
dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 1

TOE10G-IP reference design by Intel PAC A10GX
Rev1.0 3-Apr-19

1 Intel PAC Overview

Figure 1-1 Intel PAC with Intel Arria10GX FPGA

As described in UG-20166 (Intel Acceleration Quick Start Guide for Intel PAC with A10 GX), the
Intel PAC (Intel Programmable Acceleration Card) provides the acceleration platform to free the
Intel Xeon processor by offloading computationally intensive tasks. So, Xeon processor is free for
running other critical processing tasks. Intel PAC connects to the Intel Xeon processor through the
PCIe interface on the motherboard.

UG-20166 could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.htm
l

Figure 1-2 Intel PAC installation on Motherboard

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 2

Intel PAC is a collection of software, firmware, and tools that allows both software and RTL
developers to take advantage of the power of Intel FPGAs. The overview of Intel PAC platform
hardware and software is shown in Figure 1-3.

Figure 1-3 Intel PAC hardware and software overview

The hardware on Intel PAC platform has two parts, i.e. static region which is called FIM (FPGA
Interface Manager) and partial reconfiguration region which is called AFU (Accelerator Functional
Unit).

FIM owns all hard IPs on FPGA such as PLLs, PCIe IP core, DDR memory interfaces, high speed
serial interface, and partial reconfiguration (PR) engine to load AFUs. After power up, FPGA
configures the FIM only. Next, the software programs AFU images. AFU is FPGA logic designed
by user to be CPU offload engine or hardware accelerator. User can design multiple AFUs to
swap in and out of PR region. AFU could be designed by RTL or Open CL.

OPAE (Open Programmable Acceleration Engine) software running on the Intel Xeon processor
handles all the details of the reconfiguration process. Otherwise, the OPAE provides libraries,
drivers, and sample programs useful for AFU development.

Typically, when user implements some offload engines, it needs to design the logic on AFU and
develop the software running on Xeon processor. Address mapping for control register is also
implemented in AFU. The details of the interface between Xeon processor and FIM are shown in
Figure 1-4.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 3

Figure 1-4 FPGA Interface Manager

The FIM consists of FIU (FPGA Interface Unit), EMIF, and HSSI. The AFU communicates with
Intel Xeon processor by using CCI-P (Core Cache Interface) standard interface. CCI-P is the host
interface which defines the CCI-P protocol and signaling interface and can be implemented on
platform interfaces like PCIe.

In this reference design, there is no main memory write or read request from AFU. So, Tx.c0 and
Tx.c1 for request main memory are not used. CCI-P is applied to generate MMIO read request
and MMIO write requests for accessing the AFU register from the CPU. MMIO Write and Read
request are received over Rx.c0 channel. The response to return data uses Tx.C2 channel for
MMIO read request. CCI-P drives data of MMIO write request over Rx.c0 channel. More details of
CCI-P could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.htm
l

https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 4

Figure 1-5 High Speed Serial Interface

As described in UG-20188, the Intel PAC with Arria 10 GX features a QSFP+ network port that
can be configured for either 4x10GBASE-SR or 40GBASE-SR4 operation. In this reference
design, HSSI is configured as 4x10GBASE-SR PCS/PMA to transfer 10G Ethernet packet with
external network device such as PC as shown in Figure 1-5.

Though four channels are available in HSSI, only channel#0 is connected to AFU for transferring
10 Gb Ethernet data. QSFP+ to 4 SFP+ cable is applied to connect between Intel PAC and
external network device to use only channel#0. To connect with 10GBASE-SR PCS/PMA module,
two IPs are applied in AFU, i.e. 10G EMAC IP and Reset controller IP.

More details of HSSI could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.htm
l

https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 5

Figure 1-6 TOE10G-IP integrated on the Intel PAC platform

To build 10G Ethernet demo by using TOE10G-IP integrated on Intel PAC, the hardware of AFU
and the software application on Intel Xeon must be designed as shown in Figure 1-6.
TOE10AFUTest is the AFU logic which includes CCI-P interface for register access by CPU and
HSSI interface for 10G Ethernet I/O. The software application to set control register and
parameter running on Intel Xeon is toe10gtest.

The destination network device to transfer 10 Gb Ethernet packet by using TCP/IP protocol may
be the host PC or the FPGA board including 10 Gb Ethernet connection. For the host PC, TCP/IP
test application must be run to send and receive TCP/IP packet with Intel PAC. There are two
TCP/IP test applications provided by Design Gateway, i.e. tcpdatatest (half-duplex test) and
tcp_client_txrx_40G (full duplex test). For the FPGA board, user can use another Intel PAC
installed on Xeon Processor Motherboard or the other FPGA boards configured by TOE10G-IP
with CPU reference design. When running with FPGA, the best performance for transferring
TCP/IP data could be achieved because the latency is lower. The details to run TOE10G-IP with
CPU reference design on the other FPGA boards could be downloaded from following link.
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_cpu_refdesign_intel.pdf
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_cpu_instruction_intel.pdf

https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_cpu_refdesign_intel.pdf
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_cpu_instruction_intel.pdf

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 6

2 AFU Hardware overview

Figure 2-1 AFU block diagram

Figure 2-1 shows the logic details inside TOE10AFUTest module. AFU includes TOE10G-IP for
transferring TCP/IP packet. The lower layer (link layer) is implemented by Ethernet MAC IP from
Intel FPGA (TenGMACHSSI). User interface of TOE10G-IP connects to CCIUsrReg module for
both data interface and register interface. Register files of CCIUsrReg are split into three regions,
i.e. AFU CSR region, TOE10G-IP region, and internal test logic region (PattGen and PattVer).
Register files of CCIUsrReg are controlled by the software running on Xeon processor (through
64-bit MMIO interface). User can control the operation of TOE10G-IP, PattGen, and PattVer by
modifying the software on Xeon processor.

