated values to TOE10G-IP registers, the CPU resets to 
re-initialize the IP using new parameters. Finally, the CPU waits until the initialization is 
completed, monitored by busy flag. The following steps are executed to reset the 
parameters. 
1) Display all parameters on the console, similar to section 3.1 (Display parameters). 
2) If the user uses the default value, skip to the next step. Otherwise, display the menu to set 

all parameters. 
i) Receive initialization mode from the user. If the initialization is changed, display the 

latest parameter set of new mode on the console. 
ii) Receive the remaining parameters from the user and validate each input separately. If 

an input is found to be invalid, that particular parameter will not be updated. 
3) Force reset to PattGen and PattVer logic by setting USER_RST_INTREG[0]=1b. 
4) Force reset to TOE10G-IP by setting TOE_RST_INTREG[0]=1b.  
5) Set all parameters to TOE10G-IP registers, such as TOE_SML_INTREG and 

TOE_DIP_INTREG. 
6) De-assert TOE10G-IP reset by setting TOE_RST_INTREG[0]=0b to initiate the 

initialization process of TOE10G-IP. 
7) Monitor the TOE10G-IP busy flag (TOE_CMD_INTREG[0]) until the initialization process 

is completed (busy flag is de-asserted to 0b). 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 17 

 
3.3 Send data test 

This test process consists of three user inputs to set total transmit length, packet size, and 
connection mode (active open for Client connection mode or passive open for Server 
connection mode). If any of the inputs are invalid, the operation is cancelled. During the test, 
32-bit incremental data is generated from the logic and sent to either PC or FPGA. The data 
is then verified by the test application on PC or by the verification module in FPGA. The 
operation is considered complete when all the data are transferred from FPGA to PC/FPGA. 
The sequence of the test is as follows. 
1) Receive transfer size, packet size, and connection mode from user and verify if all inputs 

are valid.  
2) Set UserReg registers, including transfer size (USER_TXLEN_INTREG), reset flag to 

clear initial value of the test pattern (USER_RST_INTREG[0]=1b), and command register 
to start data pattern generator (USER_CMD_INTREG=0). After that, test pattern 
generator in UserReg starts sending data to TOE10G-IP. 

3) Display recommended parameters of test application on PC by reading the current 
system parameters. 

4) Open connection following connection mode setting. 
a) For active open, CPU sets TOE_CMD_INTREG=2 (Open port). After that, it waits until 

the Connection interrupt status (USER_INT_INTREG[0]) is equal to 1b. If the busy flag 
of TOE10G-IP (TOE_CMD_INTREG[0]) is de-asserted to 0b but the interrupt is not 
asserted, the error message is displayed, and it returns to the main menu. 

b) For passive open, CPU waits until the connection is opened by another device (PC or 
FPGA). Connection interrupt status (USER_INT_INTREG[0]) is monitored until it is 
equal to 1b.  

5) Set the packet size to the TOE10G-IP register (TOE_PKL_INTREG) and calculate the 
total number of loops from the total transfer size. The maximum transfer size of each loop 
is 4 GB. The operation of each loop is as follows. 
i) Set the transfer size of this loop to TOE10G-IP register (TOE_TDL_INTREG). The 

transfer size is fixed to 4 GB except the last loop which is equal to the remaining size. 
ii) Set the send command to TOE10G-IP register (TOE_CMD_INTREG=0). 
iii) Wait until operation is completed by monitoring busy flag (TOE_CMD_INTREG[0]=0b). 

While monitoring the busy flag, the CPU reads the current amount of transmitted data 
from user logic (USER_TXLEN_INTREG) and displays the results on the console 
every second. 

6) Set the close connection command to the TOE10G-IP register (TOE_CMD_INTREG=3). 
Similar to active open, the operation is successful when Connection interrupt status 
(USER_INT_INTREG[0]) is asserted to 1b. Otherwise, the error message is displayed if 
TOE10G-IP busy flag (TOE_CMD_INTREG[0]) is de-asserted without the asserting of 
Connection interrupt status. 

