
dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 1

UDP100G-IP reference design
Rev1.0 13-Aug-21

1 Introduction
Comparing to TCP protocol, UDP protocol provides a procedure to send data with a minimum of
protocol mechanism. There is no handshake and no data recovery process for the sender to
confirm that the receiver accepts all data correctly. Similar to TCP protocol, UDP protocol provides
checksum for data integrity and port numbers for addressing different functions at the source and
the destination in the networks.

Figure 1-1 UDP/IP protocol layer

UDP100G-IP implements Transport and Internet layer of UDP/IP Protocol for building Ethernet
packet from the user data (UDP payload data) to EMAC. If UDP payload data size is larger than a
packet size, UDP100G-IP splits the data from the user to smaller size to fit in one packet. After
that, the payload data is appended by UDP/IP header. On the other hand, the received Ethernet
packet from EMAC is extracted by UDP100G-IP. The header of the packet is verified. If the
header is valid, UDP payload data is forwarded to the user logic. Otherwise, the packet is
rejected.

The low-layer protocols are implemented by 100G Ethernet IP, including EMAC and PCS/PMA
logic. The reference design uses 100G Ethernet IP, provided by Intel FPGA.

The reference design provides the evaluation system which includes simple user logic to transfer
data by using UDP100G-IP. UDP100G-IP transfers data with PC or another UDP100G-IP on
another FPGA board. To run with PC, the test application, udpdatatest, is called on PC to send
and verify UDP payload data via Ethernet connection at very high-speed rate. One application is
called for transferring data in one direction. To run full-duplex test, two test applications are called
for sending and receiving data.

To allow the user controlling the test parameters and the operation of UDP100G-IP demo via
JTAG UART, the CPU system is included. It is easy for the user to set the test parameters and
monitor the current status on the console. The firmware on CPU is built by using bare-metal OS.
More details of the demo are described as follows.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 2

2 Hardware overview

Figure 2-1 Demo block diagram

In test environment, two devices are used for 100Gb Ethernet transferring. First device is
UDP100G-IP which may be initialized by Client or Fixed-MAC mode. The second device may be
Test PC which runs “udpdatatest” or another FPGA including UDP100G-IP that is initialized by
Server or Fixed-MAC mode, as shown in Figure 2-1.

In FPGA system, UDP100G-IP connects with 100G Ethernet IP (Soft IP or Hard IP) to complete all
UDP/IP layer implementation. User interface of UDP100G-IP connects to UserReg within
Avl2Reg which consists of Register file for control signals by Register interface, PattGen for
sending test data via Tx FIFO interface, and PattVer for verifying test data via Rx FIFO interface.
Register files of UserReg are controlled by CPU firmware through Avalon-MM bus.

100G Ethernet IP can be implemented by the Soft IP or the Hard IP. When using the Soft IP, 100G
Ethernet IP uses two different clocks, MacTxClk and MacRxClk, for Tx and Rx interface. However,
MacTxClk frequency and MacRxClk frequency are equal to 390.625 MHz. While the Hard IP uses
one clock domain, MacClk, for Tx and Rx interface. The clock frequency is equal to 402.832 MHz.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 3

If running with the Soft IP, there are four clock domains in the design. First, CpuClk is the clock for
running the CPU system. Second, MacTxClk is the clock output from 100G EMAC for
synchronous with Tx interface of Ethernet IP. Next, MacRxClk is the clock for synchronous with
Rx interface of Ethernet IP. Finally, UserClk is the clock for running user logic of UDP100G-IP. In
real system, the user can change the frequency of CpuClk and UserClk. According to
UDP100G-IP datasheet, clock frequency of UserClk must be more than or equal to 240 MHz.

AsyncAvlReg is designed to support asynchronous signals between CpuClk and UserClk. More
details of each module inside the UDP100CPUTest are described as follows.

2.1 100G Ethernet IP

100G Ethernet IP consists of 100G Ethernet MAC and PCS/PMA. The Physical interface is
100GBASE-R while the user interface is 512-bit Avalon stream bus. The Ethernet IP can be
applied by the Soft IP or the Hard IP, depending on FPGA mode.