Otherwise, TOE10AFUTest module consists of two small modules, i.e. MacRx2TxClk and
MacRegCtrl. MacRegCtrl is designed to setup Ethernet MAC register such as disable and enable
flag to send and receive data. This module is run on csr_clk clock domain to synchronous to CSR
interface of Ethernet MAC. Tx data stream and Rx data stream of Ethernet MAC run in different
clock domain, so MacRx2TxClk is designed to convert Rx data stream of Ethernet MAC clock
domain to run on tx_clk_156 instead of rx_clk_156. To convert clock domain, asynchronous buffer
and asynchronous register must be designed in MacRx2TxClk. More details of each module
inside the AFU are described as follows.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 7

2.1 TenGMacHSSI

Figure 2-2 TenGMacHSSI

TenGMacHSSI consists of two submodules, i.e. Reset controller and 10G Ethernet MAC.
Both modules are IP core provided by IP catalog of QuartusII. There are three clock domains
running inside TenGMacHSSI.

The first clock is CSR clock which is received from HSSI interface. CSR clock is stable clock
to use in the logic for initialization process while the other clocks may not be stable. The
blocks running CSR clock are Reset controller and MacRegCtrl. Reset controller controls
reset and monitors power up sequence of HSSI interface.

The second clock is TxClk which is clock output from HSSI to synchronous to XGMII Tx
interface. This clock is main clock domain for AFU logic including TOE10G-IP. Clock domain
of CCI-P interface is also fed by TxClk.

The last clock is RxClk, output from HSSI to synchronous to XGMII Rx interface. This clock is
fed to Rx data path of 10G Ethernet MAC and MacRx2TxClk module.

More details of Low latency 10G Ethernet MAC are described in following link.
https://www.intel.com/content/www/us/en/programmable/documentation/bhc139512783003
2.html

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1395127830032.html
https://www.intel.com/content/www/us/en/programmable/documentation/bhc1395127830032.html

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 8

2.2 MACRegCtrl

This module is designed to configure parameter of 10G Ethernet MAC and monitors the
status through Avalon-MM bus. The logic is simply designed by using state machine and runs
only one time after system power up to initialize Ethernet MAC.

Figure 2-3 MACRegCtrl block diagram

The initialization sequence running on MACRegCtrl is as follows.
1) Disable transmit and receive path of EMAC
2) Wait until transmit and receive path are idle
3) Set receive module to remove CRC and padding
4) Disable pause frame transmission
5) Enable transmit and receive path of EMAC

2.3 TOE10G-IP

TOE10G-IP implements TCP/IP stack and offload engine. User interface consists of control
signals and data signals. Control and status signals are accessed through register interface.
Data signals are accessed through FIFO interface. More details are described in datasheet.
https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_altera_en.pdf

https://dgway.com/products/IP/TOE10G-IP/dg_toe10gip_data_sheet_altera_en.pdf

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 9

2.4 MacRx2TxClk

Figure 2-4 MacRx2TxClk module

MacRx2TxClk is designed to convert clock domain of data stream received from 10G EMAC
which is synchronous to MacRxClk (rx_clk_156) to MacTxClk (tx_clk_156). Asynchronous
FIFO (MacFIFO) must be included to be data buffer. MacFIFO is implemented by using
BlockMemory and the size is 512 x 66-bit. FIFO type is show-ahead style (read data is
returned at the same clock as read enable=’1’). 66 bit data is applied to store 64 bit data, EOP
flag, and Error flag. MacRx2TxClk is designed based on following assumption.
(1) Data stream of one packet (received from 10G EMAC) must be valid continuously during

transferring the packet.
(2) ToeMacRxReady must be asserted to ‘1’ during transferring one packet from MacFIFO.

ToeMacRxReady could be deasserted to ‘0’ to pause data transmission after finishing the
packet (ToeMacRxEOP=’1’).

(3) Clock frequency of MacTxClk and MacRxClk must not be different more than 0.1%. If
clock frequency is too much different, Mac FIFO will be overflow or underflow during
transferring packet from 10G EMAC to TOE10G-IP.

The logic inside MacRx2TxClk is split into two groups, i.e. the logic for transferring data from
10G EMAC to MAC FIFO which is run on MacRxClk (the right side of Figure 2-4) and the logic
for transferring data from MAC FIFO to TOE10G-IP which is run on MacTxClk (the left side of
Figure 2-4). More details of the logic in each group are described as follow.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 10

Figure 2-5 Timing diagram to write Mac FIFO

Rx state machine decides to accept or reject the received packet from 10G EMAC. The new
packet is accepted when start of frame is found (PhyMacRxSOP=’1’ and PhyMacRxValid=’1’)
with FIFO not full status (MacFfWrCnt[8:5] is less than 15). After new packet acception, state
machine changes to stTrans in the next clock. The packet is stored to Mac FIFO by asserting
rMacFfWrEn=’1’ with the valid value of rMacFfWrData. rMacFfWrData is designed by adding
one D-FF to PhyMacRxData. During running in stTrans, MacFfWrCnt is not monitored.
rMacFfWrEn is always asserted to ‘1’ and rMacFfWrData is bypassed from PhyMacRxData.

