dg_toe40gip_intelpac_refdesign.doc m

TOE40G-IP reference design by Intel PAC A10GX

Revl1.0 4-Jul-19

1 Intel PAC Overview

Figure 1-1 Intel PAC with Intel Arrial0GX FPGA

As described in UG-20166 (Intel Acceleration Quick Start Guide for Intel PAC with A10 GX), the
Intel PAC (Intel Programmable Acceleration Card) provides the acceleration platform to free the
Intel Xeon processor by offloading computationally intensive tasks. So, Xeon processor is free for
running other critical processing tasks. Intel PAC connects to the Intel Xeon processor through the
PCle interface on the motherboard.

UG-20166 could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.htm

GIGABYTE

Figure 1-2 Intel PAC installation on Motherbard

4-Jul-19 Page 1

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html

dg_toe40gip_intelpac_refdesign.doc m

Intel PAC is a collection of software, firmware, and tools that allows both software and RTL
developers to take advantage of the power of Intel FPGAs. The overview of Intel PAC platform
hardware and software is shown in Figure 1-3.

Xeon Processor |
Application | —} —]l User defined :
Drivers — — -]I Provided by Intel !
Software platom | +~————bpen—"= | @ ————————

(OPAE on Intel Host)

Hardware platform

(ntel PAC) ~ |[IEIPAC |

FIM - — —]' Provided by Intel :

AFU I —]' User defined :

Figure 1-3 Intel PAC hardware and software overview

The hardware on Intel PAC platform has two parts, i.e. static region which is called FIM (FPGA
Interface Manager) and partial reconfiguration region which is called AFU (Accelerator Functional
Unit).

FIM owns all hard IPs on FPGA such as PLLs, PCle IP core, DDR memory interfaces, high speed
serial interface, and partial reconfiguration (PR) engine to load AFUs. After power up, FPGA
configures the FIM only. Next, the software programs AFU images. AFU is FPGA logic designed
by user to be CPU offload engine or hardware accelerator. User can design multiple AFUs to
swap in and out of PR region. AFU could be designed by RTL or OpenCL.

OPAE (Open Programmable Acceleration Engine) software running on the Intel Xeon processor
handles all the details of the reconfiguration process. Otherwise, the OPAE provides libraries,
drivers, and sample programs useful for AFU development.

Typically, when user implements some offload engines, it needs to design the logic on AFU and
develop the software running on Xeon processor. Address mapping for control register is also
implemented in AFU. The details of the interface between Xeon processor and FIM are shown in
Figure 1-4.

4-Jul-19 Page 2

dg_toe40gip_intelpac_refdesign.doc m

Xeon Processor

FIM
L . FIU
[% AU MMIO

I
I I

I I

I I

I I

I I

I I

I_ | Read I
—E——————— $ ———————— |- : RX.CO | \ TX.C2 |
I

I I

I I

I I

I I

I I

I I

\ A

AFU Register

-
|
|
|
|
-
lo
O
E
|
|
| —

AFU
AFU | | T T T Prat
- - g
External Memory High Speed Serial
Interface (EMIF) Interface (HSSI)

; :
: +

DDR Network

Figure 1-4 FPGA Interface Manager

The FIM consists of FIU (FPGA Interface Unit), EMIF, and HSSI. The AFU communicates with
Intel Xeon processor by using CCI-P (Core Cache Interface) standard interface. CCI-P is the host
interface which defines the CCI-P protocol and signaling interface and can be implemented on
platform interfaces like PCle.

In this reference design, there is no main memory write or read request from AFU. So, Tx.cO and
Tx.cl for request main memory are not used. CCI-P is applied to generate MMIO read request
and MMIO write requests for accessing the AFU register from the CPU. MMIO Write and Read
request are received over Rx.cO channel. The response to return data uses Tx.C2 channel for
MMIO read request. CCI-P drives data of MMIO write request over Rx.cO channel. More details of
CCI-P could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.htm
I

4-Jul-19 Page 3

https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html

dg_toe40gip_intelpac_refdesign.doc m

FIM
AFU
Intel FPGA
Low Latency 40GbE MAC
and PHY (PCS) IP
A A A
Y v Y
Data PR Reset Control
Interface Management and Status
HSsI
40GBASE-SR4 Mode E
(PMA) |
(oSt
| QSFP+ cable | -

Figure 1-5 High Speed Serial Interface

As described in UG-20188, the Intel PAC with Arria 10 GX features a QSFP+ network port that
can be configured for either 4x10GBASE-SR or 40GBASE-SR4 operation. In this reference
design, HSSI is configured as 40GBASE-SR4 to transfer 40G Ethernet packet with external
network device such as PC. HSSI includes only PMA IP while PCS IP is implemented with 40GbE
EMAC IP within AFU. More details of HSSI could be downloaded by following link.
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.htm
I