7) Calculate performance and show test result on the console. 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 18 

 
3.4 Receive data test 

The user specifies the total amount of data to be received, the data verification mode 
(enabled or disabled), and the connection mode (active open for Client connection mode or 
passive open for Server connection mode). If any of the inputs are invalid, the operation is 
cancelled. During the test, 32-bit incremental data is generated to verify the received data 
from either PC or FPGA when data verification mode is enabled. The sequence of this test is 
as follows.  
1) Receive the total transfer size, data verification mode, and connection mode from the 

user input. Verify that all inputs are valid. 
2) Set the UserReg registers. 

i) Reset flag to clear the initial value of test pattern (USER_RST_INTREG[0]=1b) 
ii) Data verification mode (USER_CMD_INTREG[1]=0b to only read the received data or 

1b to read and verify the received data). 
3) Display the recommended parameter (similar to Step 3 of Send data test). 
4) Open the connection following the connection mode (similar to Step 4 of Send data test). 
5) Wait until the connection is closed by the other device (PC or FPGA). ConnOn status 

(USER_CMD_INTREG[2]) is monitored until it is equal to 0b. While monitoring Connon, 
the CPU reads the current amount of received data from the user logic 
(USER_RXLEN_INTREG) and displays the results on the console every second. 

6) Wait until all the data has been completely read by the user logic, as indicated by the 
FIFO status (USER_FFSTS_INTREG[15:3]=0). 
Note: USER_FFSTS_INTREG[15:3] is mapped from the TCPRxFfRdCnt signal of 
TOE10G-IP, which represents the number of data in the FIFO that can be read in 64-bit 
unit. Therefore, the amount of data that cannot yet be read from the FIFO, indicated by 
USER_FFSTS_INTREG[2:0] (or TCPRxFfLastRdCnt), should be neglected. 

7) Compare the received length of user logic (USER_RXLEN_INTREG) with the set value 
from the user. If all data is completely received, the CPU checks verification result by 
reading USER_CMD_INTREG[1] (0b: normal, 1b: error). If some errors are detected, the 
error message is displayed. 

8) Calculate performance and show the test result on the console. 
 
 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 19 

 
3.5 Full duplex test 

This menu enables full duplex testing by simultaneously transferring data between the 
FPGA and another device (PC/FPGA) in both directions using the same port number. The 
user provides four inputs: total data size for both transfer directions, packet size for FPGA 
sending logic, data verification mode for FPGA receiving logic, and connection mode (active 
open/close for client operation or passive open/close for server operation).  
 
When running the test with a PC, the transfer size set on the FPGA must match the size set 
on the test application (tcp_client_txrx_xg). The connection mode on the FPGA must be set 
to passive (server operation) when running with a PC. 
 
The test runs in a forever loop until the user cancels the operation by entering any keys on 
the FPGA console and then entering Ctrl+C on the PC console. The test sequence is as 
follows. 
1) Receive the total data size, packet size, data verification mode, and connection mode 

from the user and verify that all inputs are valid. 
2) Display the recommended parameters of the test application that runs on the PC from the 

current system parameters. 
3) Set UserReg registers, including the transfer size (USER_TXLEN_INTREG), reset flag to 

clear the initial value of the test pattern (USER_RST_INTREG[0]=1b), and command 
register to start the data pattern generator with data verification mode 
(USER_CMD_INTREG=1 or 3). 

4) Open the connection following the connection mode (similar to Step 4 of Send data test). 
5) Set the packet size to TOE10G-IP registers (TOE_PKL_INTREG=user input) and 

calculate total transfer size in each loop. The maximum size of each loop is 4 GB. The 
operation of each loop is as follows. 
i) Set the transfer size of this loop to TOE_TDL_INTREG. The transfer size is fixed to 

maximum size (4GB) which is also aligned to the packet size, except the last loop. The 
transfer size of the last loop is equal to the remaining size. 

ii) Set the send command to the TOE10G-IP register (TOE_CMD_INTREG=0). 
iii) Wait until the send command is completed by monitoring the busy flag 

(TOE_CMD_INTREG[0] =0b). While monitoring the busy flag, the CPU reads the 
current amount of transmitted data and received data from the user logic 
(USER_TXLEN_INTREG and USER_RXLEN_INTREG) and displays the results on 
the console every second. 