When end of packet is detected (PhyMacRxEOP=’1’ and PhyMacRxValid=’1’), Rx state
machine changes to stIdle. The last data, EOP flag, and error flag are stored to Mac FIFO as
the last data. After that, rMacFfWrEn is deasserted to ‘0’ to complete packet transferring.

If the new packet is received with FIFO full status, Rx state machine will reject the packet by
changing to stFlush instead of stTrans. In stFlush, the packet is received but rMacFfWrEn is
not asserted to ‘1’. So, Mac FIFO is not written. After end of frame is found, state machine
returns to stIdle for waiting the new packet.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 11

Figure 2-6 Timing diagram to read Mac FIFO

Tx state machine starts to read new data from Mac FIFO when new packet is found with ready
status of TOE10G-IP. The new packet is detected by monitoring MacFfRdCnt[8:2] to confirm
that at least 4 data are ready in Mac FIFO. 4 data is data buffering to transfer packet to
TOE10G-IP continuously when MacTxClk frequency is little more than MacRxClk frequency.
Also, the smallest packet size is more than 32 bytes (4 data). If ToeMacRxReady is not
asserted to ‘1’, new packet will not be fed from Mac FIFO.

Mac FIFO is show-ahead type, so read data (MacFfRdData) is valid at the same clock as read
enable asserted to ‘1’ (MacFfRdEn). MacFfRdEn is applied to be data output valid for
TOE10G-IP (ToeMacRxValid). Also, MacFfRdData is applied to be data output for
TOE10G-IP (ToeMacRxData).

In stTrans, MacFfRdEn is always asserted to ‘1’ to transfer packet from Mac FIFO to
TOE10G-IP continuousl until end of packet. When end of frame flag is detected
(MacFfRdData[64]=’1’), Tx state machine changes to stIdle. After t hat, ToeMacRxReady
output from TOE10G-IP is always de-asserted to ‘0’ for two clock cycles to pause data
transmission. During pausing transmission, MacFfRdEn is also de-asserted to ‘0’ to wait
TOE10G-IP ready.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 12

2.5 CCI2Reg

Figure 2-7 CCIUserReg block diagram

The logic inside CCIUsrReg could be split into three parts, i.e. Register, Pattern generator
(PattGen), and Pattern verification (PattVer). Register block converts MMIO which is 64-bit
interface to be 32-bit interface for internal usage and TOE10G-IP register interface. Pattern
generator block is designed to send 64-bit test data to TOE10G-IP following FIFO interface
standard. Pattern verification block is designed to read and verify 64-bit data from TOE10G-IP
following FIFO interface standard. More details of each block are described as follows.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 13

2.5.1 Register

As shown in Figure 2-7, register map of CCI-P interface is split into three areas, i.e.
mandatory AFU CSR (0x0000-0x00FF), TOE10G-IP (0x0100-0x01FF), and internal signals
(0x1000-0x10FF).

Address signal of CCI-P for MMIO access is based on 32-bit register. But data bus size of
MMIO for write and read register is 64-bit register. The address passing from MMIO to
TOE10G-IP, PattGen, and PattVer is designed to align 64-bit unit. Since data bus size of
TOE10G-IP registers and internal registers for controlling PattGen and PattVer is 32-bit, only
lower 32 bits of MMIO write data is applied. The upper 32 bits of MMIO write data is ignored.

AFU CSR is mandatory register which must be implemented in AFU. It is register set for read
only. Constant value and AFU ID are returned to MMIO as 64-bit unit, as shown in Figure 2-8.
The software uses the AFU_ID to ensure that the correct AFU is matched.

Figure 2-8 Mandatory AFU CSRs (captured from MNL-1092 CCIP Reference manual)

Similar to write access, the read data returned from TOE10G-IP registers and internal
registers of PattGen and PattVer is 32-bit unit. So, only lower 32 bits of read data is assigned
when MMIO accesses TOE10G-IP area and internal register area.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 14

Signal lists of CCI-P interface for MMIO access are shown in Table 2-1 and timing diagram of
CCI-P interface for MMIO access is shown in Figure 2-9.

Table 2-1 CCI-P for MMIO access mapping to CCIUsrReg
CCIUserReg signal name Direction CCI-P interface signal name

RegAddress[15:0] Input t_if_ccip_Rx.c0.hdr.address[15:0]

RegWrData[31:0] Input t_if_ccip_Rx.c0.data[31:0]

RegWrEn Input t_if_ccip_Rx.c0.mmioWrValid

RegRdReq Input t_if_ccip_Rx.c0.mmioRdValid

RegRdValid output t_if_ccip_Tx.c2.mmioRdValid

RegRdData[63:0] output t_if_ccip_Tx.c2.data[63:0]

Figure 2-9 CCI-P interface for MMIO access timing diagram

To write register, timing diagram of MMIO access is same as RAM interface. RegAddr and
RegWrData must be valid when RegWrEn is asserted to ‘1’. The upper bit of RegAddr is
decoded by Address decoder to assert write enable for TOE10G-IP or internal signals of
CCIUsrReg. The lower 32-bit data is forwarded to 32-bit write data for TOE10G-IP and
internal signals.