More details of 100G Ethernet Soft IP are described in following link.
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/int
erface-protocols/m-alt-ll100gb-ethernet.html

More details of 100G Ethernet Hard IP are described in following link
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug20160.pdf

2.2 UDP100G-IP

UDP100G-IP implements UDP/IP stack and offload engine. User interface has two signal
groups - control signals and data signals. Control and status signals use Single-port RAM
interface for write/read register access. Data signals use FIFO interface for transferring data
stream in both directions. More details are described in datasheet.

More details are described in datasheet.
https://dgway.com/products/IP/UDP100G-IP/dg_udp100gip_data_sheet_intel.pdf

https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-ll100gb-ethernet.html
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-ll100gb-ethernet.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug20160.pdf
https://dgway.com/products/IP/UDP100G-IP/dg_udp100gip_data_sheet_intel.pdf

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 4

2.3 CPU and Peripherals

32-bit Avalon-MM is applied to be the bus interface for the CPU accessing the peripherals
such as Timer and JTAG UART. To control and monitor the test system, the control and status
signals are connected to register for CPU access as a peripheral through 32-bit Avalon-MM
bus. CPU assigns the different base address and the address range to each peripheral for
accessing one peripheral at a time.

In the reference design, the CPU system is built with one additional peripheral to access the
test logic. The base address and the range for accessing the test logic are defined in the CPU
system. So, the hardware logic must be designed to support Avalon-MM bus standard for
supporting CPU writing and reading. Avl2Reg module is designed to connect the CPU system
as shown in Figure 2-2.

Figure 2-2 Avl2Reg block diagram

Avl2Reg consists of AsyncAvlReg and UserReg. AsyncAvlReg is designed to convert the
Avalon-MM signals to be the simple register interface which has 32-bit data bus size (similar
to Avalon-MM data bus size). Besides, AsyncAvlReg includes asynchronous logic to support
clock crossing between CpuClk domain and UserClk domain.

UserReg includes the register file of the parameters and the status signals of test logics. The
data interface and control interface of UDP100G-IP are also connected to UserReg. More
details of AsyncAvlReg and UserReg are described as follows.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 5

2.3.1 AsyncAvlReg

Figure 2-3 AsyncAvlReg interface

The signal on Avalon-MM bus interface can be split into three groups, i.e., Write channel (blue
color), Read channel (red color), and Shared control channel (black color). More details of
Avalon-MM interface specification are described in following document.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_av
alon_spec.pdf

According to Avalon-MM specification, one command (write or read) can be operated at a
time. The logics inside AsyncAvlReg are split into three groups, i.e., Write control logic, Read
control logic, and Flow control logic. Flow control logic controls SAvlWaitReq to hold the next
request from Avalon-MM interface if the current request does not finish. Write control and
Write data I/F of Avalon-MM bus are latched and transferred to be Write register interface with
clock domain crossing registers. Similarly, Read control I/F are latched and transferred to be
Read register interface with clock domain crossing registers. After that, the returned data from
Register Read I/F is transferred to Avalon-MM bus by using clock domain crossing registers.
Address I/F of Avalon-MM is latched and transferred to Address register interface as well.

The simple register interface is compatible with single-port RAM interface for write transaction.
The read transaction of the register interface is slightly modified from RAM interface by
adding RdReq and RdValid signals for controlling read latency time. The address of register
interface is shared for write and read transaction, so user cannot write and read the register at
the same time. The timing diagram of the register interface is shown in Figure 2-4

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 6

Figure 2-4 Register interface timing diagram

1) To write register, the timing diagram is similar to single-port RAM interface. RegWrEn is

asserted to ‘1’ with the valid signal of RegAddr (Register address in 32-bit unit),
RegWrData (write data of the register), and RegWrByteEn (the write byte enable). Byte
enable has four bits to be the byte data valid. Bit[0], [1], [2], and [3] are equal to ‘1’ when
RegWrData[7:0], [15:8], [23:16], and [31:24] are valid respectively.

2) To read register, AsyncAvlReg asserts RegRdReq to ’1’ with the valid value of RegAddr.
32-bit data must be returned after receiving the read request. The slave must monitor
RegRdReq signal to start the read transaction. During read operation, the address value
(RegAddr) does not change the value until RegRdValid is asserted to ‘1’. So, the address
can be used for selecting the returned data by using multiple layers of multiplexer.