6) Close the connection following the connection mode value. 
a) For active close, the CPU waits until the total amount of received data is equal to the 

set value from the user. Then, set USER_CMD_INTREG=3 to close the connection. 
Next, the CPU waits until the Connection interrupt status (USER_INT_INTREG[0]]) is 
asserted to 1b. Otherwise, an error message is displayed if the TOE10G-IP busy flag 
(TOE_CMD_INTREG[0]) is de-asserted without the asserting of the Connection 
interrupt status. 

b) For passive close, the CPU waits until the connection is closed by the other device (PC 
or FPGA). The Connection interrupt status (USER_INT_INTREG[0]) is monitored until 
it is equal to 1b. 

7) Check the result and any error (similar to Step 6-7 of Receive data test). 
8) Calculate the performance and show the test result on the console. Go back to step 3 to 

repeat the test in a forever loop. 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 20 

 
3.6 Function list in User application 
 

This section describes the function list to run TOE10G-IP operation.  
 

int exec_port(unsigned int port_ctl, unsigned int mode_active) 
Parameters port_ctl: 1-Open port, 0-Close port 

mode_active: 1-Active open/close, 0-Passive open/close 

Return value 0: The open/close connection is successful 
-1: Fail to open/close the connection 

Description To initiate an active mode connection, set the TOE_CMD_INTREG 
register to either open or close the connection based on the port_ctl 
mode. Then, monitor the bit0 of USER_INT_INTREG register, which 
indicates the connection status interrupt, until it is asserted. Once the 
interrupt flag is set, it will be cleared. 

 

void init_param(void) 

Parameters None 

Return value None 
Description Reset parameter following the description in section 3.2. It calls 

‘show_param’ and ‘input_param’ functions to display parameters and get 
parameters from user. 

 

int input_param(void) 
Parameters None 

Return value 0: Valid input, -1: Invalid input 
Description Receive network parameters from user, i.e., the initialization mode, 

Reverse packet enable, Window threshold, FPGA MAC address, FPGA 
IP address, FPGA port number, Target IP address, and Target port 
number. Each input is validated separately. It will be updated when the 
input is valid. If it is invalid, that particular parameter will not be updated. 
After receiving all parameters, calling ‘show_param’ function to display 
parameters. 

 

Unsigned int read_conon(void) 

Parameters None 
Return value 0: Connection is OFF, 1: Connection is ON. 

Description Read the bit2 of USER_CMD_INTREG register to retrieve the 
connection status. 

 

void show_cursize(void) 
Parameters None 

Return value None 

Description To display the amount of data transmitted and received on the console, 
first read the USER_TXLEN_INTREG and USER_RXLEN_INTREG to 
obtain the current values. Then, convert the values to appropriate units, 
i.e., bytes, Kbytes, or Mbytes and display them on the console.  

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 21 

 

void show_param(void) 

Parameters None 

Return value None 
Description Display the parameters following the description in section 3.1. 

 

void show_result(void) 

Parameters None 
Return value None 

Description To display the total amount of data transmitted and received, first read 
USER_TXLEN_INTREG and USER_RXLEN_INTREG registers. Next, 
read the global parameters, timer_val and timer_upper_val, to calculate 
the total time usage in usec, msec, or sec units. Finally, calculate the 
transfer performance and display it in MB/s. 

 

int toe_recv_test(void) 

Parameters None 

Return value 0: The operation is successful 
-1: Receive invalid input or error is found 

Description Run Receive data test following description in section 3.4. It calls 
‘show_cursize’ and ‘show_result’ functions to update the progress and 
the results of the operation. 

 

int toe_send_test(void) 

Parameters None 
Return value 0: The operation is successful 

-1: Receive invalid input or error is found 

Description Run Send data test following description in section 3.3. It calls 
‘show_cursize’ and ‘show_result’ functions to update the progress and 
the results of the operation. 