IP Catalog of Quartus tool generates 40GbE EMAC IP subsystem which includes EMAC IP, PCS
IP, and PMA IP, but PMA IP has already included in HSSI as shown in Figure 1-5. To implement
40GbE on Intel PAC, the EMAC IP needs to remove PMA IP. The EMAC without PMA IP is
available in the 40GbE AFU design example which is located in the same location as the sample
AFUs fromt he OPAE SDK install ati on. Mo r e dtetDasigh
Example as a Platform f o¥r20163u40Gghpes rEthefhet aAtcelaator
Functional Unit (AFU) Design Example User Guide.
https://www.intel.com/content/www/us/en/programmable/documentation/peel1521131718500.ht
ml

4-Jul-19 Page 4

https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html
https://www.intel.com/content/www/us/en/programmable/documentation/pee1521131718500.html
https://www.intel.com/content/www/us/en/programmable/documentation/pee1521131718500.html

dg_toe40gip_intelpac_refdesign.doc m

| Motherboard
Intel Xeon
User Application TCP Test SW
(toe40gtest.c) (tc[:odatatest or
OPAE fcp_client_txrx_40G)
Intel AP\
— T2 OPAE
|
[
|
| 0Gb Ethernet
| Network Adapter
|
|
— — PCI
rpCle] |1 it m |
-7
Intel PAC | Test Env#1
AFU
(TOE40AFUTest)
g FPGA board |

|
|
|
|
| CCI-P HSSI | QsFP
|
|
|
|

| FIM L _ TOE40AFUTest on
Intel PAC or
Test Env#2 TOE40CPUTest on

S S PCe || b < other FPGA boards

Figure 1-6 TOE40G-IP integrated on the Intel PAC platform

To build 40G Ethernet demo by using TOE40G-IP integrated on Intel PAC, the hardware of AFU
and the user application running on OPAE must be designed as shown in Figure 1-6.
TOE40AFUTest is the AFU logic which includes CCI-P interface for register access by CPU and
HSSI interface for 40G Ethernet 1/0O. The user application to set control register and parameter
running on Intel Xeon is toe40gtest.

The destination network device to transfer 40 Gb Ethernet packet by using TCP/IP protocol may
be 40 GbE Adapter or the FPGA board including 40 Gb Ethernet connection. When connecting 40
GbE Adapter to PCle connector in the same PC as Intel PAC, the Intel Xeon must run another test
software to transfer data following TCP/IP protocol, i.e. tcpdatatest (half-duplex test) or
tcp_client_txrx (full duplex test), provided by Design Gateway.

When using TOE40G-IP implemented on another FPGA (Arrial0 GX board or Intel PAC), the best
performance for transferring TCP/IP data is achieved. The details to setup TOE40G-IP with CPU
reference design on another FPGA are downloaded from following link.
https://dgway.com/products/IP/TOE40G-1P/dg_toe40qip_refdesign_intel en.pdf
https://dgway.com/products/IP/TOE40G-IP/dg_toe40qgip_instruction_intel_en.pdf

4-Jul-19 Page 5

https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_refdesign_intel_en.pdf
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_instruction_intel_en.pdf

dg_toe40gip_intelpac_refdesign.doc m

2 AFU Hardware overview

CCI-P Interface
|__/__________I_______
3111?3 UserClk | csr_clk <LF’FLMJ§
| (200 MHz) | (100.00 MHz) r)
| [, | 32 ok stz |
DR LReo /A | rx_clk_312 ||
| : Register | | (312.5 MHz) <
| 256-bit TOEMACFHIF| b |y 40CDE MAC | b
————— -bi - and PCS IP | N o
| PatiGen | C > FIFO IAvISth> [TxData >
| | B2 | TOE40G-IP | e
| I T — 256-bit ! 56-bi | é
| it da | ' - T
| LEEEVEF_|¢\I 2 < xFT 1 FIFO < VISTRX] RxData |
N | NT] l
| CClUsrReg i XLGMacHSSI |
| : TOE40AFUTest

Figure 2-1 AFU block diagram

Figure 2-1 shows the logic details inside TOE40AFUTest module which is the AFU in the
reference design. AFU includes TOE40G-IP for transferring TCP/IP packet. To complete all layer
implementation, TOE10G-IP must connect to 40GbEMAC, PCS IP, and PMA IP which are
provided as Intel FPGA IP. User interface of TOE40G-IP connects to CCIUsrReg module for both
data interface and register interface. Register files of CClIUsrReg are split into three regions, i.e.
AFU CSR region, TOE40G-IP region, and internal test logic region (PattGen and PattVer).
Register files of CClIUsrReg are controlled by the software running on Xeon processor (through
64-bit MMIO interface). User can control the operation of TOE40G-IP, PattGen, and PattVer by
modifying the software on Xeon processor.

Otherwise, TOE40AFUTest module includes TOEMacF{IF module to be the interface logic
between TOE40G-IP and 40 GbE MAC. There are asynchronous FIFO inside TOEMacFfIF to
convert the clock domain between UserClk and 40 Gb EMAC clock. Data width of the FIFO is
equal to 256 bit. UserClk frequency is equal to 200 MHz which is enough to support 40 Gbps
transfer (200MHz x 256-bit = 51.2 Gbps). More details of each module inside the AFU are
described as follows.