3) The read data is returned on RegRdData bus by the slave with asserting RegRdValid to ‘1’.
After that, AsyncAvlReg forwards the read data to SAvlRead interface.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 7

2.3.2 UserReg

Figure 2-5 UserReg block diagram

The logic inside UserReg has three operations, i.e., Register, Pattern generator (PattGen),
and Pattern verification (PattVer). Register block decodes the address requested from
AsyncAvlReg and then selects the active register for write or read transaction. Pattern
generator block sends 512-bit test data to UDP100G-IP following FIFO interface standard.
Pattern verification block reads and verifies 512-bit data from UDP100G-IP following FIFO
interface standard. More details of each block are described as follows.

Register Block
The address range, mapped to UserReg, is split into two areas, i.e., UDP100G-IP register
(0x0000-0x00FF) and UserReg register (0x1000-0x10FF).

Address decoder decodes the upper bit of RegAddr for selecting the active hardware. The
register file inside UserReg is 32-bit bus size. Therefore, write byte enable (RegWrByteEn) is
not applied in the test system and the CPU uses 32-bit pointer to set the hardware registers.

To read register, one multiplexer is designed to select the read data within each address area.
The lower bit of RegAddr is applied in each Register area to select the active data. Next, the
address decoder uses the upper bit to select the read data from the active area for returning
to CPU. Totally, the latency of read data is equal to one clock cycle. Therefore, RegRdValid is
created by RegRdReq with asserting one D Flip-flop. More details of the address mapping
within UserReg module are shown in Table 2-1

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 8

Table 2-1 Register map Definition

Address Register Name Description

Wr/Rd (Label in the “udp100gtest.c”)

BA+0x0000 – BA+0x00FF: UDP100G-IP Register Area

More details of each register are described in UDP100G-IP datasheet.

BA+0x0000 UDP_RST_REG Mapped to RST register within UDP100G-IP

BA+0x0004 UDP_CMD_REG Mapped to CMD register within UDP100G-IP

BA+0x0008 UDP_SML_REG Mapped to SML register within UDP100G-IP

BA+0x000C UDP_SMH_REG Mapped to SMH register within UDP100G-IP

BA+0x0010 UDP_DIP_REG Mapped to DIP register within UDP100G-IP

BA+0x0014 UDP_SIP_REG Mapped to SIP register within UDP100G-IP

BA+0x0018 UDP_DPN_REG Mapped to DPN register within UDP100G-IP

BA+0x001C UDP_SPN_REG Mapped to SPN register within UDP100G-IP

BA+0x0020 UDP_TDL_REG Mapped to TDL register within UDP100G-IP

BA+0x0024 UDP_TMO_REG Mapped to TMO register within UDP100G-IP

BA+0x0028 UDP_PKL_REG Mapped to PKL register within UDP100G-IP

BA+0x0034 UDP_TDH_REG Mapped to TDH register within UDP100G-IP

BA+0x0038 UDP_SRV_REG Mapped to SRV register within UDP100G-IP

BA+0x003C UDP_VER_REG Mapped to VER register within UDP100G-IP

BA+0x0040 UDP_DML_REG Mapped to DML register within UDP100G-IP

BA+0x0044 UDP_DMH_REG Mapped to DMH register within UDP100G-IP

BA+0x1000 – BA+0x10FF: UserReg control/status

BA+0x1000 Total transmit length (Low) Wr [31:0] – 32 lower bits of 42-bit total transmit size in 512-bit unit.

Valid from 1-0x3FF_FFFF_FFFF.

Rd [31:0] – 32 lower bits of 42-bit current transmit size in 512-bit unit.
The value is cleared to 0 when USER_CMD_REG is written by user.

Wr/Rd (USER_TXLENL_REG)

BA+0x1004 Total transmit length (High) Wr [9:0] – 10 upper bits of 42-bit total transmit size in 512-bit unit.

Rd [9:0] – 10 upper bits of 42-bit current transmit size in 512-bit unit. Wr/Rd (USER_TXLENH_REG)

BA+0x1008 User Command Wr [0] – Start transmitting. Set ‘0’ to start transmitting.