 

int toe_txrx_test(void) 

Parameters None 
Return value 0: The operation is successful 

-1: Receive invalid input or error is found 
Description Run Full duplex test following description in section 3.5. It calls 

‘show_cursize’ and ‘show_result’ functions to update the progress and 
the results of the operation. 

 

void wait_ethlink(void) 
Parameters None 

Return value None 

Description Read USER_RST_INTREG[16] and wait until ethernet connection is 
established. 

 
 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 22 

 

4 Test Software on PC 
 
4.1 “tcpdatatest” for half duplex test 

 

 
Figure 4-1 “tcpdatatest” application usage 

 
The “tcpdatatest” application is executed to send or receive TCP data on a PC. It requires 
six mandatory parameters and one optional parameter. It is important to ensure that the 
parameter inputs match those set on the FPGA. The details of each parameter are as 
follows. 

 
Mandatory parameters 
1) Mode  : c – The PC runs in Client mode and the FPGA runs in Server mode  

  s – The PC runs in Server mode and the FPGA runs in Client mode  
2) Dir  : t – transmit mode (the PC sends data to the FPGA) 

  r – receive mode (the PC receives data from the FPGA) 
3) ServerIP : The IP address of the FPGA when the PC runs in Client mode  

  (Default is 192.168.7.42)  
4) ServerPort : The port number of the FPGA when the PC runs in Client mode  

  (Default is 60000) 
5) ByteLen : The total size of data to be transferred in bytes. This parameter is used  

  only in transmit mode only and is ignored in receive mode. In transmit 
  mode, the ByteLen value must match the total transfer size set in the  
  receive data test menu of the FPGA. In receive mode, the application  
  is closed when the connection is terminated. 

6) Pattern  : 0 – Generate dummy data in transmit mode and disable data verification 
  in receive mode.  
  1 – Generate incremental data in transmit mode and enable data        

      verification in receive mode. 
 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 23 

 
Optional parameter 
1) Window Scale : Indicate the size of the allocated buffer for the TCP socket on PC. 

It is also applied for TCP Window scaling feature. The valid range is 1-5. 
1 – Allocated buffer size of 64 Kbyte 
2 – Allocated buffer size of 128 Kbyte 
3 – Allocated buffer size of 256 Kbyte 
4 – Allocated buffer size of 512 Kbyte 
5 – Allocated buffer size of 1 Mbyte 

Note: The Window Scale parameter is an optional setting. If the user does not provide this 
parameter, it is automatically set to 1. The default TOE10G-IP does not have Window Scale 
features enabled. If you require the use of this feature, please contact our sales team for 
assistance. 
 
The sequence of the test application when running in transmit mode and receive mode are 
described as follows. 
 
Transmit data mode 
1) Obtain and verify the user’s input parameters, excluding the optional one. 
2) Create a socket, set the socket options, and specify the socket memory size. 
3) Establish a new connection using the server IP address and server port number. 
4) Allocate 2 MB memory for the send buffer.  
5) Generate the incremental test pattern to the send buffer if the dummy pattern is not 

selected.  
6) Send the data out and read the total amount of sent data through the socket function. 
7) Calculate the remaining transfer size. 
8) Print the total transfer size every second.  
9) Repeat step 5) – 8) until the remaining transfer size is 0. 
10) Calculate the total performance and print the result on the console. 
11) Close the socket and free the memory. 

 
Receive data mode 
1) Follow the step 1) – 3) of the Transmit data mode. 
2) Allocate 2 MB memory for the receive buffer.  
3) Wait for the data to be stored in the receive buffer and read it, and increase the total 

amount of received data.  
4) Verify the received data by the incremental pattern if the data verification is enabled. 

Otherwise, skip this step. Print an error message if the data is incorrect.  
5) Print the total amount of received data every second.  
6) Repeat steps 3) – 5) until the connection is closed by the other device. 
7) Calculate the total performance and print the result on the console. 
8) Close the socket and free the memory. 