To read register, CCI-P interface asserts RegRdReq=’1’ with the valid value on RegAddr. The
upper bit of RegAddr is decoded to select read data source which could be fed from AFU CSR,
TOE10G-IP, or internal signals. Since there are many registers which are mapped to read
access, two pipeline registers are designed in read data path. So, RegRdValid is created by
adding two Flip-Flops to RegRdReq. The details of logic design in Register block is shown in
Figure 2-10.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 15

Figure 2-10 Register block

Data bus size of CCI-P is 64 bit, but the address is based on 32 bit. The address and data
interface of TOE10G-IP is based on 32 bit. For simple logic design to convert CCI-P register
signals to be TOE10G-IP register signals, CCI-P register address map for TOE10G-IP area is
aligned to 64 bit or 8 byte. TCPRegAddr[3:0] is fed by UserRegAddr[4:1]. TCPRegWrEn is
asserted to ‘1’ when UserRegWrEn=’1’ and upper bit of UserRegAddr is equal to TOE10G-IP
area.

Similar to TOE10G-IP, internal signals for PattGen and PattVer are based on 64 bit address.
PattGen parameters, programmed by the software, are rSetTxSize (total transfer size) and
rTxTrnEn (enable signal to start PattGen). For PattVer, the software sets rVerifyEn flag to
enable or disable the data comparator inside PattVer.

PattGen and PattVer status signals such as rTotalTxCnt (current Tx data size), rTotalRxCnt
(current Rx data size), and rFail (verification failed flag) are fed to multiplexer to return read
value to CCI-P. Read data bus from TOE10G-IP, PattGen, and PattVer is 32 bit while AFU
CSR data bus is 64 bit.

Table 2-2 shows CCIUsrReg register map on CCI-P interface by using MMIO access.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 16

Table 2-2 CCIUsrReg register map on MMIO access
Byte Address Register Name Description

Wr/Rd (Label in the “toe10gtest.c”)

BA+0x0000 – BA+0x00FF: Mandatory AFU CSRs Register Area (Refer to MNL-1092 for more details)

0x0000 DEV_FEATURE_HDR [63:0] Feature Header CSR

0x0008 AFU_ID_L [63:0] Lower 64 bits of the AFU_ID GUID

0x0010 AFU_ID_H [63:0] Upper 64 bits of the AFU_ID GUID

0x0018 DFH_RSVD0 [63:0] Reserved

0x0020 DFH_RSVD1 [63:0] Reserved

BA+0x0100 – BA+0x01FF: TOE10G-IP Register Area

More details of each register are described in Table2 of TOE10G-IP datasheet.

0x0100 TOE10_RST_REG [31:0] Mapped to RST register within TOE10G-IP

0x0108 TOE10_CMD_REG [31:0] Mapped to CMD register within TOE10G-IP

0x0110 TOE10_SML_REG [31:0] Mapped to SML register within TOE10G-IP

0x0118 TOE10_SMH_REG [31:0] Mapped to SMH register within TOE10G-IP

0x0120 TOE10_DIP_REG [31:0] Mapped to DIP register within TOE10G-IP

0x0128 TOE10_SIP_REG [31:0] Mapped to SIP register within TOE10G-IP

0x0130 TOE10_DPN_REG [31:0] Mapped to DPN register within TOE10G-IP

0x0138 TOE10_SPN_REG [31:0] Mapped to SPN register within TOE10G-IP

0x0140 TOE10_TDL_REG [31:0] Mapped to TDL register within TOE10G-IP

0x0148 TOE10_TMO_REG [31:0] Mapped to TMO register within TOE10G-IP

0x0150 TOE10_PKL_REG [31:0] Mapped to PKL register within TOE10G-IP

0x0158 TOE10_PSH_REG [31:0] Mapped to PSH register within TOE10G-IP

0x0160 TOE10_WIN_REG [31:0] Mapped to WIN register within TOE10G-IP

0x0168 TOE10_ETL_REG [31:0] Mapped to ETL register within TOE10G-IP

0x0170 TOE10_SRV_REG [31:0] Mapped to SRV register within TOE10G-IP

0x0178 TOE10_VER_REG [31:0] Mapped to VER register within TOE10G-IP

BA+0x1000 – BA+0x10FF: Internal signals of PattGen and PattVer

0x1000 Total transmit length Wr [31:0] – Set total size of PattGen in Qword unit (64-bit). Valid from

1-0xFFFFFFFF.

Rd [31:0] – Completed size of PattGen in Qword unit (64-bit). The value is

cleared to 0 when USER_CMD_REG is written by user.

Wr/Rd (USER_TXLEN_REG)

0x1008 User Command Wr

[0] – Start PattGen. Set ‘1’ to start PattGen operation.

This bit is auto-cleared to ‘0’ after end of total transfer.

[1] – Enable data verification

(‘0’: Enable data verification, ‘1’: Disable data verification)

Rd

[0] –Busy flag of PattGen. (‘0’: Idle, ‘1’: PattGen is busy)

[1] – Data verification error (‘0’: Normal, ‘1’: Error)

This bit is auto-cleared when user starts new operation or reset.