[1] – Data verification enable

(‘0’: Disable data verification, ‘1’: Enable data verification)

Rd [0] – PattGen busy (‘0’: Idle, ‘1’: PattGen is busy)

[1] – Data verification error (‘0’: Normal, ‘1’: Error)

This bit is auto-cleared when user starts new operation or reset.

Wr/Rd (USER_CMD_REG)

BA+0x100C User Reset Wr [0] – Reset signal. Set ‘1’ to reset the logic.

This bit is auto-cleared to ‘0’.

[8] – Set ‘1’ to clear USER_RST_REG[8] to ‘0’

Rd [8] – Asserted to ‘1’ when IntOut (output from UDP100G-IP) is asserted to

‘1’. This flag is de-asserted by writing USER_RST_REG[8]=’1’ or system

reset.

[16] – Ethernet linkup status from Ethernet MAC

(‘0’: Not linkup, ‘1’: Linkup)

Wr/Rd (USER_RST_REG)

BA+0x1010 FIFO status Rd[5:0] - Mapped to UDPRxFfLastRdCnt signal of UDP100G-IP

[15:6] - Mapped to UDPRxFfRdCnt signal of UDP100G-IP

[24] - Mapped to UDPTxFfFull signal of UDP100G-IP

Rd (USER_FFSTS_REG)

BA+0x1014 Total receive length (Low) Rd[31:0] – 32 lower bits of 42-bit current receive size in 512-bit unit

The value is cleared to 0 when USER_CMD_REG is written by user. Rd (USER_RXLENL_REG)

BA+0x1018 Total receive length (High) Rd[9:0] – 10 upper bits of 42-bit current receive size in 512-bit unit

Rd (USER_RXLENH_REG)
BA+0x1080 EMAC IP version Rd[31:0] – Mapped to IPVersion output from DG EMAC-IP when the system

integrates DG EMAC-IP. In this demo, it is equal to 0 Rd (EMAC_VER_REG)

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 9

Pattern Generator

Figure 2-6 shows the details of PattGen which generates test data to UDP100G-IP while
Figure 2-7 shows timing diagram of the signals inside PattGen.

Figure 2-6 PattGen block

Figure 2-7 PattGen timing diagram

To start PattGen operation, the user sets USER_CMD_REG[0]=’0’ and then rTxTrnEn is
asserted to ‘1’ until finishing the operation. When rTxTrnEn is ‘1’, UDPTxFfWrEn is controlled
by UDPTxFfFull. UDPTxFfWrEn is de-asserted to ‘0’ to pause generating data when
UDPTxFfFull is ‘1’. rTotalTxCnt is the data counter to check total number of transmitted data
sent to UDP100G-IP. Also, the lower bits of rTotalTxCnt are used to generate 32-bit
incremental data, output to UDPTxFfWrData signal. After all data is transferring completely,
equal to rSetTxSize, rTxTrnEn is de-asserted to ‘0’.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 10

Pattern Verification

Figure 2-8 shows the details of PattVer which receives test data from UDP100G-IP If data
verification is enabled (rVerifyEn), the logic to verify data is run. Timing diagram of PattVer is
displayed in Figure 2-9.

Figure 2-8 PattVer block

Figure 2-9 PattVer Timing diagram

When rVerifyEn is set to ‘1’, the verification logic is run. The received data (UDPRxFfRdData)
is compared with the expected data (wExpPatt). If data verification is failed, rRxVerifyFail is
asserted to ‘1’. UDPRxFfRdEn is designed by using NOT logic of UDPRxFfRdEmpty.
UDPRxFfRdData is valid for data comparison in the next clock. rRxFfRdEn, one clock latency
of UDPRxFfRdEn, is applied to be counter enable of rTotalRxCnt which counts total number
of received data size. Also, the lower bits are applied to generate wExpPatt. Therefore,
UDPRxFfRdData and wExpPatt are valid in the same clock for running data comparison,
controlled by rRxFfRdEn signal.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 11

3 CPU Firmware on FPGA

In reference design, CPU firmware is implemented as bare-metal OS for easily handling with
the hardware. After the test system is run, the first step in the firmware is hardware
initialization.

Figure 3-1 System initialization in Client mode by using default parameters

As shown in Figure 3-1, there are four steps to initialize the hardware, described as follow.

1) After FPGA boot-up, 100G Ethernet link up status (USER_RST_REG[16]) is polling. The

CPU waits until link up is detected and then displays welcome message to show IP
information.