 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 24 

 
4.2 “tcp_client_txrx_xg” for full duplex test 

 

 
Figure 4-2 “tcp_client_txrx_xg” application usage 

 
The “tcp_client_txrx_xg” application enables PC to send and receive TCP data through 
Ethernet using the same port number simultaneously. It runs only in Client mode and 
requires server parameters (network parameters of TOE10G-IP) to be input by the user. The 
application uses five parameters, described as follows. 
 
Mandatory parameters 
1) ServerIP : The IP address of the FPGA 
2) ServerPort : The port number of FPGA 
3) ByteLen : The total transfer size in byte units, which is the total amount of  

  transmitted data and received data. This value must be equal to the  
  transfer size set on the FPGA for running full-duplex test. 

4) Pattern  : 0 – Generate dummy data for the sending function and disable data 
  verification for the receiving function. This mode is used to check the  
  best performance of full-duplex transfer. 
  1 – Generate incremental data for the sending function and enable data  
  verification for the receiving function. 
 

Optional parameter 
1) Window Scale : Indicate the size of the allocated buffer for the TCP socket on PC. 

It is also applied for TCP Window scaling feature. The valid range is 1-5. 
1 – Allocated buffer size of 64 Kbyte 
2 – Allocated buffer size of 128 Kbyte 
3 – Allocated buffer size of 256 Kbyte 
4 – Allocated buffer size of 512 Kbyte 
5 – Allocated buffer size of 1 Mbyte 

Note: The Window Scale parameter is an optional setting. If the user does not provide this 
parameter, it is automatically set to 1. The default TOE10G-IP does not have Window Scale 
features enabled. If you require the use of this feature, please contact our sales team for 
assistance. 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 25 

 
The sequence of the test application is as follows. 
1) Obtain and verify the user’s input parameters, excluding the optional one. 
2) Allocate 2 MB memory for the send and receive buffers, separately. 
3) Create the socket, set socket options, and set the socket memory size. 
4) Create a new connection using the server IP address and server port number. 
5) If the test pattern is enabled, generate the incremental test pattern in the send buffer; 

otherwise, skip this step for dummy data. 
6) If the send function is not ready for operating, skip this step; otherwise, continue the 

following steps.  
i) If the test pattern is enabled, generate the incremental test pattern in the send buffer; 

otherwise, skip this step for dummy data. 
ii) Send the data out and read the amount of sent data through socket function. 
iii) Calculate the remaining send size. 

7) If the receive function is not ready for operating, skip this step; otherwise, continue the 
following steps. 
i) Read the data from the receive buffer and increase the total amount of received data. 
ii) If the test pattern is enabled, verify the received data using the incremental pattern, 

and print an error message if verification fails; otherwise, skip this step.  
8) Print the total amount of transmitted data and received data every second. 
9) Repeat steps 5) – 8) until the total amount of transmitted and received data equals 

ByteLen, set by the user. 
10) Calculate the performance and print the result on the console.  
11) Close the socket. 
12) Sleep for 1 second to wait until the hardware to complete the current test loop. 
13) Start a new test by repeating steps 3) – 12) in forever loop. However, if the data 

verification fails, stop the application. 



dg_toe10gip_cpu_refdesign_intel.doc  

10-Oct-23 Page 26 

 

5 Revision History  
 

Revision Date Description 

1.8 10-Oct-23 Update options of ‘tcpdatatest’ application and use 
‘tcp_client_txrx_xg’ application for full-duplex test. 

1.7 27-Dec-22 Add USER_INT_INTREG to register map and update firmware 
to use connection interrupt 

1.6 8-Apr-22 Update reverse packet feature 

1.5 23-Sep-21 Add EMAC_VER_INTREG 
1.4 19-June-20 Update register name in the firmware 

1.3  15-Aug-19 Add SFPConfig module and support DG 10G EMAC IP 

1.2 31-May-19 Add Ethernet linkup status to USER_RST_INTREG[16] 
1.1 6-Feb-19 Use tcp_client_txrx_40G software 

1.0 15-Mar-18 Initial version release 
 