4-Jul-19 Page 6

dg_toe40gip_intelpac_refdesign.doc m

2.1 XLGMacHSSI

XLGMacHSSI HSSI Interface
PHY PR
Management < SR > Management
— 2‘? e-bi.‘ PHY Reset Reset control
Reset and status
Controller
TOE 40GbE i
TOE40G-IP 160-bit
MacFflF
MAC TxData ‘>
256-bif PCS Data PMA
AVISIRX Interface 160-bit Data interface
RxData

Figure 2-2 XLGMacHSSI

XLGMacHSSI is the modified 40 GbE MAC IP core to include only EMAC IP and PCS IP. PMA
is included in HSSI instead. The interfaces for connecting with HSSI are PR management,
Reset and status, and PCS data.

PR Management interface (prmgmt) of HSSI is connected to PHY management which is
designed as the HDL code inside AXLGMacHSSI.vhda i XL GMa ¢ H'S S Imodifiédddram i s
Aeth_ _e2e _e40.vo i n 40 GdhatowhéEpdrt ardiguratgomby the iatermall e
logic only, not CPU. The PHY management logic is run under csr_clk which is free running
clock at 100 MHz frequency.

The Reset and Status interface is controlled by PHY Reset controller logic which is
implemented within 40GbE MAC module.

The data interface between PCS PHY data interface and PMA data interface is the unified
data interface transmit and receive data ports. 40GBASE-SR4 mode uses 4 lanes of the
transceiver, so the 160-bit data interface is split to four segments of 40-bit PCS PHY data to
interface each transceiver lane. 40-bit PCS PHY data is appended by 88 bits zero data, so
one lane of the HSSI interface has 128 bit data (40-bit PCS PHY data are the lower bits and
88-bit zero data are the upper bits). The control port of the unified data interface is not utilized.
The transmit data port is run under tx_clk_312 while the receive data port is run under
rx_clk_312.

More details of Low latency 40G Ethernet IP Core are described in following link.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_Il_40gbe

-pdf

2.2 TOE40G-IP

TOE40G-IP implements TCP/IP stack and offload engine. User interface consists of control
signals and data signals. Control and status signals are accessed through register interface.
Data signals are accessed through FIFO interface. More details are described in datasheet.
https://dgway.com/products/IP/TOE40G-1P/dg_toe40qip_data sheet intel en.pdf

4-Jul-19 Page 7

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ll_40gbe.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ll_40gbe.pdf
https://dgway.com/products/IP/TOE40G-IP/dg_toe40gip_data_sheet_intel_en.pdf

dg_toe40gip_intelpac_refdesign.doc m

2.3 TOEMacFfIF

: | TOEMacFfiF
:) PhyMacTxReady /
ToeMacTxFWrEn Tx Engine
\ L PhyMacTxValid
ToeMachFfWrData[255,0L —————= | PhyMacTXSOP valonST
"D ToeMacTxLastEmpty[3] : TxFIFO : VIF
P (512x258) |
I’ ToeMacTxEnd ol | | PhyMacTxData[255:0]
ToeMacTxFAWICnt[15:0] | - MP"TV'”I'E""CT:"[ESDP]
yMacTxEmpty[4:

| PhyMacTxClk

Ok == = = — — — — — —
= : PhyMacRxClk
|
Rx Engine L PhyMacRxData[ESS:O{
ToeMacRxFfEmpty phyMacRxSOF
—T T | -
S ToeMacRxFfRJEN | RxFIFO | L PhyMacRXEOP || Avaor-ST
I/E | (512x258) | PhyMacRxErrgr
ToeMacRxFfRdData[257:0] | | I g i i
PhyMacRxValitl
-

Figure 2-3 TOEMacFfIF block diagram

This module is designed to be the adapter logic connecting between TOE40G-IP and 40G
Ethernet MAC. There are three clock domains in this module, i.e. Clk which is synchronous to
TOE40G-IP, PhyMacTxCIlk which is synchronous to Tx interface of 40G EMAC, and
PhyMacRxClk which is synchronous to Rx interface of 40G EMAC. Tx and Rx interface of
TOE40G-IP is FIFO interface while 40G EMAC interface is Avalon-stream. So, the logic
inside TOEMacFfIF is designed to convert interface type and support clock-crossing domain.

The logics to control transmit path and receive path are run independently, i.e. Tx Engine and
Rx Engine. Both engines include asynchronous FIFOs (TxFIFO and RxFIFO) to convert
Tx/Rx packet from one clock domain to another clock domain. FIFO size is 512x258-bit which
is much enough to store 9K byte packet (maximum TCP packet size supported on 40G
Ethernet card). More details of each engine are described as follows.