2) The menu to select the initialization mode of UDP100G-IP is displayed. The user can set
as Client, Server, or Fixed-MAC mode.

Note:
a) When running in Client mode, UDP100G-IP sends ARP request to get the MAC

address of the target device from ARP reply. When running in Server mode,
UDP100G-IP waits until ARP request is received to decode MAC address and return
ARP reply. When running Fixed-MAC mode, the user needs to know MAC address of
the target device because UDP100G-IP does not transfer ARP packet.

b) When running the test environment by using one FPGA board and Test PC, it is
recommended to set FPGA to run as Client mode.

c) When the test environment uses two FPGA boards, there are three ways to initial the
connection between two boards. First, one is Client and another is Server. Second,
both are set to Fixed-MAC mode. Last, one is set to Fixed-MAC mode and another
must be set to Client.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 12

3) CPU displays default value of the network parameters, i.e., initialization mode, FPGA

MAC address, FPGA IP address, FPGA port number, Target IP address, and Target port
number. The firmware has two default parameter sets for the operation mode, Server
parameter set and Client/Fixed-MAC parameter set. For Fixed-MAC mode, there is the
extra parameter, Target MAC address. The user can select to complete the initialization
process by using default parameters or updating some parameters. The details to change
the parameter are described in Reset parameters menu (topic 3.2).

4) CPU waits until the IP completes the initialization process by checking if busy status
(UDP_CMD_REG[0]) is equal to ’0’. After that, “IP initialization complete” is displayed with
the main menu. There are five test operations in the main menu. More details of each
menu are described as follows.

3.1 Display parameters

This menu is designed to display the current value of all UDP100G-IP parameters.

The step to display parameters is described as follows.
1) Read the initialization mode.
2) Read all network parameters from each variable in firmware following the initialization

mode, i.e., source (FPGA) MAC address, source (FPGA) IP address, source (FPGA) port
number, target MAC address (only displayed in fixed MAC mode), target IP address, and
target port number.
Note: The source parameters are FPGA parameters set to UDP100G-IP while the target
parameters are the parameters of TestPC or another FPGA.

3) Print out each variable.

3.2 Reset parameters

This menu is used to change some UDP100G-IP parameters such as IP address and source
port number. After setting the updated value to UDP100G-IP, the CPU resets the IP to start
re-initialization process by using new parameters. Finally, the CPU waits until the initialization
is completed.

The step to reset parameters is described as follows.
1) Display all parameters on the console, similar to topic 3.1 (Display parameters)
2) Skip to the next step if the user uses the default value. Otherwise, the menu to set all

parameters is displayed.
i. Receive initialization mode from the user. If the initialization mode is changed, the

latest parameter set of new mode is displayed on the console.
ii. Receive remaining parameters from user and verify all inputs. If the input is invalid,

the parameter is not updated.
3) Force reset to IP by setting UDP_RST_REG[0]=’1’.
4) Set all parameters to UDP100G-IP register such as UDP_SML_REG and

UDP_DIP_REG.
5) De-assert IP reset by setting UDP_RST_REG[0]=’0’ to start IP initialization process.
6) Wait until busy flag (UDP_CMD_REG[0]) is asserted to ‘0’ after finishing the initialization

process.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 13

3.3 Send data test

This menu is designed to run sending data test. The user sets the parameters such as total
transmit length. If the inputs are valid, the data is transferred by sending 32-bit incremental
test data. The operation is finished when all data is completely transferred.

The step to send the data is described as follows.

1) Receive two parameters from user, i.e., total transmit size and packet size. After that, CPU
verifies all inputs. The operation is cancelled if some inputs are invalid.

2) Set UserReg registers, i.e., transfer size (USER_TXLENL/H_REG), reset flag to clear
initial value of test pattern (USER_RST_REG[0]=’1’), and command register to start data
pattern generator (USER_CMD_REG=0). After that, test pattern generator in UserReg
starts sending data to UDP100G-IP.

3) Display recommended parameters of test application on PC by reading current system
parameters. Wait until user enters any keys to start IP sending data operation.

4) Set packet size to UDP100G-IP register (UDP_PKL_REG) and set total number of
transmitted data to UDP_TDL/H_REG. After that, set Send command to UDP100G-IP
(UDP_CMD_REG[0]=’1’) to run Send command.