[2] – Mapped to ConnOn signal of TOE10G-IP

Wr/Rd (USER_CMD_REG)

0x1010 User Reset Wr

[0] – Reset signal. Set ‘1’ to reset the logic. This bit is auto-cleared to ‘0’.

[8] – Set ‘1’ to clear TimerInt latch value

Rd

[8] – Latch value of TimerInt output from IP (‘0’: Normal, ‘1’: TimerInt=’1’ is

detected). This flag can be cleared by system reset condition or setting

USER_RST_REG[8]=’1’.

[16] – 10G EMAC Linkup (‘0’: Link is down, ‘1’: Link is up)

Wr/Rd (USER_RST_REG)

0x1018 FIFO status Rd [2:0]: Mapped to TCPRxFfLastRdCnt[2:0] signal of TOE10G-IP

[15:3]: Mapped to TCPRxFfRdCnt[12:0] signal of TOE10G-IP

[24]: Mapped to TCPTxFfFull signal of TOE10G-IP

Rd (USER_FFSTS_REG)

0x1020 Total Receive length Rd [31:0] – Completed size of PattVer in Qword unit (64-bit). The value is

cleared to 0 when USER_CMD_REG is written by user. Rd (TRN_RXLEN_REG)

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 17

2.5.2 Pattern Generator

Figure 2-11 PattGen block

Figure 2-12 PattGen Timing diagram

PattGen is designed to generate test data to TOE10G-IP. rTxTrnEn is asserted to ‘1’ when
USER_CMD_REG[0] is set to ‘1’. When rTxTrnEn is ‘1’, TCPTxFfWrEn is controlled by
TCPTxFfFull. TCPTxFfWrEn is de-asserted to ‘0’ when TCPTxFfFull is ‘1’. rTotalTxCnt is data
counter to check total data sending to TOE10G-IP. rTotalTxCnt is also used to generate 32-bit
increment data to TCPTxFfWrData signal. rTxTrnEn is de-asserted to ‘0’ when finishing to
transfer total data (total data is set by rSetTxSize).

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 18

2.5.3 Pattern Verification

Figure 2-13 PattVer block

Figure 2-14 PattVer Timing diagram

PattVer is designed to read test data from TOE10G-IP with or without data verification,
depending on rVerifyEn flag. When rVerifyEn is set to ‘1’, data comparison is enabled to
compare read data (TCPRxFfRdData) to the expected pattern (wExpPatt). If data verification
is failed, rFail will be asserted to ‘1’. TCPRxFfRdEn is designed by using NOT logic of
TCPRxFfRdEmpty. TCPRxFfRdData is valid for data comparison in the next clock. rFfRdEn
which is one clock latency of TCPRxFfRdEn is applied to be counter enable of rTotalRxCnt to
count total transfer size. rTotalRxCnt is used to generate wExpPatt.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 19

3 User Application (Intel PAC)

3.1 Overview

After finishing AFU hardware design, configuration is built by OPAE SDK as shown in
following diagram.

Figure 3-1 OPAE SDK Design Flow for AFU development (captured from UG-20169)

The output file after finishing hardware implementation is gbs file (green bit stream) which is
bit stream for running partial configuration by the OPAE software platform. More details of
developing AFUs with the OPAE SDK are described in UG-20169.
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.
html

https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 20

On software platform, the OPAE C library (libopae-c) is provided as a lightweight user-space
library. The OPAE C library builds on the driver stack and provides access to the FPGA
resources as a set of features for software programs running on the host. These features
include the logic preconfigured on the FPGA and functions to reconfigure the FPGA. More
details of OPAE are described in following link.
https://opae.github.io/1.3.0/index.html

Figure 3-2 Software on Intel PAC PC

The basic application flow is shown in the right side of Figure 3-2. Before starting AFU, AFU
initialization is run by calling following function.
1) Call fpgaEnumerate function to search AFU.
2) Call fpgaOpen function to acquire ownership of an AFU. A token is returned from

fpgaEnumerate in the previous step.
3) Call fpgaMapMMIO to map the register file of AFU into the process’s virtual memory

space.

After that, start signal is sent to AFU for starting acceleration function. The 1st step of
TOE10G-IP AFU is monitoring Ethernet linkup status. More details of TOE10G-IP software
are described in the next topic.

https://opae.github.io/1.3.0/index.html

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 21

3.2 TOE10G-IP software

The software sequence of TOE10G-IP running on Intel PAC is same as TOE10G-IP reference
design on the other FPGA boards. The different point is the function to display message and
receive parameter from user. After finishing MMIO mapping, 10G Ethernet link up status
(USER_RST_REG[16]) is polling. The processor waits until link up is found. Next, welcome
message is displayed and user selects operation mode of TOE10G-IP to be client or server
mode.

To initialize as client mode, TOE10G-IP sends ARP request to get the MAC address from the
destination device. For server mode, TOE10G-IP waits ARP request to decode MAC address
and returns ARP reply to complete initialization process.

If test environment is setup by using two FPGA boards, the operation mode of TOE10G-IP
must be different (one is client and another is server). To run with Test PC, it is recommended
to set Intel PAC as client mode. When Test PC receives ARP request, Test PC always returns
ARP reply. It is not simple to force PC sending ARP request to Intel PAC.