4-Jul-19 Page 8

dg_toe40gip_intelpac_refdesign.doc m

2.3.1 Tx Engine

Clk I PhyMacTxClk | Tx Engine
|
MacWrPacCnt ini MacRdPacCnt
End packet Write Packet asyfo | TS| Remaining | QBRETEE
detecion [™| counter 1 circit counter
| *rRemainPacht
| Read Packet
ToeMacTxFWrEn ead Packe
> | TfoEmpty. —= counter
ToeMacTxFfWrData[255:0] > | TxFfRAEN
ToeMacTxLastEmpty([3] TxIJIFO Tx State PhyMacTxReady [
© P (512058) | TXFIRdDEtA | machine [
I’ ToeMacTxEnd - | - PhyMacTxValid
ToeMacTxFfWrCnt[15:0] PhyMacTxSOP Avall? ’?—ST

Sync PhyMacTxEOP
Register PhyMacTxEmpty[4:0]

_h.

|
|
1
| PhyMacTxData[255:0]
|
|
|
|

Figure 2-4 Tx Engine logic

On the left side, data of Tx interface from TOE10G-IP is stored to TxFIFO within Tx Engine.
The logic for monitoring Tx data interface to count the packet storing in TXFIFO is designed as

shownintheleftside. A ENnd packet depuleesignal ooont theepacket atdr e s
end of packet S detected. i Wr | gacket €bantek é3écause o u

TxLastEmpty signal from TOE40G-IP can be equal to two values, i.e. 0x04 and Ox0A, only bit
3 of TxLastEmpty signal is stored to TxFIFO for optimizing resource.

On the right side, the packet counter value is forwarded from Clk domain to PhyMacTxClk
domain. Read interface of TxFIFO is controlled by Tx state machine. When one packet is
stored to TxFIFO, Tx state machine will forward that packet from TxFIFO to 40G EMAC
following Avalon-stream standard. Similar to the Write side, there is a packet counter
designed to count the packet reading from TxFIFO. The remaining packet (rRemainPacCnt)
is calculated by total write packets (rMacWrPacCnt) i total read packets (rMacRdPacCnt).
When rRemainPacCnt is more than or equal to 1, Tx State machine starts the packet
forwarding operation.

The timing diagram of Tx Engine to read data from TxFIFO and send the data to Avalon-ST
interface is shown in Figure 2-5.

4-Jul-19 Page 9

DG

(7) State changes to stldle when last data is
transferred (PhyMacTxValid="1", PhyMacTxEOP="1",

dg_toe40gip_intelpac_refdesign.doc

(1) State changes to stUpdatePac to transfer - - ;
new packet from TxFIFO when rRemainPacCnt (5) rRemainPacCnt is decreased | | and PhyMacTxReady="1"). At the same time,
is not equal to 0 and TXFIEmpty="0". when State=stUpdatePac. PhyMacTxValid is de-asserted to ‘0".

PhyMacTxClk | / | « \
| ,:\ S | | |

rRemainPacCnt[8:0] |\ [i|1 ‘2 gg \
ey 1Y) /O
(TxState | stdle PEEH | | bfans | ;; L\ ot
someen |l L
TxFRdData(255:0] S S](o7} B2) >(:§01 I
PhyMacTxValid J|__
PhyMacTxData[255:0] N X \Q1)(D2)(:gjnnz Dn1
PhyMacTxEOP / / ’Q \
A N e
PhyMachReady/. , / 0] LS&J IR

(2) TxFfRAEN="1" to read data from FIFO
when State=stUpdatePac or stTrans.

(4) PhyMacTxSOP is deasserted
to ‘0" after PhyMacTxReady="1"'
to receive the 1% data.

(6) TxFIRdEn is controlled by

TxFfRAEN will be de-asserted to '0".

PhyMacTxReady. If PhyMacTxReady='0",

(3) PhyMacTxValid and PhyMacTxSOP are asserted to 1
when State=stUpdatePac. At the same time, PhyMacTxData
latches new input from TxFIFO when TxFfRAEn="1".

Figure 2-5 Tx Engine timing diagram

1) When at least one packet is available in TxFIFO (rRemainPacCnt is not equal to 0) and
TxFfEmpty i s equal to 0006 (Re'Ex8tateiforwars dne c e
packet from TxFIFO to 40G EMAC by changing state from stldle to stUpdatePac.
stUpdatePac is run only one clock cycle to decrease rRemainPacCnt signal. TXFfRdEnN is
asserted to 61O06TxERO istShosv-aleadrtype, do iTxRf&dData is valid at
thesameclockas TxFf RdEn asserted to 016.

In the next clock, TxState changes to stTrans and the 1% data is transferred to Avalon-ST
interface (PhyhaPchTyxvea@Pr=x6évlaBhyMacTxDatéd is latched from
TxFf RdData when TxFf RdPByMacTxPataadees aot ¢chande whem 06
TxFfRdEnisde-asserted to 06060
4) After PhyMacTxReady i s
to 6006.

Total remaining data counter is decreased when the start of frame is transmitted.

In stTrans, TXFfRdEnisas serted to 0616 f ol |l ow,iexcepttieRendMa
of frame.

State changes to stldle after end-of-frame is transmitted (Phy Mac Tx EOP = ¢
Phy Mac Tx VaPhyMasTaValid)is decassert ed t o 006 to w
processing.