5) Wait until operation is completed by monitoring busy flag (UDP_CMD_REG[0]=’0’). During
monitoring busy flag, CPU reads current number of transferred data from user logic
(USER_TXLENL/H_REG) and displays the results on the console every second.

6) After the operation is completed, CPU calculates performance and displays test result on
the console.

3.4 Receive data test

This menu is designed to run receiving data test. The user sets the parameters such as total
receive length. If the inputs are valid, 32-bit incremental test data is created for verifying with
the received data from PC/FPGA when the data verification is enabled.

The step to receive the data is described as follows.
1) Receive two parameters, i.e., total transfer size and data verification mode from user input.

The operation is cancelled if some inputs are invalid.
2) Set UserReg registers, i.e., reset flag to clear the initial value of test pattern

(USER_RST_REG[0]=’1’) and data verification mode (USER_CMD_REG[1]=’0’/‘1’ to
disable/enable).

3) Display recommended parameter (similar to Step 3 of Send data test).
4) Wait until total number of received data (USER_RXLENL/H_REG) is equal to the set

value (complete condition) or the number of received data is not updated for 100 msec
(timeout condition). During receiving data, CPU displays the current number of received
data on the console every second.

5) Stop timer and check data verification status (USER_CMD_REG[1]). If the verification
error is found, the error message will be displayed.

6) Calculate performance and then display test result on the console.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 14

3.5 Full duplex test

This menu is designed to run full duplex test by transferring data between FPGA and another
device (PC/FPGA) in both directions at the same time. The menu receives user parameters
for running the test such as total transfer length. If all inputs are valid, the data starts
transferring. The operation is finished when the data in both directions are completely
transferred.
Note: When running the test with PC, the transfer size on the test application (udpdatatest)
must be equal to the transfer size set on FPGA. Two “udpdatatest” are run by using different
port number, one for sending data and another for receiving data. When running by FPGA
and FPGA, the port number for sending and receiving data are similar.

The step to run full duplex test is described as follows.
1) Receive three parameters, i.e., total transfer size (the same size for both transfer

directions), packet size, and data verification mode (enable or disabled) from user. The
operation is cancelled if some inputs are invalid.

2) Set UserReg registers, i.e., transfer size (USER_TXLENL/H_REG), reset flag to clear the
initial value of test pattern (USER_RST_REG[0]=’1’), and command register to start data
pattern generator with data verification mode (USER_CMD_REG=0 or 2).

3) Display the recommended parameters of test application run on PC from the current
system parameters.

4) Set packet size to UDP100G-IP register (UDP_PKL_REG) and set total number of
transferred data to UDP_TDL/H_REG. After that, set Send command to UDP100G-IP
(UDP_CMD_REG[0]=’1’) to run Send command. The IP starts sending data to the target
device. At the same time, the IP is ready to receive data from the target.

5) CPU controls data flow of both directions at the same time. Therefore, there are two tasks
running in the test, described as follows.

a. To send data, CPU reads busy flag (UDP_CMD_REG[0]) to wait until it is de-asserted
to ‘0’. When Send command is finished, busy flag is de-asserted to ‘0’.

b. To receive data, CPU reads total number of received data. The read process is finished
when total number of received data is equal to set value (no data lost). Otherwise, it is
finished when total number of received data does not change for 100 msec (timeout).

When the data is not completely transferred, the current number of transmit data size
(USER_TXLENL/H_REG) and receive data size (USER_RXLENL/H_REG) are read and
displayed on the console every second.

6) Stop timer and check data verification status (USER_CMD_REG[1]). If the verification
error is found, the error message will be displayed.