The software has two default parameters for each operation mode. Figure 3-3 shows the
example of the initialization sequence after system boot-up.

Figure 3-3 Example of initialization sequence in client mode on Linux terminal

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 22

There are four steps to complete initialization sequence as follows.

1) The software receives the operation mode from user and displays default parameters of
selected mode on the Linux terminal.

2) User inputs ‘x’ to complete initialization sequence by using default parameters or inputs
other keys to change some parameters. To change some parameters, please follow the
step of Reset IP menu which is described in topic 3.2.2.

3) The Intel PAC host waits until TOE10G-IP finishing initialization sequence (monitoring
TOE10_CMD_REG[0]=‘0’).

4) Main menu is displayed. There are five test operations for user selection. More details of
each menu are described as follows.

3.2.1 Show parameters

This menu is used to show current parameters of TOE10G-IP such as operation mode,
source MAC address, destination IP address, source IP address, destination port, and source
port. The sequence to display the parameters is as follows.
1) Read network parameter from each variable in the software.
2) Print out each variable.

3.2.2 Reset IP

This menu is used to change TOE10G-IP parameters such as IP address and source port
number. After setting updated parameter to TOE10G-IP register, the Intel PAC host resets the
IP to re-initialize by using new parameters. Finally, the Intel PAC host monitors busy flag to
wait until the initialization is completed. The sequence to reset IP is as follows.
1) Display current parameter value to the Linux terminal.
2) Receive new input parameters from user and check input value whether valid or not. If the

input is invalid, the old value will be used instead.
3) Force reset to IP by setting TOE10_RST_REG[0]=’1’.
4) Set all parameters to TOE10G-IP register such as TOE10_SML_REG, TOE10_DIP_REG.
5) De-assert IP reset by setting TOE10_RESET_REG[0]=’0’.
6) Clear PattGen and PattVer logic by sending reset to user logic (USER_RST_REG[0]=’1’).
7) Monitor IP busy flag (TOE10_CMD_REG[0]) until initialization sequence is completed

(busy flag is de-asserted to ‘0’).

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 23

3.2.3 Send data test

Three user inputs are required to set total transmit length, packet size, and connection mode
(active open for client operation or passive open for server operation). The operation will be
cancelled if the input is invalid. During the test, 32-bit increment data is generated from the
logic and sent to Test PC or FPGA. Data is verified by Test application on Test PC or
verification module on FPGA. The operation is finished when total data are transferred from
Intel PAC to Test PC or FPGA. The sequence of this test is as follows.

1) Receive transfer size, packet size, and connection mode from user and verify that the
value is valid.

2) Set CCIUsrReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial
value of test pattern (USER_RST_REG[0]=’1’), and command register to start PattGen
(USER_CMD_REG=0). After that, PattGen in CCIUsrReg transmits data to TOE10G-IP.

3) Display recommended parameter of test application running on Test PC by reading current
parameters in the system.

4) Open connection following connection mode.
a. For active open, the Intel PAC host sets TOE10_CMD_REG=2 and monitors ConnOn

status (USER_CMD_REG[2]) until it is equal to ‘1’.
b. For passive open, the Intel PAC host waits until connection is opened by Test PC or

FPGA. ConnOn status (USER_CMD_REG[2]) is monitored until it is equal to ‘1’.
5) Set packet size to TOE10_PKL_REG and calculate total loops from total transfer size.

Maximum transfer size of each loop is 4 GB. The operation of each loop is as follows.
a. Set transfer size of this loop to TOE10_TDL_REG. The set value is equal to remaining

transfer size for the last loop or equal to 4 GB for the other loops.
b. Set send command (0x0) to TOE10_CMD_REG.
c. Wait until operation is completed by monitoring busy flag (TOE10_CMD_REG[0]). The

operation is finished when busy flag changes to ‘0’. During monitoring busy flag, the
Intel PAC host reads current transfer size from user logic (USER_TXLEN_REG and
USER_RXLEN_REG) and displays the results on the Linux terminal every second.

6) Set close connection command (0x3) to TOE10_CMD_REG.
7) Calculate performance and show test result on the Linux terminal.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 24

3.2.4 Receive data test

User sets total received size, data verification mode (enable or disable), and connection
mode (active open for client operation or passive open for server operation). The operation
will be cancelled if the input is invalid. During the test, 32-bit increment data is generated to
verify the received data from Test PC or FPGA when data verification mode is enabled. The
sequence of this test is as follows.
1) Receive total transfer size, data verification mode, and connection mode from user input.

Verify that all inputs are valid.
2) Set CCIUsrReg registers, i.e. reset flag to clear initial value of test pattern

(USER_RST_REG[0]=’1’) and data verification mode (USER_CMD_REG[1]=’0’ or ‘1’).
3) Display recommended parameter (same as Step 3 of Send data test).
4) Open connection following connection mode (same as Step 4 of Send data test).
5) Wait until connection is closed by Test PC or FPGA. Connon status

(USER_CMD_REG[2]) is monitored until it is equal to’0’. During monitoring ConnOn, the
Intel PAC host reads current transfer size from user logic (USER_TXLEN_REG and
USER_RXLEN_REG) and displays the results on the Linux terminal every second.