2)

3)

shdatas, PhyMaeTkSOP @ desassérted o

5)
6)

7

4-Jul-19 Page 10

dg_toe40gip_intelpac_refdesign.doc Dﬁ

2.3.2 Rx Engine

| PhyMacRxClk Rx Engine
| | DYMacRxData[255.)
: RxFfWrData i PhyMacRxSOH
.
ToeMacRxFfEmpty | Resgs;il;ier = PhyMa cRxEOlf’
FIFO oeMacRxFfRdEn RxF:IFO - PhyMacRxErr#r Avalon-5T
I/F
VE (512x258)
oeMacRxFfRdData[257:0] -
| RxFfWrCnt
| — P RxState [E—
RxFAWrER machine

: - N PhyMacRxVali
|

Fidure 2-6 Rx Engine logic

Before storing the received packet from Avalon-ST interface to RXFIFO, Rx state machine
must check free space of RxFIFO by monitoring RxFfWrCnt firstly. If free space is more than
9 Kbyte, the received packet will be forwarded to RxFIFO. Otherwise, the received packet is
rejected. The timing diagram of Rx Engine is shown in Figure 2-7.

(1) State changes to stTrans to receive new packet when (3) State changes to stldle after end
new packet is sent from 40G EMAC (PhyMacRxSOP="1" of frame is found (PhyMacRxValid="1"
and PhyMacRxValid="1"). Also, RxFIFO must have enough and PhyMacRxEOP="1").

free space (RxFWrCnt<224).

PhyMacRxClk

rRxState

RxFAWrCnt[8:0]

PhyMacRxSOP

PhyMacRxValid

PhyMacRxData[255:0]
PhyMacRXEOP .
RXFWrEN . LS?J |
RxFfWrData[255:0] // * Do 1Y)(D1)(jS5 b2 Y EXDn-1iX:

/
(2) At the same time as State changes to stTrans, RxFIWrEn is asserted to
‘1", Also, RxFfWrData is loaded from PhyMacRxData to write data to RxFIFO.
When State is in stTrans, RxFIWrEn and RxFfWrData are same as
PhyMacRxValid and PhyMacRxData in the previous clock cycle.

Figure 2-7 Timing diagram when RxXFIFO is ready

4-Jul-19 Page 11

dg_toe40gip_intelpac_refdesign.doc m

1) The new packet from Avalon-ST is stored to RXFIFO when at least 9 Kbyte is free in the
FIFO, monitored by comparing RxFfWrCnt with 224 ((511 i 224) x 32 = 9184 byte). If
RxFfWrCnt is less than 224, Rx state machine will change to stTrans to store the new
packet to RXFIFO.

2) RxFfWrEn and RxFfWrData are 1-clock cycle delayed from PhyMacRxValid and
PhyMacRxData respectively.

3) When end of packet i's f o uRhgMacRHEOR=MalcOR x, V aR X
machine will change to stidle.

The example of timing diagram when the new packet is received but the FIFO is full is shown
in Figure 2-8.

(3) State changes to stldle after end
(1) If RxFIFO has not enough free space (RxFfWrCnt>=224) during of frame is found (PhyMacRxValid="1'
receiving new packet from 40G EMAC (PhyMacRxValid="1" and and PhyMacRxEOP="1").
PhyMacRxSOP="1"), State will change to stFlush.

rRxState AN G2

m i SS, | |
RxFWrCnt[8:0] ~ |>=224] N N
PR

PhyMacRxSOP

PhyMacRxValid |

i |

PhyMacRxData[255:0] oy)C?;X Yo
PhyMacRXEOP L i ! /_JW
RXFAWIEN § @ | | |

(2) RxFAWrEn is de-asserted to ‘0" to drop received
packet until end of packet.

Figure 2-8 Timing diagram when RxFIFO is not ready

1) When the new packet is received but RxFfWrCnt is more than or equal to 224, Rx state
machine will change to stFlush.

2) InstFlush, RxFfWrEnisde-asserted to 0606 t
packet is found (PhyMacRxEOP=

3) Rx state machine returns to stldle to wait the new packet.

bl ock new d
0

0
01 and Phy Ma

4-Jul-19 Page 12

dg_toe40gip_intelpac_refdesign.doc m

2.4 CCI2Reg
CCI-P Interface
ﬁ F CCI-P I/F
! | (64-bit MMIO) | CClUsrReg
|
: Address Decoder |
i | Toxoooo- 1 Moxot00- | ox1000- | :
| | ! oxooFF I ! oxo1FF | ! 0x10FF | I
[; :
' 64+bit ‘ | ‘ :
: Register I/F 32-bit Register I/F :
| Y .
| | LCPTfoFuII
| .
Register ' Pattern | TCpTXFAWEN

: A;:I:a ::;R File -11—:—» Generator -
, (Write) | (PattGen) | TCPTxFfWrData[255:0]
: |
| : | CPRAFRAEmply
: Register | Pattern TCPRxFfRdEN TOE40G-IP
| Mux <« »| Verification
| (Read) : (PattVer) | JCPRXFRdData2550

|

Register | |

Figure 2-9 CClUserReq block diagram

The logic inside CClUsrReg could be split into three parts, i.e. Register, Pattern generator
(PattGen), and Pattern verification (PattVer). Register block converts MMIO which is 64-bit
interface to be 32-bit interface for internal usage and TOE40G-IP register interface. Pattern
generator block is designed to send 256-bit test data to TOE40G-IP following FIFO interface
standard. Pattern verification block is designed to read and verify 256-bit data from
TOE40G-IP following FIFO interface standard. More details of each block are described as
follows.