7) Calculate performance and display test result on the console.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 15

3.6 Function list in User application

This topic describes the function list to run UDP100G-IP operation.

void init_param(void)

Parameters None

Return value None

Description Reset parameters following the description in topic 3.2. In the function,
show_param and input_param function are called to display parameters
and get parameters from user.

int input_param(void)

Parameters None

Return value 0: Valid input, -1: Invalid input

Description Receive network parameters from user, i.e., initialization mode, FPGA
MAC address, FPGA IP address, FPGA port number, Target MAC
address (when run in Fixed-MAC mode), Target IP address, and Target
port number. If the input is valid, the parameter is updated. Otherwise,
the value does not change. After receiving all parameters, calling
show_param function to display parameters.

void show_cursize(void)

Parameters None

Return value None

Description Read current number of transmitted data and number of received data by
reading USER_TXLENL/H_REG and USER_RXLENL/H_REG. Then,
display the result in Byte, KByte, or MByte unit.

void show_interrupt(void)

Parameters None

Return value None

Description Read interrupt status from UDP_TMO_REG and decode interrupt type to
display the details of interrupt on the console.

void show_param(void)

Parameters None

Return value None

Description Display the parameters following the description in topic 3.1.

void show_result(void)

Parameters None

Return value None

Description Read total transmit data size and total receive data size from
USER_TXLENL/H_REG and USER_RXLENL/H_REG and display the
results. After that, read total time usage from global parameters
(timer_val and timer_upper_val) and calculate total time usage to display
in usec, msec, or sec unit. Finally, transfer performance is calculated and
displayed in MB/s unit.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 16

int udp_recv_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Receive data test following description in topic 3.4. It calls
show_interrupt, show_cursize, and show_result function

int udp_send_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Send data test following description in topic 3.3. It calls
show_cursize, and show_result function

int toe_txrx_test(void)

Parameters None

Return value 0: The operation is successful
-1: Receive invalid input or error is found

Description Run Full duplex test following described in topic 3.5. It calls
show_interrupt, show_cursize, and show_result function

void wait_ethlink(void)

Parameters None

Return value None

Description Read USER_RST_REG[16] and wait until ethernet connection is linked
up

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 17

4 Test Software on PC

Figure 4-1 “udpdatatest” application usage

“udpdatatest” is an application on PC for sending or receiving UDP payload data. There are
five parameters and two optional parameters. To run the test, the parameters must be matched
to parameter set on FPGA. More details of each parameter input are as follows.
1) Dir: : t – when PC sends data to FPGA

: r – when PC receives data from FPGA
2) FPGAIP : IP address setting on FPGA (default value in is 192.168.100.42)
3) FPGAPort : Port number of FPGA (default value in FPGA is 4000)
4) PCPort : PC port number for sending or receiving data

(default is 61000 for PC to FPGA and 60000 for FPGA to PC)
5) ByteLen : Transfer length for sending or receiving data in byte unit.

This value must be aligned to 64 from UDP100G-IP limitation.
6) Pattern (optional): Default value when user does not input this parameter is equal to 1.

 0 – Generate dummy data in transmit mode or disable data verification
 in receive mode.
 1 – Generate incremental data in transmit mode or enable data
verification in receive mode.

7) Timeout (optional): Timeout for receiving data in msec unit.
Default value when user does not input this parameter is 100.

 100 ms is recommended value for running with UDP100G-IP.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 18

Transmit data mode
The step when running the test application in transmit mode is described as follows.

1) Get parameters from user and verify that the input is valid.
2) Create the socket and then set properties of receive buffer.
3) Set IP address and port number from user parameters and then connect.
4) Send data to the send buffer for transmitting data. During sending data, the application

prints total sent data on the console every second.
a) When Pattern=1, the send buffer is filled by 32-bit incremental pattern.
b) When Pattern=0, the send buffer is not filled. Dummy data is applied in the test.

5) After finishing sending all data, the application displays performance with total transmit
data size as a test result.

Receive data mode
The step when running the test application in receive mode is described as follows.

1) Follow step (1)-(3) in Transmit data mode.
2) Repeat to read data until total number of received data is equal to set value. Otherwise, it is

cancelled when there is no new received data until timeout. During reading data, the
application prints total number of received data on the console every second.
a) When Pattern=1, the read data is verified by 32-bit incremental pattern which is

increased every 4-byte received data.
b) When Pattern=0, the read data is not verified.

3) When the read loop is finished by timeout condition, “Timeout” message is displayed with
total number of lost data and total number of received data. Also, total time usage is
decreased by timeout value.

4) After finishing the operation, the application displays performance as a test result.

dg_udp100gip_refdesign_intel.doc

13-Aug-21 Page 19

5 Revision History

Revision Date Description

1.0 13-Aug-21 Initial version release