6) Read total received length of user logic (USER_RXLEN_REG) and wait until read value is
equal to total size set from user. After total data is received, verification result is read to
check failure flag (USER_CMD_REG[1]=‘0’ for normal condition). If the error is detected,
error message will be displayed.

7) Calculate performance and show test result on the Linux terminal.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 25

3.2.5 Full duplex test

This menu is designed to run full duplex test by transferring data between Intel PAC and Test
PC or FPGA in both directions by using same port number at the same time. Four inputs are
received from user, i.e. total size for both directions, packet size for PattGen, data verification
mode for PattVer, and connection mode (active open/close for client operation or passive
open/close for server operation).

When running the test by using Test PC and Intel PAC, transfer size setting on Intel PAC must
be matched to the size setting on test application (tcp_client_txrx_40G). Connection mode on
Intel PAC when running with Test PC must be set to server (passive operation).

The test runs in forever loop until user cancels operation. User inputs Ctrl+C to cancel the
operation when running with Test PC. If running with FPGA, user inputs some keys to the
terminal. The sequence of this test is as follows.
1) Receive total data size, packet size, data verification mode, and connection mode from

user and verify that the value is valid.
2) Display recommended parameter of test application running on Test PC by reading

current parameters in the system.
3) Set CCIUsrReg registers, i.e. transfer size (USER_TXLEN_REG), reset flag to clear initial

value of test pattern (USER_RST_REG[0]=’1’), and command register to start PattGen
with data verification mode of PattVer (USER_CMD_REG=1 or 3).

4) Open connection following connection mode (same as Step 4 of Send data test).
5) Set TOE10G-IP registers, i.e. packet size (TOE10_PKL_REG=user input) and calculate

total transfer size in each loop. Maximum size of one loop is 4 GB. The operation of each
loop is as follows.

a. Set transfer size of this loop to TOE10_TDL_REG. Except the last loop, transfer size in
each loop is set to maximum size (4GB) which is also aligned to packet size. For the
last loop, transfer size is equal to the remaining size.

b. Set send command (0x0) to TOE10_CMD_REG.
c. Wait until send command is completed by monitoring busy flag (TOE10_CMD_REG[0]).

When operation is finished, busy flag changes to ‘0’. During monitoring busy flag, the
Intel PAC host reads current transfer size from USER_TXLEN_REG and
USER_RXLEN_REG and displays the results on the terminal every second.

6) Close connection following connection mode.
a. For active close, the Intel PAC host waits until transfer size is equal to set value. Then,

set USER_CMD_REG=3 to close connection. Next, the Intel PAC host waits until
connection is closed by monitoring ConnOn (USER_CMD_REG[2])=’0’.

b. For passive close, the Intel PAC host waits until connection is closed by Test PC or
FPGA. ConnOn (USER_CMD_REG[2]) is monitored until it is equal to ’0’.

7) Check received result and error (same as Step 6 of Receive data test).
8) Calculate performance and show test result on the Linux terminal. Go back to step 3 to run

the test in forever loop.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 26

3.3 Function list in User application

This topic describes the function list to run TOE10G-IP operation. The initialization sequence
before starting AFU is not described in this topic.

void exec_port(unsigned int port_ctl, unsigned int mode_active)

Parameters port_ctl: 1-Open port, 0-Close port
mode_active: 1-Active open/close, 0-Passive open/close

Return value None

Description For active mode, write TOE10_CMD_REG to open or close connection.
After that, call read_conon function to monitor connection status until it
changes from ON to OFF or OFF to ON, depending on port_ctl mode.

void init_param(void)

Parameters None

Return value None

Description Set network parameters to TOE10G-IP register from global parameters.
After reset is de-asserted, it waits until TOE10G-IP busy flag is
de-asserted to ‘0’.

int input_param(void)

Parameters None

Return value 0: Valid input, -1: Invalid input

Description Receive network parameters from user, i.e. mode, window threshold,
FPGA MAC address, FPGA IP address, FPGA port number, Target IP
address, and Target port number. If the input is valid, the parameters will
be updated. Otherwise, same values are used. After receiving all
parameters, the current value of each parameter is displayed.

Unsigned int read_conon(void)

Parameters None

Return value 0: Connection is OFF, 1: Connection is ON.

Description Read value from USER_CMD_CONNON register and return only bit2
value to show connection status.

void show_cursize(void)

Parameters None

Return value None

Description Read USER_TXLEN_REG and USER_RXLEN_REG, and then display
in Byte, KByte, or MByte unit

void show_param(void)

Parameters None

Return value None

Description Display current value of network parameters setting to TOE10G-IP such
as IP address, MAC address, and port number.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 27

void show_result(void)

Parameters None

Return value None

Description Read USER_TXLEN_REG and USER_RXLEN_REG to display total
size. Read global parameters (timer_val_end and timer_val_start) and
calculate total time usage to display in usec, msec, or sec unit. Finally,
transfer performance is calculated and displayed on MB/s unit.

int toe10g_recv_test(void)

Parameters None

Return value 0: Operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following described in topic 3.2.4

int toe10g_send_test(void)

Parameters None

Return value 0: Operation is successful
-1: Receive invalid input or error is found

Description Run Send data test following described in topic 3.2.3

int toe10g_txrx_test(void)