4-Jul-19 Page 13

dg_toe40gip_intelpac_refdesign.doc m

2.4.1 Register

As shown in Figure 2-9, register map of CCI-P interface is split into three areas, i.e.
mandatory AFU CSR (0x0000-0x00FF), TOE40G-IP (0x0100-0x01FF), and internal signals
(Ox1000-0x10FF).

Address signal of CCI-P for MMIO access is based on 32-bit register, but data bus size of
MMIO for write and read register is 64-bit register. The address forwarding from MMIO to
TOE40G-IP, PattGen, and PattVer is designed to align 64-bit unit. Since data bus size of
TOE40G-IP registers and internal registers for controlling PattGen and PattVer is 32-bit, only
the lower 32 bits of MMIO write data is applied. The upper 32 bits of MMIO write data is
ignored.

AFU CSR is mandatory register which must be implemented in AFU. It is register set for read
only. Constant value and AFU ID are returned to MMIO as 64-bit unit, as shown in Figure 2-10.
The software uses the AFU_ID to ensure that the correct AFU is matched.

MName DWORD Address Byte Address Description
Offset Offset
(CCI-P) (Software)
DEV_FEATURE_HDR (DFH) 0x0000 0x0000 —
AFU_ID L Ox0002 0x0008 Lower 64 bits of the AFU_ID GUID.

* Aftnibute: Read Only
+ [63:0]; Default: 0x0

AFU_ID H Dx0004 0xD010 Upper 64 bits of the AFU_ID GUID.
* Attnibute: Read Only
+ [63:0]; Default: 0x0

DFH_RSVDO 00006 Ox0018 [e3:0] RSVD

DFH_RSVD1 00008 00020 [63:0] RSVD

Figure 2-10 Mandatory AFU CSRs (captured from MNL-1092 CCIP Reference manual)

Similar to write access, the read data returned from TOE40G-IP registers and internal
registers of PattGen and PattVer is 32-bit unit. So, only lower 32 bits of read data is assigned
when MMIO accesses TOE40G-IP area and internal register area.

4-Jul-19 Page 14

dg_toe40gip_intelpac_refdesign.doc m

Signal lists of CCI-P interface for MMIO access are shown in Table 2-1 and timing diagram of
CCI-P interface for MMIO access is shown in Figure 2-11.

Table 2-1 CCI-P for MMIO access mapping to CClUsrReq

CClUserReg signal name Direction CCI-P interface signal name
RegAddress[15:0] Input t if _ccip_Rx.c0.hdr.address[15:0]
RegWrData[31:0] Input t if _ccip_Rx.c0.data[31:0]
RegWrEn Input t if _ccip_Rx.cO.mmioWrValid
RegRdReq Input t if _ccip_Rx.cO.mmioRdValid
RegRdValid output t if _ccip_Tx.c2.mmioRdValid
RegRdData[63:0] output t if ccip_Tx.c2.data[63:0]

RegAddr[15:0] Y0

Blue: Input signal
Red: Output signal

RegWrData[31:0]

RegRdReq

/
RegRdData[63:0] /
/

I
]
.]
RegRdValid i , | @ |
4 |
T T T T
/11 fRooX
1. RegWrEn is asserted to "1’ 3. RegRdValid is asserted to *1' (synchronous
(synchronous with RegAddr, RegWrData, with RegRdData) to return valid data two-clock
and RegWrByteEn) for writing register cycle after RegRdReq is asserted to ‘1",

2. RegRdReq is asserted to ‘1’
(synchronous with RegAddr) to
send read register request

Figure 2-11 CCI-P interface for MMIO access timing diagram

To write register, timing diagram of MMIO access is same as RAM interface. RegAddr and
RegWrData must be valid when Re g Wr En i s a s Bhe uppee lit oft RegAdddid .
decoded by Address decoder to assert write enable for TOE40G-IP or the internal signals of
CClUsrReg. The lower 32-bit data is forwarded to 32-bit write data for TOE40G-IP and the
internal signals.

Toreadregister, CCI-P i nt er f ac e a s s avithtthe vaRlevgue dnfRegd\ddib Thé
upper bit of RegAddr is decoded to select read data source from AFU CSR, TOE40G-IP, or
the internal signals. Since there are many registers which are mapped to read access, two
pipeline registers are designed in read data path. So, RegRdValid is created by adding two
Flip-Flops to RegRdReq. The details of logic design in Register block are shown in Figure
2-12.

4-Jul-19 Page 15

dg_toe40gip_intelpac_refdesign.doc

Address
Decoder

CCI-P
Interface

AFU CSR
(Read)

Figure 2-12 Reqister block

Data bus size of CCI-P is 64 bit, but the address is based on 32 bit. The address and data
interface of TOE40G-IP is based on 32 bit. For simple logic design to convert CCI-P register
signals to be TOE40G-IP register signals, CCI-P register address map for TOE40G-IP area is
aligned to 64 bit or 8 byte. TCPRegAddr[3:0] is fed by UserRegAddr[4:1]. TCPRegWT rEnN is
asserted to 6106 when thagpper Biteaf WserRegAdilrlid equainta
TOE40G-IP area.

Similar to TOE40G-IP, the internal signals for PattGen and PattVer are based on 64 bit
address. PattGen parameters, programmed by the software, are rSetTxSize (total transfer
size) and rTXTrnEn (enable signal to start PattGen). For PattVer, the software sets rVerifyEn
flag to enable or disable the data comparator inside PattVer.

PattGen and PattVer status signals such as rTotalTxCnt (current Tx data size), rTotalRxCnt
(current Rx data size), and rFail (verification failed flag) are fed to multiplexer to return read
value to CCI-P. Read data bus size from TOE40G-IP, PattGen, and PattVer is 32 bit while
AFU CSR data bus size is 64 bit.

Table 2-2 shows CClUsrReg register map on CCI-P interface by using MMIO access.

4-Jul-19 Page 16

dg_toe40gip_intelpac_refdesign.doc
Table 2-2 CClUsrReg register map on MMIO access

DG

Byte Address | Register Name Description
Wr/Rd (Label in the fi t 4Dgtest.co)
BA+0x0000 i BA+0x00FF: Mandatory AFU CSRs Register Area (Refer to MNL-1092 for more details)
0x0000 DEV_FEATURE_HDR [63:0] Feature Header CSR
0x0008 AFU_ID L [63:0] Lower 64 bits of the AFU_ID GUID
0x0010 AFU_ID_H [63:0] Upper 64 bits of the AFU_ID GUID
0x0018 DFH_RSVDO [63:0] Reserved
0x0020 DFH_RSVD1 [63:0] Reserved
BA+0x0100 i BA+0x01FF: TOE40G-IP Register Area
More details of each register are described in Table2 of TOE40G-IP datasheet.
0x0100 TOE40_RST_REG [31:0] Mapped to RST register within TOE40G-IP
0x0108 TOE40_CMD_REG [31:0] Mapped to CMD register within TOE40G-IP
0x0110 TOE40_SML_REG [31:0] Mapped to SML register within TOE40G-IP
0x0118 TOE40_SMH_REG [31:0] Mapped to SMH register within TOE40G-IP
0x0120 TOE40_DIP_REG [31:0] Mapped to DIP register within TOE40G-IP
0x0128 TOE40_SIP_REG [31:0] Mapped to SIP register within TOE40G-I1P
0x0130 TOE40_DPN_REG [31:0] Mapped to DPN register within TOE40G-IP
0x0138 TOE40_SPN_REG [31:0] Mapped to SPN register within TOE40G-IP
0x0140 TOE40 TDL_REG [31:0] Mapped to TDL register within TOE40G-IP
0x0148 TOE40 TMO_REG [31:0] Mapped to TMO register within TOE40G-IP
0x0150 TOE40 PKL_REG [31:0] Mapped to PKL register within TOE40G-IP
0x0158 TOE40 PSH_REG [31:0] Mapped to PSH register within TOE40G-IP
0x0160 TOE40_WIN_REG [31:0] Mapped to WIN register within TOE40G-IP
0x0168 TOE40 ETL_REG [31:0] Mapped to ETL register within TOE40G-IP
0x0170 TOE40_SRV_REG [31:0] Mapped to SRV register within TOE40G-IP
0x0178 TOE40_VER_REG [31:0] Mapped to VER register within TOE40G-IP
BA+0x1000 i BA+0x10FF: Internal signals of PattGen and PattVer
0x1000 | Total transmit length Wr[31:0] 1 Set total size of PattGen in 256-bit unit. Valid from 1-OxFFFFFFFF.
Wr/Rd (USER_TXLEN_REG) Rd [31:0] i Completed size of PattGen in 256-bit unit. The value is cleared to
0 when USER_CMD_REG is written by user.
0x1008 | User Command wr
Wr/Rd (USER_CMD_REG) [0] T Start PattGen. S eto stad RaftGen operation.
Thisbitisauto-c | eared to 606 after end of
[1] T Enable data verification
(606: Enable data verification, 616§
Rd
[0] T Busy flag of PattGen (6 0 6 : RattiGereis busy)1 6 :
[l]i Data verification error (0606: Noi
This bit is auto-cleared when user starts new operation or reset.
[2] T Mapped to ConnOn signal of TOE40G-IP
0x1010 | UserReset wr
Wr/Rd (USER_RST_REG) [O]i Reset signal Set dbibisautocIresrce d t
[B]iSet 616 to clear Timerlnt | atch
Rd
[8] T Latch value of Timerint output from IP (6 0 6 : Nor mal ,
detected). This flag can be cleared by system reset condition or setting
USER_RST_REG[8] =616.
[16]T OGEMAC Linkup (60606: Link is down
0x1018 | FIFOstatus Rd [4:0]: Mapped to TCPRxFfLastRdCnt[4:0] signal of TOE40G-IP
Rd (USER_FFSTS_REG) [15:5]: Mapped to TCPRxFfRACnt[10:0] signal of TOE40G-IP
[24]: Mapped to TCPTxFfFull signal of TOE40G-IP
0x1020 | Total Receive length Rd [31:0] i Completed size of PattVer in 256-bit unit. The value is cleared to 0
Rd (TRN_RXLEN_REG) when USER_CMD_REG is written by user.
4-Jul-19 Page 17