Parameters None

Return value 0: Operation is successful
-1: Receive invalid input or error is found

Description Run Full duplex test following described in topic 3.2.5

void wait_ethlink(void)

Parameters None

Return value None

Description Read USER_RST_REG[16] and wait until linkup status is found

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 28

4 Test Software on Test PC

4.1 “tcpdatatest” for half duplex test

Figure 4-1 “tcpdatatest” application usage

“tcpdatatest” is designed to run on Test PC for sending or receiving TCP data through
Ethernet in both server or client mode. Test PC of this demo should run in client mode. User
inputs parameter to select transfer direction and the mode. Six parameters are required as
follows.
1) Mode : c – Test PC runs in client mode and Intel PAC runs in server mode
2) Dir : t – transmit mode (Test PC sends data to Intel PAC)

 r – receive mode (Test PC receives data from Intel PAC)
3) ServerIP: IP address of Intel PAC when Test PC runs in client mode (default is

192.168.7.42)
4) ServerPort: Port number of Intel PAC when Test PC runs in client mode (default is 4000)
5) ByteLen: Total transfer size in byte unit. This input is used in transmit mode only and

ignored in receive mode. In receive mode, the application is closed when the connection is
destroyed. ByteLen in transmit mode must be equal to the total transfer size on Intel PAC,
set in received data test menu.

6) Pattern :
0 – Generate dummy data in transmit mode or disable data verification in receive mode.
1 – Generate increment data in transmit mode or enable data verification in receive mode.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 29

Transmit data mode
Following is the sequence when test application runs in transmit mode.
1) Allocate 1 MB memory to be send buffer.
2) Create socket and set properties of send buffer.
3) Create new connection to server by using IP address and port number from user.
4) Generate increment test pattern to send buffer when test pattern is enabled. Skip this step

if dummy pattern is selected.
5) Send data out and decrease remaining transfer size.
6) Print total transfer size every second.
7) Run step 4) – 6) in the loop until the remaining transfer size is 0.
8) Close socket and print total size and performance.

Receive data mode
Following is the sequence when test application runs in receive mode.

1) Allocate 1 MB memory to be received buffer.
2) Create socket and set properties of received buffer.
3) Same step as step3) in Transmit data mode.
4) Read data from received buffer and increase total received size.
5) If verification is enabled, data will be verified with increment pattern. Error message is

printed out when data is not correct. This step will be skipped if data verification is disabled.
6) Print total transfer size every second.
7) Run step 4) – 6) in the loop until the connection is closed.
8) Close socket and print total size and performance.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 30

4.2 “tcp_client_txrx_40G” for full duplex test

Figure 4-2 “tcp_client_txrx_40G” application usage

“tcp_client_txrx_40G” application is designed to run on Test PC for sending and receiving
TCP data through Ethernet by using same port number at the same time. The application is
run in client mode, so user needs to input the server parameters (network parameters of
TOE10G-IP). As shown in Figure 4-2, there are four parameters to run the application, i.e.
1) ServerIP: IP address of Intel PAC
2) ServerPort: Port number of Intel PAC
3) ByteLen: Total transfer size in byte unit. This is total size to transmit and receive data.
4) Verification:

0 – Generate dummy data for sending function and disable data verification for receiving
function. This mode is used to check the best performance of full-duplex transfer.
1 – Generate increment data for sending function and enable data verification for receiving
function.

The sequence of test application is as follows.
(1) Allocate 60 KB memory for send and receive buffer.
(2) Create socket and set properties.
(3) Create new connection by using IP address and port number from user.
(4) Generate increment test pattern to send buffer when test pattern is enabled. Skip this step

if dummy pattern is selected.
(5) Send data out and decrease remaining transfer size.
(6) Read data from received buffer and increase total received size.
(7) If verification is enabled, data will be verified by increment pattern. Error message is

printed out when data is not correct. Skip this step if data verification is disabled.
(8) Print total transfer size every second.
(9) Run step 5) – 8) until total sending data and total receiving data are equal to ByteLen

(input from user).
(10) Print total size and performance and close socket.
(11) Sleep for 1 second to wait the hardware complete the current test loop.
(12) Run step 3) – 11) in forever loop. If verification is failed, the application will quit.

dg_toe10gip_intelpac_refdesign.doc

3-Apr-19 Page 31

5 Revision History

Revision Date Description

1.0 3-Apr-19 Initial version release

	TOE10G-IP reference design by Intel PAC A10GX
	Rev1.0　 3-Apr-19
	1 Intel PAC Overview
	2 AFU Hardware overview
	2.1 TenGMacHSSI
	2.2 MACRegCtrl
	2.3 TOE10G-IP
	2.4 MacRx2TxClk
	2.5 CCI2Reg
	2.5.1 Register
	2.5.2 Pattern Generator
	2.5.3 Pattern Verification

	3 User Application (Intel PAC)
	3.1 Overview
	3.2 TOE10G-IP software
	3.2.1 Show parameters
	3.2.2 Reset IP
	3.2.3 Send data test
	3.2.4 Receive data test
	3.2.5 Full duplex test

	3.3 Function list in User application

	4 Test Software on Test PC
	4.1 “tcpdatatest” for half duplex test
	4.2 “tcp_client_txrx_40G” for full duplex test

	5 Revision History