dg_toe40gip_intelpac_refdesign.doc

2.4.2 Pattern Generator

Address
Decoder

TOE40G-IP

Tx Data
Counter

Figure 2-13 PattGen block

(3) rTotalTxCnt is i g (5) TCPTxFfWrEn is de-asserted to ‘0
riotalfxLntis increase after finishing to transfer all data
(1) TCPTXFfWrEn is asserted when TCPTXFfWrEn="1" (rTotalTxCnt=rSetTxSize — 1)

to ‘1" when rTxTrnEn="1"'

rTXTrnEn

TCPTxFfFull

TCPTxFfWrEn

rTotalTxCnt[31:0]

TCPTxFfWrData[255:0]
(2) TCPTxFfWrData is created by rTotalTxCnt (4) TCPTxFWrEn is de-asserted
and updated at the same clock as rTotalTxCnt to ‘0" when TCPTxFfFull="1"

Figure 2-14 PattGen Timing diagram

PattGen is designed to generate test data to TOE40G-IP. rTXxTrnEn 1 s asseE®e
USER_CMD_REG][0] i's rsEexXTrtnoEnd 1iés. OWMhéeen TCPTx Ff
TCPTxFfFull. TCPTXFf\WrEnisde-asserted to 6006 when TCPiha Ff
data counter to check total data sending to TOE40G-IP. rTotalTxCnt is also used to generate
32-bitincrement data to TCPTxFfWrData signal. rTxTrnEnisde-as sert ed t o 606
to transfer total data (total data is set by rSetTxSize).

4-Jul-19 Page 18

dg_toe40gip_intelpac_refdesign.doc

2.4.3 Pattern Verification

Address
Decoder

rVerifnyn TCPRxFﬂRdData[ZPS:O]
: > cwp [1
rFail | 1=
< - |
| TCPRxFRAEmpty
| RxData | WEXpPatt[255:0] ' TOE40G-IP
Gen |
Rx Data rFfRdEn TCPRXFfRHEN
[370]| Counter [| F | >

TCPRxFfRdData[255:0)) ———;

-

Figure 2-15 PattVer block

(1) After TCPRxFfRAEmpty="0", TCPRxFfRdEn (2) rTotalRxCnt is increased
is asserted to ‘1" at the same clock. when rFfRAEn="1"

TCPRXFfRAEmpty

TCPRxFfRdEN

rFfRdEnN

rTotalRxCnt[31:0]

1
T
J
I
1
I
1
I
1
I
I
I
1

WEXpPatt[255:0] — <A U D"

(3) TCPRxFfRdData is valid in the next clock after TCPRxFfRAEn="1".
Also, wExpPatt which is designed by rTotalRxCnt is valid at the same
clock as TCPRxFfRdData valid for data comparison.

Figure 2-16 PattVer Timing diagram

PattVer is designed to read test data from TOE40G-IP with or without data verification,
depending on rVerifyEn flag. When rVerifyEn is s e t to 616,
compare read data (TCPRxFfRdData) to the expected pattern (WExpPatt). If data verification
|l ed, rFai l WGPRAFfRdER is designedrby esthg NOJ logiclob .

i s

TCPRXFfRAEmpty. Af ter

f ai

dat a

C0o0mg

TCPRx Ff Rd En TCPRxFRdBam 1s vadiddfor data 6

comparison in the next clock. rFfRdAEN which is one clock latency of TCPRxFfRAEN is applied
to be counter enable of rTotalRxCnt to count total transfer size. rTotalRxCnt is also used to
generate WExpPatt (expected data to compare with TCPRxFfRdData).

4-Jul-19

Page 19

dg_toe40gip_intelpac_refdesign.doc m

3 User Application (Intel PAC)

3.1 Overview

After finishing AFU hardware design, configuration is built by OPAE SDK as shown in
following diagram.

Minimal Flow to Generate an AF General OPAE SDK Flow
for AFU Development
Spedify the Platform Configuration Specify the Platform Configuration
Design the AFU Design the AFU 4+
Spedfy the Build Configuration Specify the Build Configuration

v

Generate the ASE Build Environment

v

Verify the AFU with ASE

Design
Modifications
Required?

h 4
Generate the AF Build Environment | Generate the AF Build Environment
Generate the AF Generate the AF

Figure 3-1 OPAE SDK Design Flow for AFU development (captured from UG-20169)

The output file after finishing hardware implementation is gbs file (green bit stream) which is
bit stream for running partial configuration by the OPAE software platform. More details to
develop AFUs with the OPAE SDK are described in UG-20169.

https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.
html

4-Jul-19 Page 20

https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html

